定积分总结
定积分的计算方法总结

定积分的计算方法总结引言定积分是微积分中重要的概念之一,它可以用于求取曲线下的面积、求解物理问题中的积分以及解决各种与变化量有关的问题。
本文将总结定积分计算的常用方法,包括基本定积分公式、换元积分法和分部积分法。
基本定积分公式基本定积分公式是计算定积分时最基础也是最常用的方法之一。
以下为常见的基本定积分公式:1.$\\int x^m dx = \\frac{1}{m+1}x^{m+1}$,其中m为常数,m eq−1。
2.$\\int \\frac{1}{x} dx = \\ln|x|$,其中x为正实数。
3.$\\int e^x dx = e^x$。
4.$\\int \\sin x dx = -\\cos x$。
5.$\\int \\cos x dx = \\sin x$。
6.$\\int \\tan x dx = -\\ln|\\cos x|$。
换元积分法换元积分法是一种常用的定积分计算方法,它通过引入一个新的变量来简化被积函数的形式。
具体步骤如下:1.选择一个适当的变量代换,通常选择与题目给定的被积函数中具有根号、三角函数等特殊形式相关的变量。
2.根据选择的变量代换,将被积函数中的所有变量都用新的变量表示。
3.计算新的被积函数的导数,并将被积函数转换为对新变量的积分。
4.计算新的积分。
以下是换元积分法的一个例子:求解定积分$\\int 2x(x^2+1)^3 dx$。
解:设u=x2+1,则du=2xdx。
将被积函数中的所有x用u表示,则原积分变为$\\int u^3 du$。
计算新的积分得$\\frac{1}{4}u^4 + C$,其中C为常数。
最后,将u替换回x得到最终结果$\\frac{1}{4}(x^2+1)^4 + C$。
分部积分法分部积分法是解决定积分问题中的另一种常用方法,它是利用乘积的导数公式来简化积分计算的步骤。
具体步骤如下:1.选择一个适当的分部积分公式。
分部积分公式为$\\int u dv = uv -\\int v du$。
定积分的计算方法总结

定积分的计算方法总结定积分的计算方法总结总结是在某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而得出教训和一些规律性认识的一种书面材料,它可以帮助我们总结以往思想,发扬成绩,是时候写一份总结了。
总结怎么写才能发挥它的作用呢?下面是小编为大家整理的定积分的计算方法总结,希望对大家有所帮助。
定积分1、定积分解决的典型问题(1)曲边梯形的面积(2)变速直线运动的路程2、函数可积的充分条件定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。
定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f (x)在区间[a,b]上可积。
3、定积分的若干重要性质性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。
推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg (x)dx。
推论|∫abf(x)dx|≤∫ab|f(x)|dx。
性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m(b—a)≤∫abf(x)dx≤M(b—a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。
性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点ξ,使下式成立:∫abf(x)dx=f(ξ)(b—a)。
4、关于广义积分设函数f(x)在区间[a,b]上除点c(a<c<b)外连续,而在点c的邻域内无界,如果两个广义积分∫acf(x)dx与∫cbf(x)dx都收敛,则定义∫abf(x)dx=∫acf(x)dx+∫cbf(x)dx,否则(只要其中一个发散)就称广义积分∫abf(x)dx发散。
定积分的应用1、求平面图形的'面积(曲线围成的面积)直角坐标系下(含参数与不含参数)极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式S=R2θ/2)旋转体体积(由连续曲线、直线及坐标轴所围成的面积绕坐标轴旋转而成)(且体积V=∫abπ[f(x)]2dx,其中f(x)指曲线的方程)平行截面面积为已知的立体体积(V=∫abA(x)dx,其中A(x)为截面面积)功、水压力、引力函数的平均值(平均值y=1/(b—a)*∫abf(x)dx)。
考研定积分知识点总结

一、定积分的定义和性质1. 定积分的概念定积分是微积分学中的重要概念,它是对函数在一个区间上的积分值进行求解的操作。
具体来说,如果函数f(x)在区间[a,b]上是连续的,则我们可以通过定积分的形式来求解函数f(x)在区间[a,b]上的积分值,即∫(a to b) f(x)dx。
这里,∫表示积分符号,a和b分别表示区间的起点和终点,f(x)表示要求解的函数,dx表示积分变量,并代表着在区间[a,b]上x的变化范围。
因此,定积分的求解可以看做是对函数在一个区间上的积分值进行求解的过程。
2. 定积分的性质定积分具有一系列的性质,这些性质在定积分的求解中起着重要的作用。
主要的性质包括线性性、可加性、积性、保号性、保序性等。
具体来说,线性性指的是定积分的线性组合仍然可以进行积分求解;可加性指的是如果一个区间可以分解成若干个子区间,那么对应的积分值也可以进行求和;积性指的是如果一个函数是另一个函数的乘积,那么对应的积分值也可以进行相乘;保号性指的是如果函数在区间上恒大于等于零(小于等于零),那么对应的积分值也恒大于等于零(小于等于零);保序性指的是如果函数在区间上恒大于等于另一个函数(小于等于另一个函数),那么对应的积分值也恒大于等于(小于等于)另一个函数在相同区间上的积分值。
这些性质在定积分的具体求解中是非常有用的,可以帮助我们简化求解的过程,提高计算的效率。
二、定积分的计算1. 定积分的计算方法定积分的计算方法主要包括定积分的定义法、不定积分法、分部积分法、换元积分法和定积分的几何意义。
其中,定积分的定义法是直接根据定积分的定义进行求解;不定积分法是将定积分转化成不定积分,通过求解不定积分再将得到的结果代入原来的定积分式中,从而得到最终的定积分值;分部积分法是将被积函数进行分解,然后利用分部积分公式对各项进行积分求解;换元积分法是通过变量代换的方法将被积函数进行转化,然后再进行积分求解;定积分的几何意义则是利用定积分代表曲线下面积的特性来进行求解。
数学定积分知识总结

定积分1. 概念: 定积分源自于求曲边梯形的面积, 它的计算形式为:01()lim ()nbk k a k f x dx f x λξ→==∆∑⎰, 结果是一个数值, 其值的大小取决于两个因素(被积函数与积分限).2. 几何意义: 是曲线[](),y f x a b =介于之间与x 轴所围的面积的代数和;3. 经济意义: 若()f x 是某经济量关于x 的变化率(边际问题), 则()ba f x dx ⎰是x 在区间[],ab 中的该经济总量.4. 性质: 本章共列了定积分的八条性质, 其中以下几条在计算定积分中经常用到.(1)()()baabf x dx f x dx =-⎰⎰;(2)[]()()()()b bbaaaf xg x dx f x dx g x dx ±=±⎰⎰⎰;(3)()()bbaakf x dx k f x dx =⎰⎰; (4)()()()bcbaac f x dx f x dx f x dx =+⎰⎰⎰;(5)00()2()aaaf x f x dx f x dx f x -⎧⎪=⎨⎪⎩⎰⎰为奇函数时()()为偶函数时.1.公式: 若()f x 在[],a b 上连续, ()F x 是()f x 的一个原函数, 则()()()baf x dx F b F a =-⎰.2.换元法: 若()f x 在[],a b 连续, ()x t ϕ=在[],c d 上有连续的导数'()t ϕ, 且()t ϕ单调, 则有()()(())'()bdx t acf x dxf t t dt ϕϕϕ=⋅⎰⎰.3. 分部积分法: 若()u x 与()v x 在[],a b 上有连续的导数, 则有()()()()()()bbaabu x dv x u x v x v x du x a =⋅-⎰⎰.1.=⎰__42a π_____; 2. 定积分112121x e dx x⎰ = ___e e -_____;3. 若广义积分2011k dx x +∞=+⎰ , 其中k 为常数,则k = __π2_____;4. 定积分1321sin x xdx -=⎰__0____ ; 5.1211xdx x -=+⎰___0___; 6. 30(sin )xt t dt '=⎰__3sin x x _____ ;7. 广义积分211dx x +∞=⎰__1_____ ; 8. ()bad f x dx dx =⎰ __0______; 9. 设 )(x f 在 [,]a b 上连续,则()()bbaaf x dx f t dt -=⎰⎰ __0_____ ;10. 若函数 )(x f 在 [,]a b 上连续,)(x h 可导,则()()h x ad f t dt dx=⎰_)()]([x h x h f '⋅_____ ;11. 当 =x _0___ 时,⎰-=xt dt te x F 02)( 有极值;12. 设 0()xt f x te dt =⎰ ,则 (0)f ''= __1_______ ;13. 若2kxedx +∞-=⎰ ,则 k = ___21_______ ;14.21(ln )edx x x +∞=⎰_1_______ ; 15. 2131x x e dx -=⎰__0_________ ;二1.arctan xxdx =⎰ ( B )(A)1112-+x(B) 21arctan ln(1)2x x x -+ (C) 1112++x (D) 211x + 2. 下列积分可直接使用牛顿─莱不尼兹公式的有 ( A )(A)53201x dx x +⎰(B)1-⎰ (C)4322(5)xdx x -⎰ (D)11ln eedx x x ⎰ 3. 设 )(x f 为连续函数,则()xaf t dt ⎰为 ( C )(A) ()f t 的一个原函数 (B) ()f t 的所有原函数 (C) )(x f 的一个原函数 (D) )(x f 的所有原函数4.11()()22xf t dt f x =-⎰,且 (0)1f =,则 ()f x = ( A ) (A) 2x e (B)12x e (C) 2x e (D) 212x e 5.1211dx x -=⎰ ( D ) (A) -2 (B) 2 (C) 0 (D) 发散三、1.求下列各函数的导数:(1)211()1xF x dt t =+⎰解:.1111)(212x dt t dx d x F x +=+='⎰ (2)02()cos xF x t tdt =⋅⎰ 求'()F π解:.cos )('.cos cos )cos (cos )(222020202ππππ-===-=-=='⎰⎰⎰F x x tdt t dx d tdt t dx d tdt t dx d x F x x x (3)22()1tx xte F x dt t =+⎰解:⎰⎰⎰⎰⎰+-+=+++=+=x tx t x t x t x x t dt tte dx d dt t te dx d dt t te dt t te dx d dt t te dx d x F 020********)11(1)('222 2223222221)(121)()(122x xe x e x x xe x dx d x e x xx x x +-+=+-⋅+= 2.求下列各极限: (1)203sin limxx tdt x →⎰解:).(3lim 3sin lim )()sin (limsin lim312202203020320上代换倒数第二步用等价无穷===''=→→→→⎰⎰xx x x x tdt xtdt x x xx xx (2)02(2)limxt t x e e dtx-→+-⎰解:.02lim )2()2(lim 22lim )())2((lim)2(lim0002002=-=''-+=-+=''-+=-+-→-→-→-→-→⎰⎰xx x x x x x x x xt t x xt t x e e x e e x e e x dt e e xdte e 3.求下列各定积分:(1)1(1)x dx -⎰10221|)(x x -= (2)120(3)x x dx +⎰103313ln 1|)3(x x+=(3)20cos 2xdx π⎰2021|2sin πx = (4)1310x e dx -⎰=10331103|)(x x e e dx e e =⎰ (5)212x dx -⎰⎰⎰+-=-200122xdx xdx (6)0cos x dx π⎰⎰⎰-=πππ22cos cos 0xdx xdx(7)2adx ⎰a ax x a ax dx x x a a 0221340|)()2(2321+-=+-=⎰(8)21201x dx x +⎰⎰+-=102)111(dx x (9)4⎰ 解:令t =x 2,则d t =2x d x ,当t =0时,x =0;当t =4时,x =2.于是.|))1ln((2)111(2121120202040x x dx x dx x x dt t +-=+-=+=+⎰⎰⎰(10)20ax ⎰解:令x =a sin t ,则d x =a cos t d t ,当x =0时,t =0;当x =a 时,t =2π.于是.|)4sin ()4cos 1(24cos 1)2(sin )2sin ()cos (sin cos sin cos sin sin 16041880402402214242242222202224242424242222πππππππππa a a a a at t dt t dt tdt t dt t a dtt t a tdt t a tdta t a a t a dx x a x =-=-=-=====⋅-⋅=-⎰⎰⎰⎰⎰⎰⎰⎰(11)101dx x+⎰解:令x =t 2,则d x =2t d t ,当x =0时,t =0;当x =1时,t =1.于是).1(2|)arctan (2)111(212211410102102210210π-=-=+-=+=⋅+=+⎰⎰⎰⎰t t dt tdtt t tdt t tdx x x(12)21dx x⎰解:令x =sec t ,则d x =tan t sect t d t ,当x =1时,t =0;当x =2时,t =3π.于是.|)(tan )1(sec tan sec tan sec 1sec 133330121212212ππππt t dt t tdt tdtt tt dx xx -=-==⋅-=-⎰⎰⎰⎰(13)2210x e dx -⎰20122121221|)12(--=-=⎰x x e x d e (14)0cos3xdx π⎰ππ031031|3sin )3(3cos x x xd ==⎰(15)20cos 2xdx π⎰ππ0210)sin (2cos 1x x dx x +=+=⎰ (16)212ln e xdx x+⎰=⎰⎰+=2200ln 2e e dx x x dx x22220221000|)(ln |ln 2)(ln ln 12e e e e x x x xd dx x +=+=⎰⎰. (17)210x xe dx ⎰101221|22x x e dx e ==⎰(18)120x ⎰⎰-=133311dx x.|)1()1()1(110394103331133312321x x d x dx x --=---=-=⎰⎰(19)1201x xe dx e +⎰ .|)arctan()(1110102x x x e de e =+=⎰ (20)12⎰⎰-=2121)(arcsin )(arcsin 2x d x2121|)(arcsin 331-=x四、解答题1.求0()(4)xF x t t dt =-⎰在区间[]1,5-上的最大值与最小值;解:)4()(-='x x x F ,令0)(='x F ,得x =0,x =4.由此可得在),4[]0,(+∞-∞ 上F(x)单调增加,在[0,4]单调减少. 由此可知,在[-1,5]中,F(x)在x =0处取极大值,极大值为F(0)=0;在x =4处取极小值,极小值为F(4)=.|)2()4()4(332402331424-=-=-=-⎰⎰t t dt t t dt t t又F(-1)=.|)2()4()4(371023311240-=-=-=---⎰⎰t t dt t t dt t tF(5)=.|)2()4()4(325502331525-=-=-=-⎰⎰t t dt t t dt t t故在[-1,5]上的最大值为F(0)=0,最小值为F(4)=.332- 2.设20()(1)xf t dt x x =+⎰, 求(0),'(0)f f ;解:两边求导得26)(,23)1(2))1(()(222+='+=++='+=x x f x x x x x x x x f ,故.2)0(,0)0(='=f f。
定积分的知识点总结

定积分的知识点总结一、定积分的基本概念定积分是微积分学中的重要概念,可以用来计算曲线下的面积,曲线的弧长,质心等物理量。
定积分的基本思想是将曲线下的面积划分为无穷多个微小的矩形,然后求和得到整体的面积。
定积分的符号表示为∫。
对于一个函数f(x),在区间[a, b]上的定积分表示为:∫[a, b]f(x)dx其中,a和b为区间的端点,f(x)为函数在该区间上的取值。
定积分表示在区间[a, b]上的函数f(x)所确定的曲线下的面积。
二、定积分的计算方法1. 黎曼和定积分的计算基本思想是将曲线下的面积划分为很多个小矩形,然后对这些小矩形的面积求和。
这就是定积分的计算方法。
在实际计算中,根据黎曼和的定义,我们可以将区间[a, b]等分为n个小区间,每个小区间长度为Δx=(b-a)/n,然后在每个小区间上取一个样本点xi,计算f(xi)Δx的和:∑[i=1,n]f(xi)Δx当n趋近于无穷大时,这个和就可以逼近定积分的值。
这就是黎曼和的基本思想。
2. 定积分的几何意义定积分可以用来计算曲线下的面积,也可以用来计算曲线的弧长。
对于一个函数f(x),其在区间[a, b]上的定积分表示的是曲线y=f(x)和x轴之间的面积。
这个面积就是曲线下的面积。
如果函数f(x)在区间[a, b]上非负且连续,那么函数y=f(x)、直线x=a、x=b以及x轴所围成的区域的面积就是∫[a, b]f(x)dx。
3. 定积分的物理意义定积分还可以用来计算物理量,比如质量、质心等。
在物理学中,可以用定积分来计算物体的质量、质心等物理量。
对于一个连续的物体,将其质量密度函数表示为ρ(x),则物体的质量可以表示为定积分:M=∫[a, b]ρ(x)dx三、定积分的性质1. 线性性定积分具有线性性质,即∫[a, b](c1f1(x)+c2f2(x))dx=c1∫[a, b]f1(x)dx+c2∫[a, b]f2(x)dx。
其中c1、c2为常数,f1(x)、f2(x)为函数。
定积分的计算方法总结

定积分的计算方法总结导读:定积分1、定积分解决的典型问题(1)曲边梯形的面积(2)变速直线运动的路程2、函数可积的充分条件●定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。
●定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。
3、定积分的若干重要性质●性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。
●推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx。
●推论|∫abf(x)dx|≤∫ab|f(x)|dx。
●性质设M及m分别是函数f(x)在区间[a,b]上的'最大值和最小值,则m(b-a)≤∫abf(x)dx≤M(b-a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。
●性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点ξ,使下式成立:∫abf(x)dx=f(ξ)(b-a)。
4、关于广义积分设函数f(x)在区间[a,b]上除点c(a 定积分的应用1、求平面图形的面积(曲线围成的面积)●直角坐标系下(含参数与不含参数)●极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式S=R2θ/2)●旋转体体积(由连续曲线、直线及坐标轴所围成的面积绕坐标轴旋转而成)(且体积V=∫abπ[f(x)]2dx,其中f(x)指曲线的方程)●平行截面面积为已知的立体体积(V=∫abA(x)dx,其中A(x)为截面面积)●功、水压力、引力●函数的平均值(平均值y=1/(b-a)*∫abf(x)dx)【定积分的计算方法总结】1.定积分计算方法总结2.不定积分的方法总结3.定积分证明题方法总结六篇4.极限的计算方法总结5.不定积分知识点总结6.高中定积分的概念课件7.也谈计息天数的计算方法散文8.《小数加减法的计算方法》教学反思范文上文是关于定积分的计算方法总结,感谢您的阅读,希望对您有帮助,谢谢。
定积分的计算知识点总结

定积分的计算知识点总结一、定积分的定义。
1. 概念。
- 设函数y = f(x)在区间[a,b]上连续,用分点a=x_0将区间[a,b]等分成n个小区间,每个小区间长度为Δ x=(b - a)/(n)。
在每个小区间[x_i - 1,x_i]上取一点ξ_i(i =1,2,·s,n),作和式S_n=∑_i = 1^nf(ξ_i)Δ x。
当nto∞时,如果S_n的极限存在,则称这个极限为函数y = f(x)在区间[a,b]上的定积分,记作∫_a^bf(x)dx,即∫_a^bf(x)dx=limlimits_n→∞∑_i = 1^nf(ξ_i)Δ x。
- 这里a与b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积表达式。
2. 几何意义。
- 当f(x)≥slant0时,∫_a^bf(x)dx表示由曲线y = f(x),直线x = a,x = b以及x 轴所围成的曲边梯形的面积。
- 当f(x)≤slant0时,∫_a^bf(x)dx表示由曲线y = f(x),直线x = a,x = b以及x 轴所围成的曲边梯形面积的相反数。
- 当f(x)在[a,b]上有正有负时,∫_a^bf(x)dx表示位于x轴上方的曲边梯形面积减去位于x轴下方的曲边梯形面积。
二、定积分的基本性质。
1. 线性性质。
- ∫_a^b[k_1f(x)+k_2g(x)]dx = k_1∫_a^bf(x)dx + k_2∫_a^bg(x)dx,其中k_1,k_2为常数。
2. 区间可加性。
- ∫_a^bf(x)dx=∫_a^cf(x)dx+∫_c^bf(x)dx,其中a < c < b。
3. 比较性质。
- 如果在区间[a,b]上f(x)≥slant g(x),那么∫_a^bf(x)dx≥slant∫_a^bg(x)dx。
- 特别地,<=ft∫_a^bf(x)dxright≤slant∫_a^b<=ftf(x)rightdx。
定积分知识点总结等价

定积分知识点总结等价在本文中,我们将对定积分的基本概念、性质和求解方法进行总结,希望能够帮助读者更好地理解和运用定积分。
一、定积分的基本概念定积分可以看作是一个区间上面积的度量,它描述了函数在一定区间上的总体变化情况。
在数学上,定积分可以理解为函数在指定区间内的面积或者是曲线的弧长,在物理上可以表示为质量、能量、熵等的总量。
1.1 定积分的定义设f(x)在区间[a, b]上有定义,且[a, b]是有限闭区间,将[a, b]上的分割记作Δ,记Δ的任一分点为x0, x1, ..., xn,对应的区间为[x0, x1], [x1, x2], ..., [xn-1, xn]。
则对应的分割Δ表示为:Δ = {x0, x1, ..., xn}Δ的长度记作δxi = xi - xi-1,假设Δ长度的最大值为δ = max{δxi}。
我们将区间[a, b]分成n个小区间,当n趋于无穷大时,(也就是每个小区间的长度趋于0),则这个过程称为区间[a, b]的分割,也称之为区间[a, b]的划分。
对于函数f(x)在区间[a, b]上的定积分,可以用如下的极限形式定义:∫(a->b)f(x)dx = lim(Δ->0)Σ(i=1->n)f(xi*)δxi其中,xi*是区间[xi-1, xi]上的任意一点。
1.2 定积分的几何意义定积分的几何意义是非常直观的,它表示了曲线与坐标轴以及两条直线之间的面积。
当函数f(x)在区间[a, b]上是非负的时候,定积分表示了曲线y=f(x)与x轴以及直线x=a, x=b之间的面积。
当函数f(x)在区间[a, b]上是有正有负的时候,定积分表示了曲线y=f(x)与x轴之间的面积,其中函数f(x)在区间[a, b]上的正值与负值部分面积互相抵消,最终得到曲线与x轴之间的面积。
1.3 定积分的物理意义在物理上,定积分可以用来描述某一物理量在一定的时间或空间范围内的总量。
例如,对于质量密度为ρ(x)的一根杆在区间[a, b]上的质量总量可以表示为:m = ∫(a->b)ρ(x)dx这里ρ(x)dx表示了杆上长度为dx的小段的质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定积分讲义总结 内容一 定积分概念
一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ∆(b a
x n
-∆=
),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:1
1
()()n n
n i i i i b a
S f x f n
ξξ==-=∆=∑∑
如果x ∆无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。
记为:()b
a
S f x dx =
⎰
其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。
说明:(1)定积分
()b
a
f x dx ⎰
是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b
a
f x dx ⎰,而不是n S .
(2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和:
1()n
i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a
f x dx f n ξ→∞=-=∑⎰ 例1.弹簧在拉伸的过程中,力与伸长量成正比,即力()F x kx =(k 为常数,x 是伸长量),求弹簧从平衡位置拉长b 所作的功.
分析:利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解. 解: 将物体用常力F 沿力的方向移动距离x ,则所作的功为W F x =⋅. 1.分割
在区间[]0,b 上等间隔地插入1n -个点,将区间[]0,1等分成n 个小区间:
0,b n ⎡⎤⎢⎥⎣⎦,2,b b n n ⎡⎤
⎢⎥⎣⎦,…,()1,n b b n -⎡⎤⎢⎥⎣⎦
记第i 个区间为()1,(1,2,,)i b i b i n n
n -⎡⎤⋅=⎢
⎥
⎣⎦L ,其长度为()1i b i b b
x n n n -⋅∆=-= 把在分段0,
b n ⎡
⎤⎢⎥⎣
⎦,2,b b n n ⎡⎤
⎢⎥⎣⎦,…,()1,n b b n -⎡⎤⎢⎥⎣⎦
上所作的功分别记作:1W ∆,2W ∆,…,n W ∆ (2)近似代替 有条件知:()()11i i b i b b W F x k n n n --⎛⎫∆=⋅∆=⋅⋅ ⎪
⎝⎭
(1,2,,)i n =L (3)求和
()1
1
1n n
n i i i i b b W W k n
n
==-=∆=⋅⋅∑∑
=()()22222
110121122n n kb kb kb n n n n -⎛⎫
++++-==-⎡⎤ ⎪⎣
⎦⎝⎭
L
从而得到W 的近似值 2112n kb W W n ⎛⎫
≈=- ⎪⎝⎭
(4)取极限22
1
1lim lim lim 122n
n i n n n i kb kb W W W n →∞→∞→∞=⎛⎫==∆=-= ⎪⎝⎭∑ 所以得到弹簧从平衡位置拉长b 所作的功为:
22kb
内容二 定积分的几何意义
从几何上看,如果在区间[,]a b 上函数()f x 连续且恒有0)(≥x f ,那么定积分
dx x f a
b
⎰
)(表示由直线
0),(,=≠==y b a b x a x 和曲线)(x f y =所围成的曲边梯形(如图中的阴影部分)的面积,这就是定积分
dx x f a
b
⎰
)(的几何意义。
说明:一般情况下,定积分
()b
a
f x dx ⎰
的几何意义是介于x 轴、函数()f x 的图形以及直线,x a x b ==之间各部分面
积的代数和,在x 轴上方的面积取正号,在x 轴下方的面积去负号。
分析:一般的,设被积函数()y f x =,若()y f x =在[,]a b 上可取负值。
考察和式()()()12()i n f x x f x x f x x f x x ∆+∆++∆++∆L L 不妨设1(),(),,()0i i n f x f x f x +<L
于是和式即为()()()121(){[()][]}i i n f x x f x x f x x f x x f x x -∆+∆++∆--∆++-∆L L ⎰
=∴a
b
dx x f )(阴影A 的面积—阴影B 的面积(即x 轴上方面积减x 轴下方的面积)
例2.计算定积分
2
1
(1)x dx
+⎰
分析:所求定积分即为如图阴影部分面积,面积为52。
即:2
1
5(1)2
x dx +=
⎰
1
2
y
x
o
内容三 定积分的性质
性质1 a b dx b
a
-=⎰1
性质2 ⎰⎰
=b
a
b
a dx x f k dx x kf )()( (其中k 是不为0的常数) (定积分的线性性质)
性质3
1212[()()]()()b
b b
a
a
a
f x f x dx f x dx f x dx ±=±⎰
⎰⎰(定积分的线性性质)
性质4
()()()()b
c
b
a
a
c
f x dx f x dx f x dx
a c
b =+<<⎰⎰⎰其中 (定积分对积分区间的可加性)
说明:①推广:1212[()()()]()()()b
b
b
b
m m a
a
a
a
f x f x f x dx f x dx f x dx f x ±±±=±±±⎰
⎰⎰⎰L L
②推广: 12
1
()()()()k
b
c c b
a
a
c c f x dx f x dx f x dx f x dx =+++⎰
⎰⎰⎰L
内容四 微积分基本定理
一般地,如果函数()F x 是[,]a b 上的连续函数,并且)()('x f x F =,那么()()()b
a
f x dx F b F a =-⎰
这个结论叫做微积分基本定理。
基本积分公式:
(1)⎰-≠∈+=
+b
a b
a m m m Q m x m dx x )1,(1
11; (2)⎰=b
a b a x dx x
ln 1
; (3)
⎰
=b
a
b a
x x e dx e ; (4)⎰=
b
a b a
x
x
a
a dx a ln ;
(5)⎰
=b
a b a x xdx sin cos ;
(6)
⎰-=b
a
b
a
x
xdx cos sin
例3 求
.12
dx x
x b
a
⎰
+
解 因为
22
1222===1122
2212(1)(1)2x C x C ++=++g 即
1
22
20
(1)1x +=1
22
(1)x +,所以
2
⎰
=1
2
22
(1)
1x +=
内容五 定积分的简单应用
. 1、 曲边图形面积:()b
a
S f x dx =⎰;
2、 变速运动路程2
1
()t t S v t dt =⎰
;
3、 变力做功 ()b
a
W F r dr
=
⎰
例4.求抛物线y 2 = x 与x – 2y – 3 = 0所围成的图形的面积.
解:如图:由2230y x
x y ⎧=⎨--=⎩
得A (1,– 1),B (9,3).
选择x 作积分变量,则所求面积为
1
011
[()][(3)]2
S x x dx x x dx =--+--⎰⎰=19
9
011
121(3)2dx xdx x dx +--⎰⎰⎰ =3321992201142332||()|33423
x x x x +--=.。