小学奥数盈亏问题及答案
小学奥数盈亏问题

盈亏问题课前预习儿歌:鸟儿飞来了,落在大树梢,每树落一只,一鸟没树找,每树落2只,一树没有鸟,请问几棵树?又有几只鸟?考试要求一、在理解的基础上掌握盈亏问题的三种类型二、能灵活运用盈亏问题的基本公式解题三、理解盈亏中的“总量”和“份数”,灵活应用盈亏法解决问题知识框架一、盈亏问题的三种类型1.直接计算型盈亏问题【举例】朝阳小学买来一批小足球分给各班:如果每班分个,就差个;如果每班分个,则正好分完,朝阳小学一共有多少个班?买来多少个足球?2.条件转换型盈亏问题【举例】幼儿园把一袋糖果分给小朋友,如果分给大班的小朋友,每人粒就缺粒;如果分给小班的小朋友,每人粒就余粒.已知大班比小班少个小朋友,这袋糖果共有多少粒?3.关系互换型盈亏问题【举例】小明妈妈带着一笔钱去买肉,若买10千克牛肉则还差6元,若买12千克猪肉则还剩4元.已知每千克牛肉比猪肉贵3元,问:小明妈妈带了多少钱?二、基本公式1.(盈+亏)÷两次分得之差=人数或单位数2.(盈-盈)÷两次分得之差=人数或单位数3.(亏-亏)÷两次分得之差=人数或单位数三、基本思想方法1.实质分配中的余缺问题2.三种类型的综合处理简单问题的处理:量的差别 单位差别3.遇到陌生、复杂的盈亏问题,可以用转换的思想用假设法,把陌生问题、复杂问题转化为熟悉问题、简单问题重难点重点:在理解的基础上,掌握盈亏问题的基本类型并能灵活运用公式解决问题难点:盈亏问题中份数与总量的区分(这是学生能够灵活运用盈亏法解决问题的前提)例题精讲【例1】小朋友分糖果,若每人分10粒则多9粒;若每人分11粒则刚好.问:有多少个小朋友分多少粒糖?【考点】直接计算型盈亏问题【难度】☆【题型】填空题;应用题;结合方程的应用题【解析】在这个例题中,主要让学生体会到分10粒则多9粒,而分11粒则刚刚好!那么可以说"这九粒糖的任务”就是给每一位小朋友再发一个糖,那么九粒糖每人发一个?是多少个小朋友?九个.这道题的目的在于让学生体会盈亏的思想,数量上都不用做太高要求,这是学习盈亏问题之前的预热!【答案】(1)9个小朋友(2)99颗糖【巩固】北京某校三年级一部分同学分小玩具,如果每人分4个就少9个,如果每人分3个正好分完.问:有多少位同学分多少个小玩具?【答案】(1)9个小朋友(2)36个玩具【例2】小朋友分糖果,若每人分10粒则多9粒;若每人分11粒则差6粒.问:有多少个小朋友分多少粒糖?总共有多少粒糖果?【考点】直接计算型盈亏问题【难度】☆【题型】填空题;应用题;结合方程的应用题【解析】与上题相比,这题有了变化,本来9粒糖就可以分了,但是现在呢?要几粒糖?15粒?小朋友的人数(份数)与糖的粒数(总数)是不变的.比较两种分配方案,第一种方案每人分4粒就多9粒,第二种方案每人分5粒就少6粒,两种不同的方案一多一少相差9+6=15(粒).相差的原因在于两种方案的分配数不同,第一种方案每人分4粒,第二种方案每人分5粒,两次分配数之差为5-4=1(粒).每人相差1粒,多少人相差15粒呢?由此求出小朋友的人数为15÷1=15(人),糖果的粒数为:4×15+9=69(粒).通过上述两道例题主要是让学生体会盈亏的思想,这对于后面公式的总结比较有帮助.教师可以酌情考虑,假如学生的情况比较好,那就不需要上述预热.【答案】(1)15 (2)69【巩固】智康给优秀学员发奖品,假如每人领取7枝笔,则还剩3枝,假如每人领取8枝笔,则还差55枝.问:有多少优秀学员?多少支笔?【答案】(1)58(人)(2)409(支)【例3】点点妈妈买回一筐苹果,按计划吃的天数算了一下,如果每天吃4个,要多出48个苹果;如果每天吃6个,则又少8个苹果.那么妈妈买回的苹果有多少个?计划吃多少天?【考点】直接计算型盈亏问题【难度】☆☆【题型】填空题;应用题;结合方程的应用题【解析】题中告诉我们每天吃4个,多出48个苹果;每天吃6个,少8个苹果.观察每天吃的个数与苹果剩余个数的变化就能看出,由每天吃4个变为每天吃6个,也就是每天多吃2个时,苹果从多出48个到少8个,也就是所需的苹果总数要相差48+8=56(个).从这个对应的变化中可以看出,只要求56里面含有多少个2,就是所求的计划吃的天数;有了计划吃的天数,就不难求出共有多少个苹果了.吃的天数是(48+8)÷(6-4)=56÷2=28(天),苹果数是6×28-8=160(个)或4×28+48=160(个).【答案】(1)160 (2)28【巩固】“六一”国际儿童节联欢会上,买来一包糖,如果每人分15块,则还剩42块,如果每人分17块,则少16块.问:这包糖有几块?一共有几个学生?【答案】(1)29 (2)477【例4】妈妈带小敏去商店买布,妈妈带的钱如果买2米还余1.80元,如果买4米则差2.40元,问妈妈带着多少钱?【难度】☆☆【考点】直接计算型盈亏问题【题型】填空题;应用题;结合方程的应用题【解析】题中告诉我们买2米还余1.80元,如果买4米则差2.40元,那么买两米布需要多少钱?通过上述两种方案我们可以知道本来买2米剩1.80元,而再买两米就还要差2.40元,所以我们可以知道两相对比钱数的变化是3.2元.而钱发生变化是因为我们又买了2米,也就是说2米3.2元,所以很自然就可以知道一米1.6元,算式:1.6×2+1.8=4(元).【答案】4元【巩固】某校同学排队上操.如果每行站9人,则多69人;如果每行站12人,则多15人.一共有多少学生?【答案】(1)10人(2)72【例5】一家旅店,若每个房间住6人,则16人没有床位;若每个房间住8人,则有一间房间是空出来的.这家旅店有多少个房间?要住宿的人数有多少?【考点】条件转化型盈亏问题【难度】☆☆☆【题型】填空题;应用题;结合方程的应用题【解析】这道题式较之前的题发生变化的是在第二个分配方案里并没直接告述我们少多少(即亏是多少),在这种说法中学生可能会错误计算.实际上,在第二种方案中,只要换一个说法:若每个房间住8人,还需要8个人才能住满。
三年级奥数--盈亏问题例题及标准答案

三年级奥数--盈亏问题例题及答案————————————————————————————————作者:————————————————————————————————日期:2三年级奥数盈亏问题例题及答案板块一、直接计算型盈亏问题【例 1】三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?【巩固】明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?【巩固】老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?【巩固】有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少学生,多少练习本呢?【巩固】学而思学校新买来一批书,将它们分给几位老师,如果每人发10本,还差9本,每人发9本,还差2本,请问有多少老师?多少本书?.【巩固】幼儿园给获奖的小朋友发糖,如果每人发6块就少12块,如果每人发9块就少24块,总共有多少块糖呢?【巩固】王老师去琴行买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还多30元,问儿童小提琴多少钱一把?王老师一共带了多少钱?【巩固】工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个?【巩固】学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人.已知这些宿舍中共住了168人,那么其中有多少间大宿舍?【巩固】某学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?【巩固】秋天到了,小白兔收获了一筐萝卜,它按照计划吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,则又少8个萝卜.那么小白兔买回的萝卜有多少个?计划吃多少天?板块二、条件关系转换型盈亏问题【例 2】猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼?【解析】猫妈妈的第一种方案盈8条鱼,第二种方案不盈不亏,所以盈亏总和是8条,两次分配之差是11101÷=(只),猫妈妈有810888⨯+=(条)鱼.-=(条),由盈亏问题公式得,有小猫:818【巩固】学而思学校三年级基础班的一部分同学分小玩具,如果每人分4个就少9个,如果每人分3个正好分完,问:有多少位同学分多少个小玩具?【解析】第一种分配方案亏9个小玩具,第二种方案不盈不亏,所以盈亏总和是9个,两次分配之差是:⨯=(个).÷=(人),有小玩具9327 -=(个),由盈亏问题公式得,参与分玩具的同学有:919431【巩固】学而思学校买来一批小足球分给各班:如果每班分4个,就差66个,如果每班分2个,则正好分完,学而思小学一共有多少个班?买来多少个足球?【解析】第一种分配方案亏66个球,第二种方案不盈不亏,所以盈亏总和是66个,两次分配之差是422-=(个),由盈亏问题公式得,朝阳小学有:66233⨯=(个).÷=(个)班,买来足球33266【巩固】一位老师给学生分糖果,如果每人分4粒就多9粒,如果每人分5粒正好分完,问:有多少位学生?共多少粒糖果?【解析】第一种分配方案盈9粒糖,第二种方案不盈不亏,所以盈亏总和是9粒,两次分配之差是541-=(粒),由盈亏问题公式得,参与分糖的同学有:919⨯=(粒).÷=(人),有糖果9545【巩固】实验小学学生乘车去春游,如果每辆车坐60人,则有15人上不了车;如果每辆车多坐5人,恰好多出一辆车.问一共有几辆车,多少个学生?【解析】没辆车坐60人,则多余15人,每辆车坐60+5=65人,则多出一辆车,也就是差65人.因此车辆数目为:(65+15)÷5=80÷5=16(辆).学生人数为:60×(16-1)+15=60×15+15=900+15=915(人).【例 3】甲、乙两人各买了相同数量的信封与相同数量的信纸,甲每封信用2 张信纸,乙每封信用3 张信纸,一段时间后,甲用完了所有的信封还剩下20 张信纸,乙用完所有信纸还剩下10 个信封,则他们每人各买了多少张信纸?【解析】由题意,如果乙用完所有的信封,那么缺30 张信纸.这是盈亏问题,盈亏总额为(20+30)张信纸,两次分配的差为(3-2)张信纸,所以有信封(20+30)÷(3-2)=50(个),有信纸2×50+20=120(张).【例 4】幼儿园将一筐苹果分给小朋友,如果全部分给大班的小朋友,每人分5个,则余下10个。
小学五年级奥数第12讲 盈亏问题(含答案分析)

第12讲盈亏问题一、知识要点盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定的对象,如果按某种标准分,则分配后会有剩余(盈);按另一种标准分,分配后又会有不足(亏),求物品的数量和分配对象的数量。
例如:把一代饼干分给小班的小朋友,每人分3块,多12块;如果每人分4块,少8块。
小朋友有多少人?饼干有多少块?这种一盈一亏的情况,就是我们通常说的标准的盈亏问题。
盈亏问题的基本数量关系是:(盈+亏)÷两次所分之差=人数;还有一些非标准的盈亏问题,它们被分为四类:1.两盈:两次分配都有多余;2.两不足:两次分配都不够;3.盈适足:一次分配有余,一次分配够分;4,不足适足:一次分配不够,一次分配正好。
一些非标准的盈亏问题都是由标准的盈亏问题演变过来的。
解题时我们可以记住:1.“两亏”问题的数量关系是:两次亏数的差÷两次分得的差=参与分配对象总数;2.“两盈”问题的数量关系是:两次盈数的差÷两次分得的差=参与分配对象总数;3.“一盈一亏”问题的数量关系是:盈与亏的和÷两次分得的差=参与分配对象总数。
二、精讲精练【例题1】某校乒乓球队有若干名学生,如果少一名女生,增加一名男生,则男生为总数的一半;如果少一名男生,增加一名女生,则男生为女生人数的一半。
乒乓球队共有多少名学生?练习1:1.学校买来了白粉笔和彩色粉笔若干盒,如果白粉笔减少10盒,彩色粉笔增加8盒,两种粉笔就同样多;如果再买10盒白粉笔,白粉笔的盒数就是彩色粉笔的5倍。
学校买来两种粉笔各多少盒?2.操场上有两堆货物,如果甲堆增加80吨,乙堆增加25吨,则两堆货物一样重;苦甲、乙两堆各运走5吨,剩下的乙堆正好是甲堆的3倍。
两堆货物一共有多少吨?3.五(1)班的优秀学生中,苦增加2名男生,减少1名女生,则男、女生人数同样多;苦减少1名男生,增加1名女生,则男生是女生的一半。
这些优秀学生中男、女生各多少人?【例题2】幼儿园老师拿出苹果发给小朋友。
小学奥数盈亏问题及答案【三篇】

【导语】成功根本没有秘诀可⾔,如果有的话,就有两个:第⼀个就是坚持到底,永不⾔弃;第⼆个就是当你想放弃的时候,回过头来看看第⼀个秘诀,坚持到底,永不⾔弃,学习也是⼀样需要多做练习。
以下是⽆忧考为⼤家整理的《⼩学奥数盈亏问题及答案【三篇】》供您查阅。
【第⼀篇】某啤酒⼚为了推销某种新品牌,规定每3个这种品牌的空酒瓶就可以换回1瓶啤酒.雅琦家⼀次买了10瓶啤酒,喝完后就拿空瓶去换酒,再喝再换,直到不能换为⽌.雅琦⼀家⼀共可以喝()瓶这种品牌的啤酒. 分析:⾸先喝了10瓶,拿其中的9个空瓶去换3瓶啤酒,还剰1个空瓶.此时喝了10+3=13瓶啤酒.现在有3+1=4个空瓶,可以拿出3个空瓶换1瓶啤酒.此时喝了13+1=14瓶啤酒.现在还有2个空瓶,那么再借1个空瓶就可以换⼀瓶酒,喝完再退⼀个空瓶即可.因此共喝了15瓶啤酒. 解答:解:10÷3=3…1, (3+1)÷3=1…1, (1+1+1)÷3=1, 10+3+1+1=15(瓶); 答:雅琦⼀家⼀共可以喝15瓶这种品牌的啤酒. 故答案为:15. 点评:本题的关键是借空瓶.【第⼆篇】学校春游,租了⼏条船让学⽣们划船,每条船坐3⼈,则有20⼈没有船坐;如果每条船坐5⼈,恰恰安排好,问共有学⽣多少⼈?共租了多少条船? 分析:根据题意,前后每条船所坐⼈数差为:5-3=2(⼈),前后总⼈数差为20⼈,因此可求出船的数量,即20÷(5-3)=10(条),然后根据“每条船坐3⼈,则有20⼈没有船坐”或根据“每条船坐5⼈,恰恰安排好”求出学⽣⼈数.据此解答. 解答:解:20÷(5-3) =20÷2 =10(条); 3×10+20 =30+20 =50(⼈). 答:共有学⽣50⼈,共租了10条船. 点评:此题属于盈亏问题,运⽤了关系式:亏数÷两次分物数量差=份数(船的条数),再求出学⽣⼈数,解决问题.【第三篇】⼀个学⽣从家到学校上课,先⽤每分80⽶的速度⾛了3分,照这样的速度则要迟到3分钟;如果改为每分⾛ll0⽶,结果提前3分钟到达.这个学⽣家到学校有多少⽶? 分析:“先⽤每分80⽶的速度⾛了3分,照这样的速度则要迟到3分钟”,即如按标准时间⾛则距学校还有80×3=240⽶;“如果改为每分钟⾛110⽶,结果提前3分钟到达”,即如按标准时间⾛,则要多⾛110×3=330⽶,两次的速度差为110-80=30⽶,则到校的标准时间为(80×3+110×3)÷(110-80)分钟,求出标准时间后,即能求得学⽣⾛了3分后剩下学校的路程是多少⽶,进⽽求得这个学⽣家到学校的路程是多少⽶.据此解答. 解答:解:(80×3+110×3)÷(110-80) =(240+330)÷30 =570÷30 =19(分钟); 80×3+80×19+80×3 =240+1520+240 =2000(⽶); 答:这个学⽣家到学校有2000⽶. 点评:本题属于较复杂的盈亏问题,关系是求出标准时间,进⽽去求家到学校的路程.。
小学三年级奥数第23讲 盈亏问题(含答案分析)

一、专题简析:
把一定数量的物品,平均分给一定数量的人,每人少分,则物品有余(盈);每人多分,则物品不足(亏)。已知所盈和所亏的数量,求物品数量和人数的应用题叫盈亏问题。
盈亏问题的基本解法是:
份数=(盈+亏)÷两次分配数的差,物品数可由其中一种分法的份和盈亏数求出。
解答盈亏问题的关键是要求出总差额和两次分配的数量差,然后利用基本公式求出分配者人数,进而求出物品的数量。
练习三
1,把一袋糖分给小朋友们,如果每人分4粒,则多了12粒;如果每人分6粒,则多了2粒。有小朋友几人?有多少粒糖?答案
设有x个小朋友,
4x+12=6x+2
2x=10
x=5(列方程【解题方法-解题方法】)
4×5+12=32(粒)
答:有5个小朋友,32粒糖.
解析
本题考查的是列方程解决实际问题的应用,解答本题的关键是理解无论怎样分,糖的数量和小朋友的数量都是不变的,根据这一等量关系列方程即可,计算过程中注意等号要对齐.
4、学校排练节目,如果每行排8人,则有一行少2人;如果每行排9人,则有一行少7人。一共要排几行?一共有多少人?
5、小明从家到学校,如果每分钟走40米,则要迟到2分钟;如果每分钟走50米,则早到4分钟。小明家到学校有多远?
第二十三讲盈亏问题(答案)
专题简析:
把一定数量的物品,平均分给一定数量的人,每人少分,则物品有余(盈);每人多分,则物品不足(亏)。已知所盈和所亏的数量,求物品数量和人数的应用题叫盈亏问题。
例2:幼儿园买来一些玩具,如果每班分8个玩具,则多出2个玩具;如果每班分10个玩具,则少12个玩具。幼儿园有几个班?这批玩具有多少个?
练习二
1、小明带了一些钱去买苹果,如果买3千克,则多出2元;如果买6千克,则少了4元。苹果每千克多少元?小明带了多少钱?
小学奥数思维训练-盈亏问题(通用,含答案)

小学奥数思维训练-盈亏问题学校:___________姓名:___________班级:___________考号:___________一、填空题1.有红、白球若干,若每次拿出1个红球和1个白球,拿到没有红球时,还剩下50个白球;若每次拿走1个红球和3个白球,则拿到没有白球时,红球还剩下50个,那么这堆红球、白球共有( )个。
2.四(2)班举行“六•一”联欢晚会,辅导员老师带着一笔钱去买糖果。
如果买芒果13千克,还差4元;如果买奶糖15千克,则还剩2元。
已知每千克芒果比奶糖贵2元,那么辅导老师带了_______元钱。
二、解答题3.妈妈买回一筐苹果,按计划吃的天数算了一下,如果每天吃4个,要多出48个苹果;如果每天吃6个,则又少8个苹果。
那么妈妈买回的苹果有多少个?计划吃多少天?4.学而思学校新买来一批书,将它们分给几位老师,如果每人发10本,还差9本,每人发9本,还差2本,请问有多少老师?多少本书?5.明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?6.学校进行大扫除,分配若干人擦玻璃,其中两人各擦4块,其余各擦5块,则余12块;若每人擦6块,则正好擦完,求擦玻璃的人数及玻璃的块数?7.阳光小学学生乘汽车到香山春游。
如果每车坐65人,则有5人不能乘上车;如果每车多坐5人,恰多余了一辆车,问一共有几辆汽车,有多少学生?8.用一根绳子测井台到井水面的深度,把绳子对折后垂到井水面,绳子超过井台9米;把绳子三折后垂到井水面,绳子超过井台2米。
求绳子长度和井深?9.有一些糖,每人分5块则多10块,如果现有人数增加到原有人数的1.5倍,那么每人4块就少两块,这些糖共有多少块?10.学校规定上午8时到校,小明去上学,如果每分钟走60米,可提早10分钟到校;如果每分钟走50米,可提早8分钟到校,求小明几时几分离家刚好8时到校?由家到学校的路程是多少?参考答案:1.250【解析】【分析】由“每次拿走1个红球和1个白球,等到没有红球时,还剩下50个白球”可知白球比红球多50个,设红球X个,白球(X+50)个,再根据“每次拿走1个红球和3个白球,则拿到没有白球时,红球还剩下50个”列出方程解答。
小学奥数盈亏问题应用题100道及答案

小学奥数盈亏问题练习100题附答案(1)妈妈带了一些钱去逛超市,若要买3条10元钱一条的毛巾,则还剩5元钱。
妈妈带了多少钱?(2)小琴、小英有相同个数的苹果,小琴每天吃的个数一样,3天吃完;小英每天吃的个数一样,2天吃完,他们每人至少有多少个苹果?(3)有一些玻璃球,若平均分成3堆,则每堆有7个还多4个。
若平均分成5堆,则每堆会有多少个?(4)一小组6个人去植树,若每人植3棵,还剩3棵没人植。
那么共有多少棵树?(5)三(1)班全体同学去春游,若每组7人,则可分成5组还多1人。
一共有多少位同学?(6)小英有一本数学练习题,若每天做8题,做了7天后还有32题。
则这本书有多少题?一共需要做多少天?(7)学校图书馆买来一批新书,分给12个班,如果每班分6本,还多8本。
如果每班7本,够不够分?(8)9个小朋友分一些糖果,若每人分4颗,则多了2颗。
共有多少颗糖?(9)给小朋友分梨,如果每人分4个,则多9个;如果每人分5个,则少6个。
有多少个小朋友?有多少个梨?(10)一个植树小组植树。
如果每人栽5棵,还剩14棵;如果每人栽7棵,就缺4棵。
这个植树小组多少人?一共有多少棵树?(11)某校乒乓球队有若干名学生,如果少一名女生,增加一名男生,则男生为总数的一半;如果少一名男生,增加一名女生,则男生为女生人数的一半。
乒乓球队共有多少名学生?(12)5辆玩具汽车与3架飞机玩具的价钱相等,每架飞机玩具比每辆玩具汽车贵8元。
这两种玩具的单价格是多少?(13)幼儿园买来一些玩具,如果每班分8个玩具,则多出2个玩具;如果每班分10个玩具,则少12个玩具,幼儿园有几个班?这批玩具有多少个?(14)一个小组去山坡植树,如果每人栽4棵,还剩12棵;如果每人栽8棵,则缺4棵,这个小组有几人?一共有多少棵树苗?(15)杨老师将一叠练习本分给第一小组同学。
如果每人分7本还多7本;如果每人分8本则正好分完。
请算一算,每一小组有几个学生?这叠练习本一共有多少本?(16)小玲拿了一些钱去买苹果,如果买3千克,则多出2元;如果买6千克,则少了4元,苹果每千克多少元?小玲带了多少钱?(17)阿姨给14个同学分苹果,如果每位同学分2个,还多3个,如果每个同学分3个,够分吗?(18)甲、乙两组同学做红花,每人做8朵,正好送给五年级每个同学一朵。
小学奥数盈亏问题练习题及参考答案

小学奥数盈亏问题练习题及参考答案1、一辆汽车从甲地到乙地,若以每小时10千米的速度,则提前2小时到达;若以每小时8千米的速度,则迟到3小时,甲地和乙地相距_________千米。
2、把一包糖果分给小朋友们,假如每人分10粒,正好分完;假如每人分16粒,则3人分不到,这包糖有_________粒。
3、暑期前借图书,假如每人借4本,则最后少2本;假如前2人借8本,余下每人借3本,这些图书恰好借完。
问共有书_________本。
4、农民锄草,其中5人各锄4亩,余下的各锄3亩,这样分配最后余下26亩;假如其中3人每人各锄3亩,余下的人各锄5亩,最后余下3亩。
锄草面积是_________。
5、四年级学生搬砖,有12人每人各搬7块,有20人每人各搬6块,其余的每人搬5块,这样最后余下148块;假如有30人各搬8块,有8人各搬9块,其余的每人搬10块,这样分配最后余下20块。
共有_________块砖。
6、有一班同学去划船,他们算了一下,假如增加一条船,每条船正好坐6人;假如减少一条船,每条船正好坐9人。
这班有_________人。
7、一些桔子分给若干人,每人5个余10个桔子。
假如人数增加到3倍还少5人,那么每人分2个还缺8个,有桔子_________个。
8、有一些苹果和梨,苹果的数量是梨的4倍少2个,假如每次吃掉5个苹果和2个梨,当梨吃完还剩下40个苹果。
有_________个苹果。
9、小明花19元买了10本练习本和10支铅笔,他还有余钱。
假如要买1支铅笔,就多0。
3元;假如再买一本练习本就少0。
2元。
小明原有_________元。
10、小明从家到校,假如每分钟120米,则早到3分钟;假如每分钟90米,则迟到2分钟,小明家到学校_________米。
【参考答案】1、一辆汽车从甲地到乙地,若以每小时10千米的速度,则提前2小时到达;若以每小时8千米的速度,则迟到3小时,甲地和乙地相距200千米。
分析:依据“若以每小时10千米的速度,则提前2小时到达;若以每小时8千米的速度,则迟到3小时”,速度差为(10﹣8)=2千米,路程差为(10×2+8×3)=44千米;则按时到的时间是44÷2=22时,然后依据“每小时10千米的速度,则提前2小时到达”,用10×(22﹣2)进行解答即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.
基本题型:
①一次有余数,另一次不足;
基本公式:总份数=(余数+不足数)÷两次每份数的差
②当两次都有余数;
基本公式:总份数=(较大余数一较小余数)÷两次每份数的差
③当两次都不足;
基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差
基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
1【分析】:当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵。
通过这一句话,我们可以知道参加种树的同学一共有12+8=20人,加上再拿来的8棵,一共有20*10=200棵。
所以,原有树苗=200-8=192棵。
解答:有同学12+8=20名,原有树苗20*10-8=192棵。
解答:井深=(3*2+4*1)/(4-3)=10米,绳长=(10+2)*3=36米。
11分析:第一根剪成的每段比第二根剪成的每段长2米。
那么,如果同样是5段的话,第二种就要比第一种少5*2=10米,现在第二种7段和第一种5段一样长,说明第二种的两段长是10米,也就是说每一段为10/2=5米。
所以,绳子长为5*7=35米。
解答:原来每根绳子长为7*(2*5/2)=35米。