第三章 行波法与积分变换法

合集下载

ch3 行波法与积分变换法

ch3 行波法与积分变换法

9 2 f1 (3 x ) x C 4 3 2 f2 ( x) x C 4
1 2 f ( x ) x C 1 4 f ( x) 3 x2 C 2 4
代入 u( x , y ) f1 (3 x y ) f 2 ( x y ) 得到所求的解为:
行波法与积分变换法
行波法只适用波动方程的初值问题.
积分变换法可用于任何方程类型,但主要用于
自变量为无限的情形,其主要思想:降维 使用积分变换法的两个困难: 1、选取哪一种积分变换 2、逆变换难求
(1)掌握一维波动方程初值问题的达朗贝尔公式;
(2)了解三维波动方程的泊松公式; (3)理解积分变换法在解微分方程中的应用。 重点:一维波动方程初值问题的达郎贝尔公式;
常数值f1(C1),且这两个数值随特征线的移动(即常数
Ci(i=1,2) 的改变)而改变,所以波动实际上是沿特征 线传播的。
x at 变换 常称为特征变换,行波法也称为特征 x at 线法。
注:
容易看出, 一维波动方程的两族特征线xat=常数, 正好是常微分方程 (dx 1 ( x at ) 2 ( x at ) | | 1 ( x at ) 2 2 1 x at 2 ( x at ) | | 1 ( ) 2 ( ) | d 2a x at 1 1 x at d 2 2 2a x at 即: | u1 u2 | (1 t )
1 3 2 u( x , y ) (3 x y ) ( x y )2 3 x 2 y 2 4 4
2 u 2sin x u cos x u yy cos x u y 0 例2 求方程 xx xy

数学物理方程第三章_行波法和积分变换法

数学物理方程第三章_行波法和积分变换法

[x − at , x + at ] 上的值,而与其他点上的初始条件无关,这个区间称为点 (x, t ) 的依赖区间,
它是过 ( x, t ) 点分别作斜率为 ±
1 的直线与 x 轴相交所截得的区间,如图 3-2 所示. a
(x,t0)
y
x O x-at0 x+at0
图 3-1
初 始 时 刻 t = 0 时 , 取 x 轴 上 的 一 个 区 间 [x1 , x 2 ] , 过 点 x1 作 斜 率 为
同理可得
2 ∂ 2u ∂ 2u ∂ 2u ⎤ 2⎡∂ u = + a + 2 ⎢ 2 ∂ξ∂η ∂η 2 ⎥ ∂t 2 ⎣ ∂ξ ⎦
将其代入式(3.1.1),得
∂ 2u =0 ∂ξ∂η
对 ξ 积分,得
∂u = f (η ) ∂η
对此式再关于η 积分,得
u = ∫ f (η )dη + f1 (ξ ) = f1 (ξ ) + f 2 (η )
第三章 行波法与积分变换法 本章我们介绍两个常用的解题方法:行波法和积分变换法。行波法只用于求解无界区 域上的波动方程定解问题, 积分变换法不受方程类型的限制, 一般应用于无界区域的定界问 题,有时也应用于有界域的定解问题.
3.1 达朗贝尔公式及波的传播 在求解常微分方程的特解时,一般先求出方程的通解,然后利用所给的定解条件去解出 通解中含有的任意常数,最后得到了满足所给条件的特解.这个想法能否推广到求解偏微分方 程的过程中呢?一般情况下,随着自变量个数的增加,偏微分方程的通解非常难求,并且偏微分 方程的通解一般都含有任意函数,这种任意函数很难由定解条件确定为具体的函数.所以在求 解数学物理方程时,主要采用通过分析各类具体的定解问题,直接求出符合定解条件的特解的 方法.但事情没有绝对的,在有些情况下,我们可以先求出含任意函数的通解,然后根据定解条 件确定出符合要求的特解.本节我们研究一维波动方程的求解,就采用这种方式. 3.1.1 达朗贝尔公式 如果我们所考察的弦无限长,或者我们只研究弦振动刚一开始的阶段,且距弦的边界较远 的一段,此时可以认为弦的边界,对此端振动的弦不产生影响.这样,定解问题就归结为如下形 式

数学物理方法第3章行波法及积分变换法

数学物理方法第3章行波法及积分变换法

e jat e jat ( ) e jat e jat ( ) 2 a 2j
1 1 ( ) jat ( ) jat jat jat ( )e ( )e e e 2 2a j j


x at 1 1 x at u ( x, t ) ( x at ) ( x at ) ( ) d ( ) d 0 0 2 2a

f ( n 1) (0)
f '(x) pF ( p) f (0)
f ''(x) p2 F ( p) pf (0) f '(0)
偏微分方程变 常微分方程
数学物理方程与特殊函数
第3章行波法与积分变换法
例3 解定解问题 2 u 2 u , x 0, t 0 a 2 x t x0 u ( x,0) 0, u (0, t ) N , t0 解:对t求拉氏变换 2 d U ( x, p ) 2 pU ( x , p ) a , x0 2 dx N U (0, p ) p
数学物理方程与特殊函数
第3章行波法与积分变换法
第三章 行波法与积分变换法
一 行波法
1 基本思想: 先求出偏微分方程的通解,然后用定解条件确定 特解。这一思想与常微分方程的解法是一样的。 2 关键步骤: 通过变量变换,将波动方程化为便于积分的齐 次二阶偏微分方程。 3 适用范围: 无界域内波动方程,等…
u( x, t )的大小完全取决于
初始条件 ( x), ( x)在区间[ x at , x at ]的值
而与区间外面的 ( x), ( x)的值无关
决定区域

课件:第三章 行波法

课件:第三章 行波法

0(3 .1)(3.2)
对于上述初值问题,由于微分方程现定解条件都是 线性的,所以叠加原理同样成立,即如果函数和 分
别是下ux述,0初 值utt问x,题aut2uxx,x0 x (3.3)
(3.4)
•和
uuxtt,0a20u,xux txf,0x((,33t..650))
的解,则 u u1x,t u2x就,t是 原初值问题 (3.1)(3.2)的解,这
1
2 1
2
x x
1
2a 1
2a
x
x0 x
x0
d d
c
2a c
2a
( 3.17)
把它们代入(3.13) 得初值问题(3.3)(3.4)的解
ux, t
x
at
2
x
at
1 2a
xat(3.1d8) xat
这个公式称为无限长弦自由振动的达朗贝尔公式,或称为达 朗贝尔解。这种求解方法称为达朗贝尔解法。
题大
有有
其局
特限
殊 的 优 点

, 但 对

内 波 动 方 程 的 定
解 问
题 ,
波 法 只 能 用 于 求
解 无
界 区
波解 法定 ,解 二问 是题 积和 分方
变法 换,
法一 。是
本 章 我 们 将 介
绍 另 外
两 个
引 言
3.2 达朗贝尔(D’Alembert)公式 波的传播
• 本章我们将介绍另外两个求解定解问题和方法, 一是行波法,二是积分变换法。行波法只能用于 求解无界区域内波动方程的定解问题,虽然有很 大有局限性,但对于波动问题有其特殊的优点, 所以该法是数理方程的基本之一。我们只注重解 决问题的思路,导出形式解,不追求分析的条件 与验证。积分变换法不受方程的类型限制,主要 用于无界区域,但对于有界区域也能应用

积分变换法

积分变换法
G (ω ) x取傅立叶变换 p U (ω , p ) − F (ω ) = −ω U ( x, p ) + 2 p x 1 ↔ G (ω ), ↔ F (ω ) 其中 2 2 2 (1 + x ) 1+ x
2 2
G (ω ) + F (ω ) 2 G (ω ) 1 ω p U (ω , p ) = = 2 + F (ω ) ⋅ 2 ⋅ p2 + ω 2 p p + ω2 ω
U (ω , t ) = Ce
− a 2ω 2t
C =1
u
2 2
U (ω , t ) = e
− a 2ω 2t
1 2a πt
e

x2 4σ 2t
↔ e −a ω t
u ( x, t ) =
1 2a πt
e

x2 4σ 2t
x
数学物理方程与特殊函数
第3章行波法与积分变换
2 拉氏变换法 拉普拉斯变换的定义
数学物理方程与特殊函数
第3章行波法与积分变换
3.3 积分变换法
1 傅里叶变换法 傅里叶变换的定义 +∞ F (ω , t ) = ∫ f ( x, t )e − jω x dx
−∞
1 +∞ f ( x, t ) = F (ω , t )e jω x dω 2π ∫−∞ 傅里叶变换的性质
微分性 位移性 积分性 相似性 f ( n ) (x) ↔ ( jω ) n F (ω ) f(x − a) ↔ F (ω )e − jω a x 1 ∫0 f (ξ )dξ ↔ jω F (ω ) 1 ω f (ax) ↔ F ( ) a a
F (ω ) f(ξ)dξ ↔ jω

分离变量法常数变易法、行波法和积分变换法达朗贝尔

分离变量法常数变易法、行波法和积分变换法达朗贝尔

分离变量法常数变易法、行波法和积分变换法达朗贝尔设w=u+iV及z=x+iy分别是两个复平面上的点,复函数w=f(z)确定了这两个复平面之间的一个映射,当w=f(z))是一个目数不为零的解析函数时,所对应的映射称为保角映射。

保角映射这种映射必定是一对一的,且具有:(l)伸缩率的不变性,即在某一点Z0上沿不同的方向的曲线微元ds与映射后所得的象ds′的比值都是f′(z0);(2)旋转角的不变性并且保持角的定向,即若把z平面与w平面迭放在一起,且使ZO与W0=f(z0)重合,则过Z0的任一条曲线C到它的象C′的转角为定值。

如果X轴与U轴及y轴与V轴方向相同,这个转角就是Argf'(z0),因此交手Z0的任意两条曲线C1,C2的夹角与它们的象C1,C2的夹角相等且转向不变。

保角变换方法(conformaltransformationmethod)保角变换是利用复变量解析函数实部和虚部都满足拉普拉斯(Laplace)方程的特点,及通过复平面变换以简化求解二维拉普拉斯方程边值问题的一种方法。

由于在没有电荷分布的空间中静电势满足拉普拉斯方程,故此法可用来求解二维的静电势问题。

通过一适当的解析复变函数f(z),将复变数平面z=x+iy变换成另一复变数平面z′=f(z)=x′+iy′或z=g(z′)将z平面上位形复杂的边值问题,变换至z′平面上位形简单的相应边值问题,以便容易求出静电势的解φ′(x′,y′)。

由此在z′平面中构成解析的复变函数W′(z′)=φ′+i Ψ′。

最后再由z′平面换回z平面W(z)=W′(f(z))=φ(x,y)+iΨ(x,y),从而得到欲求的二维拉普拉斯方程边值问题的解。

由于通过解析函数变换时,分别在二复平面中任意二曲线元之间的夹角不变,故此种变换称为保角变换。

保角映射英文术语名:conformaltransformation【保角映射的定义】设f(z)是区域D到G的双射(既是单射又是满射),且在D内的每一点都具有保角性质,则称f(z)是区域D到G的保角映射,也称为保角变换或者共形映射。

数学物理方程-3

数学物理方程-3

其中ϕ(x, y, z) 和 ψ (x, y, z) 均为已知函数。
u
3-3 高维波动方程的初值问题
平均值法:不考虑函数 平均值法:不考虑函数 u(x, y, z, t) 本 身,而是研究u(x, y, z, t)在以点 M(x, y, z) 为球心,以r 为球心,以r为半径的球面上的平 均值 u ,当暂时选定 M(x, y, z) 后, u 就是关于r 就是关于r,t的函数。当我们很方 便地求出 u (r, t) 后,令 r →0 则 u(r, t) →u(x, y, z, t) ,问题就得到了 解决。
第3章 行波法与积分变换法
原柯西问题的通解为 u = f1 (x + at) + f2 (x − at) 初始条件代入其中,有 ϕ(x) = f1 (x) + f 2 (x) ′ ψ (x) = af1′(x) − af 2 (x) 无界弦振动的柯西问题的解(达朗贝尔解 无界弦振动的柯西问题的解(达朗贝尔解 ) 1 1 x+at 为: u(x, t) = [ϕ(x + at) +ϕ(x − at)] + ∫ ψ (ξ )dξ
3-2 延拓法求解半无限长振动问题
延拓后的定解问题:
2 ∂2v 2 ∂ v + F(x, t) (−∞ < x < +∞, t > 0) 2 =a 2 ∂x ∂t ∂v v(x,0) = Φ(x), |t=0 = Ψ(x) ∂t v(0, t) = 0
x >0 ϕ(x), Φ(x) = −ϕ(−x), x < 0
x >0 ψ (x), Ψ(x) = −ψ (−x), x < 0
x >0 f (x, t), F(x, t) = − f (−x, t), x < 0

Chapter3.1 行波法

Chapter3.1 行波法

∂ 2u ∂ 2u ∂ 2u 例2 − 3 2 = 0, y > 0,−∞ < x < +∞ 2 +2 ∂x ∂x∂y ∂y − x 2 ∂u ( x,0) u ( x,0) = e , = 0, − ∞ < x < +∞ ∂y 解 dy 2 − 2dxdy − 3dx 2 = (dy − 3dx)(dy + dx) = 0 ∂ 2u =0 η 令 ξ = y − 3 x, = y + x ∂ξ∂η
结论:从D`Alembert公式可以看出,前半部分表示由初始 位移激发的行波,t=0时的波形为 ϕ ( x), 以后分成两部 分,独立地以速率a向左右传播;后半部分表示由位移 速度激发的行波, t=0时的速度为ψ ( x), t时刻它将左右 扩散到 [x-at, x+at]的范围,速率为a.
u ( x, t ) = f1 ( x + at ) + f 2 ( x − at ) f1 ( x + at )表示一个以速度a沿x轴负方向传播的行波,称为左行波 f 2 ( x − at )表示一个以速度a沿x轴正方向传播的行波,称为右行波
f1 (3 x) 由第二式积分可得 − + f 2 ( x) = C 3 9x2 3x2 从 而 可 得 f1 (3 x ) = − C ', f2 ( x) = + C '. 4 4
3x2 x2 即 f1 ( x ) = − C ' , f2 ( x) = + C '. 4 4
1 3 2 从而 u ( x, y ) = (3x − y ) + ( x + y ) 2 =3x 2 + y 2 4 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 行波法与积分变换法分离变量法,它是求解有限区域内定解问题常用的一种方法。

行波法,是一种针对无界域的一维波动方程的求解方法。

积分变换法,一个无界域上不受方程类型限制的方法。

§3.1 一维波动方程的达朗贝尔(D ’alembert )公式一、达朗贝尔公式考察如下Cauchy 问题:.- ),(u ),(u 0, ,- ,0t 022222+∞<<∞==>+∞<<∞∂∂=∂∂==x x x t x xu a t u t t ψϕ (1) 作如下代换;⎩⎨⎧-=+=at x at x ηξ,(2) 利用复合函数求导法则可得22222222))((,ηηξξηξηξηξηηξξ∂∂+∂∂∂+∂∂=∂∂+∂∂∂∂+∂∂=∂∂∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂uu u u u x u uu x u x u x u同理可得),2(22222222ηηξξ∂∂+∂∂∂-∂∂=∂∂u u u a t u 代入(1)可得ηξ∂∂∂u2=0。

先对η求积分,再对ξ求积分,可得),(t x u d 的一般形式)()()()(),(at x G at x F G F t x u -++=+=ηξ这里G F ,为二阶连续可微的函数。

再由初始条件可知).()()(),()()(''x x aG x aF x x G x F ψϕ=-=+ (3)由(3)第二式积分可得C dt t ax G x F x+=-⎰0)(1)()(ψ, 利用(3)第一式可得.2)(21)(21)(,2)(21)(21)(00Cdt t a x x G Cdt t a x x F x x --=++=⎰⎰ψϕψϕ所以,我们有⎰+-+-++=atx at x dt t aat x at x t x u )(21)]()([21),(ψϕϕ (4) 此式称为无限弦长自由振动的达朗贝尔公式。

二、特征方程、特征线及其应用 考虑一般的二阶偏微分方程02=+++++Fu Eu Du Cu Bu Au y x yy xy xx称下常微分方程为其特征方程0)(2)(22=+-dx C Bdxdy dy A 。

由前面讨论知道,直线常数=±at x 为波动方程对应特征方程的积分曲线,称为特征线。

已知,左行波)(at x F +在特征线1C at x =+上取值为常数值)(1C F ,右行波)(at x G -在特征线2C at x =-上取值为常数值)(2C G ,且这两个值随着特征线的移动而变化,实际上,波是沿着特征线方向传播的。

称变换(2)为特征变换,因此行波法又称特征线法。

注:此方法可以推广的其他类型的问题。

三、公式的物理意义 由)()(),(at x G at x F t x u -++=其中)(at x F +表示一个沿x 轴负方向传播的行波,)(at x G -表示一个沿x 轴正方向传播的行波。

达朗贝尔公式表明:弦上的任意扰动总是以行波形式分别向两个方向传播出去,其传播速度为a 。

因此此法称为行波法。

四、依赖区间、决定区域、影响区域由方程的解(4)可以看出,解在(x,t )点的数值由x 轴上区间[x-at,x+at]内的初始条件的值唯一确定,而与其他点上的初始条件的值无关。

区间[x-at,x+at]称为点(x,t )的依赖区间对初始直线t=0上的一个区间[x1,x2],过x1作直线x=x1+at,过x2作直线x=x2-at,它们与[x1,x2]合成一个三角形区域,如图则此三角形中任一点(x,t)的依赖区间都落在[x1,x2]中,因此解在此三角形区域中的数值完全由区间[x1,x2]上的初始条件决定,与[x1,x2]之外的初始条件值无关。

故称此三角形区域为[x1,x2]的决定区域。

因此,在区间[x1,x2]上给定初始条件,就能在其决定区域中决定初值问题的解。

另一方面,过点x1,x2分别作直线x=x1-at,x=x2+at, 如图() 则经过时间t 后,受到区间[x1,x2]上初始扰动影响的区域为0,21>+≤≤-t at x x at x而此区域之外的波动不受[x1,x2]上初始扰动的影响,称上不等式确定的区域为[x1,x2]的影响区域。

注:通过例子说明影响区域,比如初始条件在区间[x1,x2]内有扰动时,讨论一下解在那些区域有影响,哪些没影响。

例 求解柯西问题:⎪⎩⎪⎨⎧+∞≤≤-∞==+∞≤≤-∞>=-+==.,0,3,,0,03202x u x u x y u u u y y y yy xy xx解:其特征方程为0)(32)(22=--dx dxdy dy由此可得特征线方程为dy x c y x =+=-3因此作变换⎩⎨⎧+=-=y x y x μξ,3 从而可得ηξ∂∂∂u2=0 从而有)()3(),(y x G y x F y x u ++-=由初始条件可得)()3(3)()3(''2=+-=+x G x F x x G x F所以有C x G x F =-)(3)3(,从而可得Cxx G Cx x F +=-=43)(49)3(22故而可知223)()3(),(y x y x G y x F y x u +=++-=。

补充:Fourier 变换一、定义设)(x f 为定义在),(+∞-∞,若积分⎰+∞∞--=dx e x f s F isx )()(存在,称)(s F 为)(x f 的Fourier 变换。

⎰+∞∞-=ds e s F x f isx )(21)(π称为)(s F 的逆Fourier变换。

记⎰⎰∞+∞--+∞∞--====dse s F s F F xf dxe xf s F x f F isxisx )(21)]([)()()()]([1π二、性质 1.线性性质若已知),()]([),()]([2211s F x f F s F x f F == 则有).()()]()([2121s bF s aF x bf x af F +=+ 2.对称性若)()]([s F x f F =,则)(2)]([s f x F F -=π。

3.相似性若)()]([s F x f F =,则)(1)]([as F a ax f F = 4.延迟性若)()]([s F x f F =,则若0)()]([0isx e s F x x f F -=- 5.频移性若)()]([s F x f F =,则)(])([00s s F e x f F x is -=,)(])([00s s F e x f F x is +=-。

6.微分性若)()]([s F x f F =,则)()](['s isF x f F =,特别)()()]([)(s F is x f F n n =。

7.积分性若)()]([s F x f F =,则)(1])([s F isdx x f F =⎰。

8.卷积性若),()]([),()]([2211s F x f F s F x f F == 则)()()](*)([2121s F s F x f x f F =。

§3.3 积分变换法举例例1、 无界杆上的热传导问题设有一根无限长的杆,杆上具有强度为),(t x F 的热源,杆的初温为)(x ϕ,求t>0时杆上温度分别情况。

解:由题意可知上问题可归结为求下定解问题:.- ),(u 0, ,- ),,(0222+∞<<∞=>+∞<<∞+∂∂=∂∂=x x t x t x f xu a t u t ϕ 很容易看出,上定解问题为无界域上的求解问题,直接用分离变量法比较复杂。

下面我们用Fourier 变换法求解。

用),(),,(t s G t s U 表示),(),,(t x f t x u 的Fourier 变换,关于x 对上方程作Fourier 变换可得G U s a dtt s dU +-=22),( 此为一阶ODE ,在由原问题的初始条件作Fourier 变换可得上常微分方程的定解条件)(0s U t Φ==从而可得τττd e s G e s U t sa t s a )(2222),()(---⎰+Φ=再利用Fourier 逆变换可得原问题的解。

由Fourier 变换表知ta x ts aeta e F 2224121][---=π再由Fourier 变换的卷积性质知⎰⎰⎰∞+∞----∞+∞----+=tt a x ta x d et f d a d et at x u 0)(4)(4)(222),(21)(21),(ξττξτπξξϕπτξξ。

总结:积分变换法解定解问题的一般过程1.根据自变量的变化范围及定解条件,选取适当的积分变换公式,通过对方程进行积分变换把问题简化; 2.对所得简化问题求解;3.运用逆变换,求得原问题的解。

例2.一条无限长的杆,端点温度情况已知,初温为0C 0 ,求杆上温度分布规律。

解:由题意可知,等价于求下定解问题),(u .0,0u 0, ,0 ,00222t f x t x xu a t u x t =+∞<<=>+∞<<∂∂=∂∂== 此问题不能用Fourier 变换法(?)。

要用Laplace 变换法求解。

若关于x 作Laplace 变换,则需要有u 关于x 的一阶偏导的边界值,但方程没有给出,所以只能作关于t 的Laplace 变换。

记)}({)()},,({),(t f L p F t x u L p x U ==,则作Laplace 变换可得)(0222p F U dx Ud apU x ==-从而可得xapxap BeAeU +=-由定解条件知,当∞→x 时,U 有界,从而可得B=0.又)(0p F U x =-,故xa pe p F U -=)(为求原问题的解,下用Laplace 逆变换,查表可知)0(1)}2({2)(2≥==-+∞-⎰k e p tkerfc L dte y erfc pkyt π令axk =,则知 ⎰⎰∞+---+∞-===ta xy paxyt dye ta x erfc e pL dte y erfc 222412)2(}1{2)(ππ再由Laplace 变换的微分性质知ta x ta xy pax pax eta x dy edt d epp L eL 222242/341122[}1{}{-∞+-----===⎰ππ最后,由Laplace 变换卷积性知⎰---=tt a x d et f a x t x u 0)(42/32)(1)(2),(τττπτ。

注:从例1 和例2解的表达公式不难看出:函数ta x eta x 2242-π对热传导问题起重要作用。

相关文档
最新文档