数轴上的基本公式

合集下载

数轴的动点问题公式

数轴的动点问题公式

数轴的动点问题公式
数轴的动点问题是指一个点在数轴上按一定规律运动的问题。

为了描述这个运动过程,我们可以使用公式来表示动点的位置。

假设数轴上的起点为0,动点在某个时刻的位置为x。

动点按照某个速度v向左或向右运动,那么在经过t单位时间后,动
点的位置可以用下面的公式表示:
x=x0+vt
其中,x0表示初始位置,v表示速度,t表示时间。

如果速
度为正,表示向右移动;如果速度为负,表示向左移动。

如果动点在数轴上做匀速直线运动,那么速度v是常数,这
时可以将公式简化为:
x=x0+vt
如果动点在数轴上做加速或减速运动,速度v是变化的,那
么我们需要根据具体的问题来确定速度v的表达式。

常见的加
速或减速运动可以用以下几种公式表示:
匀加速运动:v=v0+at,其中v0表示初始速度,a表示加
速度。

匀减速运动:v=v0at,其中v0表示初始速度,a表示减速度。

自由落体运动:h=h0+v0t+(1/2)gt^2,其中h0表示初始高度,v0表示初始速度,g表示重力加速度。

希望上述内容能够对您有所帮助!如有任何疑问,请随时向我提问。

2.1.1数轴上的基本公式教案教师版

2.1.1数轴上的基本公式教案教师版

§2.1 平面直角坐标系中的基本公式2.1.1 数轴上的基本公式【学习要求】1.理解实数与数轴上的点的对应关系,理解实数运算在数轴上的几何意义.2.掌握数轴上两点间的距离公式.3.掌握数轴上向量加法的坐标运算.4.理解向量相等及零向量的概念.【学法指导】通过数轴上点与实数的一一对应关系拓展到数轴上向量与实数的一一对应关系,从而得到数轴上两点间的距离公式,为研究平面解析几何奠定扎实的基础.填一填:知识要点、记下疑难点1.数轴:一条给出了 原点 、 度量单位 和 正方向 的直线.2.如果点P 与实数x 对应,则称点P 的坐标为 x ,记作 P(x) .3.向量:位移是一个既有大小又有方向的量,通常叫做 位移向量 ,简称为 向量 ,从点A 到点B 的向量,记作AB →.线段AB 的长叫做向量AB →的 长度 ,记作 |AB →| .4.相等的向量:数轴上同向且 等长 的向量叫做相等的向量.5.向量的坐标或数量:我们可用实数表示数轴上的一个向量AB →,这个实数叫做向量AB →的 坐标或数量 ,用AB 表示.若O 是原点,点A 的坐标为x 1,点B 的坐标为x 2,则AB =OB -OA ,所以AB =x 2-x 1.6.数轴上两点AB 间的距离公式为:d(A ,B)= |x 2-x 1| .研一研:问题探究、课堂更高效探究点一 直线坐标系问题1 数轴是怎样定义的?答:一条给出了原点、度量单位和正方向的直线叫做数轴,或者说在这条直线上建立了直线坐标系.问题2 实数集与数轴上的点有怎样的关系?答:实数集与数轴上的点存在着一一对应的关系.例1 (1)如果点P(x)位于点M(-2),N(3)之间,求x 的取值范围;(2)试确定点A(x 2+x +1)与B ⎝⎛⎭⎫34的位置关系.解: (1)由题意可得,点M(-2)位于点N(3)的左侧, 而P 点位于两点之间,应满足-2<x<3.(2)∵x 2+x +1=⎝⎛⎭⎫x +122+34, ∴当x =-12时,A 、B 两点重合; 当x ≠-12时,x 2+x +1>34,∴A 点位于B 点右侧. 综上所述,A 、B 两点重合,或A 点位于B 点右侧. 小结: 根据数轴上点与实数的对应关系,数轴上的点自左到右对应的实数依次增大.跟踪训练1 不在数轴上画点,判断下列各组点的位置关系(主要说明哪一个点位于另一个点的右侧):(1)A(-1.5),B(-3); (2)A(a),B(a 2+1); (3)A(|x|),B(x).解: (1)∵-1.5>-3, ∴A(-1.5)位于B(-3)的右侧.(2)∵a 2+1-a =⎝⎛⎭⎫a -122+34≥34>0, ∴a 2+1>a ,∴B(a 2+1)位于A(a)的右侧. (3)当x ≥0时,|x|=x , 则A(|x|)和B(x)为同一个点. 当x<0时,|x|>x ,则A(|x|)位于B(x)的右侧.探究点二 数轴上的向量问题1 阅读教材65页~66页,回答什么是向量?如何表示?答:如果数轴上的任意一点A 沿着轴的正向或负向移动到另一点B ,则说点在数轴上作了一次位移,位移是一个既有大小又有方向的量,通常叫做位移向量,简称为向量,从点A 到点B 的向量,记作AB →.问题2 什么是向量的坐标或数量?答:我们可用实数表示数轴上的一个向量AB →,这个实数叫做向量AB →的坐标或数量.问题3 如果把相等的所有向量看作一个整体,作为同一个向量,那么实数与数轴上的向量有什么关系?答: 它们之间是一一对应的.问题4 位移AB →与位移BC →的和是怎样定义的?答: 在数轴上,如果点A 作一次位移到点B ,由点B 再作一次位移到点C ,则位移AC →叫做位移AB →与位移BC →的和.记作AC →=AB →+BC →.问题5 对数轴上任意三点A ,B ,C 都具有什么关系?答: AC =AB +BC.问题6 设AB →是数轴上的任意一个向量,O 为原点,A(x 1),B(x 2),那么AB 如何用x 1,x 2表示?答: AB =OB -OA =x 2-x 1.问题7 数轴上两点AB 的距离公式是怎样的?答: d(A ,B)= |AB|=|x 1-x 2|.例2 已知A 、B 、C 是数轴上任意三点. (1)若AB =5,CB =3,求AC ; (2)证明:AC +CB =AB.(1)解: ∵AC =AB +BC , ∴AC =AB -CB =5-3=2.(2)证明 设数轴上A 、B 、C 三点的坐标分别为x A 、x B 、x C ,则AC +CB =(x C -x A )+(x B -x C )=x B -x A =AB. ∴AC +CB =AB.小结: 本题的关键是结合条件联想到AC →可用AB →、BC →两个首尾相连的向量来表示,再运用相反向量的定义将之转化为已知条件,从而解决问题.跟踪训练2 已知数轴上A 、B 两点的坐标分别为x 1=a +b ,x 2=a -b ,求AB 、BA.解:∵A 点的坐标是x 1=a +b , B 点的坐标是x 2=a -b ,∴AB =x 2-x 1=(a -b)-(a +b)=-2b , BA =x 1-x 2=(a +b)-(a -b)=2b.例3 已知数轴上两点A(a),B(5).求:当a 为何值时,(1)两点间距离为5? (2)两点间距离大于5? (3)两点间距离小于3?解: 数轴上两点A 、B 之间的距离为|AB|=|a -5|.(1)根据题意得|a -5|=5, 可解得a =0或a =10.(2)根据题意得|a -5|>5, 即a -5>5或a -5<-5, ∴a>10或a<0.(3)根据题意得|a -5|<3, 即-3<a -5<3, ∴2<a<8.小结: 一个实数的绝对值的几何意义是实数在数轴上的对应点到原点的距离.跟踪训练3 已知M 、N 、P 是数轴上三点,若|MN|=5,|NP|=3,求d(M ,P).解: ∵M 、N 、P 是数轴上三点,|MN|=5,|NP|=3,∴(1)当点P 在点M ,N 之间时(如图所示),d(M ,P)=|MN|-|NP|=5-3=2.(2)当点P 在点M 、N 之外时(如图所示),d(M ,P)=|MN|+|NP|=5+3=8.综上所述,d(M ,P)=2或d(M ,P)=8.练一练:当堂检测、目标达成落实处1.不在数轴上画点,确定下列各组点中,哪组中的点C 位于点D 的右侧 ( A )A .C(-3)和D(-4)B .C(3)和D(4)C .C(-4)和D(3)D .C(-4)和D(-3)2.下列说法正确的个数有 ( )①数轴上的向量的坐标一定是一个实数;②向量的坐标等于向量的长度;③向量AB →与向量BA →的长度一样;④如果数轴上两个向量的坐标相等,那么这两个向量相等.A .1B .2C .3D .4解析: ①③④是正确的,故选C.课堂小结:1.相等的向量的起点与终点并不一定一致,可以通过平移将所有相等的向量视作同一个向量.因数轴上每一个向量的坐标为一个实数,如果把相等的所有向量看作一个整体,作为同一个向量,则实数与数轴上的向量之间是一一对应的.2.重要结论:①对于数轴上任意三点A ,B ,C 都有AC =AB +BC ;②AB=-BA 或AB +BA =0.3.向量与数量的区别与联系向量是不同于数量的一种新的量.数量只有大小,没有方向,其大小可以用正数、负数或零来表示,它是一个代数量,可以进行各种代数运算;数量之间可以比较大小.向量是既有大小,又有方向的量;由于方向不能比较大小,因此“大于”“小于”对向量来说是没有意义的.4.数轴上的向量的坐标计算公式:AB =x B -x A ;数轴上两点的距离公式d(A ,B)=|AB|=|x B -x A |.。

高中数学 第二章 平面解析几何初步 2.1 平面直角坐标系中的基本公式 2.1.1 数轴上的基本公式

高中数学 第二章 平面解析几何初步 2.1 平面直角坐标系中的基本公式 2.1.1 数轴上的基本公式

2.1.1 数轴上的基本公式1.给出下列命题:①零向量只有大小没有方向;②向量的数量是一个正实数;③一个向量的终点坐标就是这个向量的坐标;④两个向量相等,它们的坐标也相等,反之数轴上两个向量的坐标相等,则这两个向量也相等.其中正确的有( B )(A)0个(B)1个(C)2个(D)3个解析:由向量定义知:①不正确;由于向量的数量可以是任一个实数,故②不正确;一个向量的坐标等于终点坐标减去起点坐标,故③不正确;由向量与其数量关系知④正确,所以选B.2.已知数轴上两点A(x),B(2-x2)且点A在点B的右侧,则x的取值X围是( D )(A)(-1,2) (B)(-∞,-1)∪(2,+∞)(C)(-2,1) (D)(-∞,-2)∪(1,+∞)解析:点A在点B的右侧,所以x>2-x2,x2+x-2>0,得x<-2或x>1.故选D.3.当数轴上的三点A,B,O互不重合时,它们的位置关系有六种不同的情形,其中使AB=OB-OA 和||=||-||同时成立的情况有( B )(A)1种(B)2种(C)3种(D)4种解析:AB=OB-OA恒成立,而||=||-||,只能是A在O,B的中间,有两种可能性.4.若数轴上A点的坐标为-1,B点的坐标为4,P点在线段AB上,且=,则P点的坐标为( A )(A)2 (B)-2 (C)0 (D)1解析:设P点的坐标为x,则AP=x+1,PB=4-x,由=,得=,解得x=2.5.数轴上A,B两点的坐标分别为x1,x2,则下列式子中不一定正确的是( B )(A)|AB|=|x1-x2| (B)|BA|=x2-x1(C)AB=x2-x1 (D)BA=x1-x2解析:B中|BA|=|x2-x1|,|BA|不一定等于x2-x1,因为x2-x1可能为负值.6.设M,N,P,Q是数轴上不同的四点,给出以下关系:①MN+NP+PQ+QM=0;②MN+PQ-MQ-PN=0;③PQ-PN+MN-MQ=0;④QM=MN+NP+ PQ.其中正确的序号是.解析:由向量的运算法则知①显然正确;MN+PQ-MQ-PN=MN+PQ+QM+NP= MP+PM=0.故②正确;PQ-PN+MN-MQ=PQ+NP+MN+QM=NQ+QN=0,故③正确; MN+NP+PQ=MQ,与QM不相等,故④错. 答案:①②③7.已知数轴上不同的两点A(a),B(b),则在数轴上满足条件|PA|=|PB|的点P的坐标为( C )(A)(B)(C)(D)b-a解析:设点P的坐标为x.因为|PA|=|PB|,所以|a-x|=|b-x|,即a-x= ±(b-x),解得x=,故选C.8.下列各组点:①M(a)和N(2a);②A(b)和B(2+b);③C(x)和D(x-a);④E(x)和F(x2).其中后面的点一定位于前面的点的右侧的是( B )(A)①(B)②(C)③(D)④解析:因为AB=(2+b)-b=2>0,所以点B一定在点A的右侧.9.在数轴上求一点,使它到点A(-9)的距离是它到点B(-3)的距离的2倍.解:设所求点为P(x),由题意,得d(A,P)=2d(B,P),即|x+9|=2|x+3|,解得x=3或x=-5.故P(3)或P(-5)为所求的点.10.甲、乙两人从A点出发背向行进,甲先出发,行进10 km后,乙再出发.甲的速度为每小时8 km,乙的速度为每小时6 km.当甲离开A点的距离为乙离开A点的距离的2倍时,甲、乙两人的距离是多少?解:以A为原点,以甲行进方向为正方向建立数轴,设乙出发后t h,甲到A点的距离是乙到A点的距离的2倍,则甲的坐标为8t+10,乙的坐标为-6t.由两点间的距离公式得8t+10=2×6t,解得t=.d(甲,乙)=|-6t-(8t+10)|=10+14t=45(km).故甲、乙两人相距45 km.11.(1)如果不等式|x+1|+|x-3|>a恒成立,求a的X围;(2)如果不等式|x+1|+|x-3|<a无解,求a的X围.解:法一设f(x)=|x+1|+|x-3|,由数轴上的距离公式化简得f(x)=画出f(x)图象如图所示.(1)由于函数f(x)的最小值为4,所以要想|x+1|+|x-3|>a恒成立,需a<4.(2)由于f(x)min=4,故要使|x+1|+|x-3|<a无解,要满足a≤4.法二(1)要使|x+1|+|x-3|>a恒成立,只需a小于|x+1|+|x-3|的最小值,而|x+1|+|x-3|表示数轴上的点到A(-1)与B(3)的距离之和,则|x+1|+|x-3|的最小值为|3-(-1)|=4,所以a<4.(2)由(1)知|x+1|+|x-3|的最小值为4,则要使|x+1|+|x-3|<a无解,只需满足a≤4即可.。

高中数学2.1平面直角坐标系中的基本公式2.1.1数轴上的基本公式教案新人教B版必修2

高中数学2.1平面直角坐标系中的基本公式2.1.1数轴上的基本公式教案新人教B版必修2

数轴上根本公式示范教案整体设计教学分析这一小节,在教学上往往被无视.但一维坐标几何是二维、三维坐标几何根底.教师一定要下些工夫,让学生结实掌握.首先复习数轴,建立数轴上点与实数一一对应关系.然后引入位移向量概念,建立直线上向量与实数一一对应.以往在平面解析几何中,不引入向量概念,由有向线段代替.对有向线段,也没有引入运算概念,这样数轴上根本计算公式,证明起来比拟麻烦.现在高中数学中已引入平面向量知识,如果在数轴上引入向量及其加减运算,学生会更好地理解坐标几何根本公式推导.也为今后进一步学习坐标几何打下坚实根底.值得注意是本节内容比拟容易承受,可以指导学生自学完成,或指定一名具有表现力且成绩优秀学生给同学们讲解.三维目标1.通过对数轴复习,理解实数与数轴上点对应关系,提高学生应用能力.2.理解实数运算在数轴上几何意义.掌握用数轴上两点坐标计算两点距离公式,掌握数轴上向量加法坐标运算,提高学生运算能力,培养数形结合思想.重点难点教学重点:直线坐标系与数轴上两点间距离公式应用.教学难点:理解向量有关概念.课时安排1课时教学过程导入新课 设计1.在初中,我们学习了数轴上两点间距离公式,今天,我们从向量角度来分析数轴上两点间距离公式,教师点出课题.设计2.从本节开场,我们系统学习坐标系,并利用坐标系解决几何问题,今天我们先学习第二章第一大节第一小节,教师点出课题.推进新课新知探究提出问题错误!(2)阅读教材,给出向量有关概念.(3)相等向量坐标相等吗?坐标相等向量相等吗?(4)试讨论AB→+BC →. (5)对于数轴上任意一个向量,怎样用它起点坐标与终点坐标来计算它坐标.(6)写出数轴上两点间距离公式.讨论结果:(1)给出了原点、度量单位与正方向直线叫做数轴,或者说在这条直线上建立了直线坐标系.点P 与实数x 对应法那么是:在数轴上,点P 与实数x 对应法那么是:如果点P 在原点朝正向一侧,那么x 为正数,且等于点P 到原点距离;如果点P 在原点朝负向一侧,那么x 为负数,其绝对值等于点P 到原点距离.原点表示数0.依据这个法那么我们就在实数集与数轴上点之间建立了一一对应关系.即对于数轴上每一个点都有唯一确定实数与之对应;反之,对于任何一个实数,数轴上也存在一个确定点与之对应.假设点P 与实数x 对应,那么称点P 坐标为x ,记作P(x).(2)如以下图所示.如果数轴上任意一点A 沿着轴正向或负向移动到另一点B ,那么说点在轴上做了一次位移,点不动那么说点做了零位移.位移是一个既有大小又有方向量,通常叫做位移向量,本书简称为向量.从点A 到点B 向量,记作AB→AB →起点,点B 叫做向量AB →终点,线段AB 长叫做向量AB→长度,记作|AB →|. 数轴上同向且等长向量叫做相等向量.例如图中AB→=BC →. 我们可用实数表示数轴上一个向量.例如上图中向量AB→,即从点A 沿x 轴正向移动3个单位到达点B ,可用正数3表示;反之,用-3表示B 为起点A 为终点向量,3与-3分别叫做向量AB→与BA →坐标或数量.一般地,轴上向量AB→坐标是一个实数,实数绝对值为线段AB 长度,如果起点指向终点方向与轴同方向,那么这个实数取正数;反之取负数.向量坐标绝对值等于向量长度.起点与终点重合向量是零向量,它没有确定方向,它坐标为0.向量AB→坐标,在本书中用AB 表示. (3)例如在以下图中AB =4,BA =-4,|AB|=4,|BA|=4.显然AB =-BA 或AB +BA =0.容易推断,相等向量,它们坐标相等;反之,如果数轴上两个向量坐标相等,那么这两个向量相等.如果把相等所有向量看作一个整体,作为同一个向量,那么实数与数轴上向量之间是一一对应.(4)在数轴上,如果点A 做一次位移到点B ,接着由点B 再做一次位移到点C ,那么位移AC →叫做位移AB →与位移BC →与.记作AC→=AB →+BC→. 由数轴上向量坐标定义与有理数运算法那么,容易归纳出,对数轴上任意三点A 、B 、C ,都具有关系:AC =AB +BC.(5)设AB→是数轴上任一个向量,例如以下图 O 是原点,点A 坐标为x 1,点B 坐标为x 2,那么OB =OA +AB ,或AB =OB -OA.依轴上点坐标定义,OB =x 2,OA =x 1,所以AB =x 2-x 1.(6)用d(A ,B)表示A 、B 两点距离,根据这个公式可以得到,数轴上两点A 、B 距离公式是d(A ,B)=|x 2-x 1|.应用例如思路1例1点A(1),B(3),求AD +DB 与|AB|(D 是数轴上任一点).解:AD +DB =AB =3-1=2.|AB|=|2|=2.变式训练A 、B 是数轴上两点,B(-1),且|AB|=2,那么点A 坐标是______.答案:1或-3思路2例2设A 、B 、C 、D 是同一直线上四个不同点,求证AB·CD+BC·AD+CA -BD =0.证明:设A(a),B(b),C(c),D(d).AB·CD+BC·AD+CA·BD=(b -a)(d -c)+(c -b)(d -a)+(a -c)(d -b)=bd -bc -ad +ac +cd -ac -bd +ab +ad -ab -cd +bc=0.那么AB·CD+BC·AD+CA·BD=0.变式训练设线段AB 中点为M ,点P 为直线AB 上任意一点.求证:PA +PB =2PM.证明:设A(a),B(b),P(x),那么M(a +b 2),PA +PB =a -x +b -x =2(a +b 2-x)=2PM ,即PA +PB =2PM. 知能训练1.关于位移向量说法正确是( )A .数轴上任意一个点坐标有正负与大小,它是一个位移向量B .两个相等向量起点可以不同C .每一个实数都对应数轴上唯一一个位移向量D.AB→大小是数轴上A 、B 两点到原点距离之差绝对值 答案:B2.化简AB→-AC →-BC →等于( ) A .2BC→ B .零位移 C .-2BC → D .2AC→ 解析:AB→-AC →-BC →=(AC →+CB →)-AC →-BC →=-2BC →. 答案:C3.假设A(x),B(x 2)(其中x∈R ),|AB|最小值为( )A.12 B .0 C.14 D .-14解析:|AB|=|x 2-x|=|(x -12)2-14|≥0,当x =0时取等号. 答案:B4.数轴上到A(1),B(2)两点距离之与等于1点集合为( )A .{0,3}B .{0,1,2,3}C .{1,2}D .{x|1≤x≤2}解析:画出数轴可知,满足条件点在线段AB 上.答案:D拓展提升对x∈R总有|x-1|+|x-2|≥m恒成立,求实数m取值范围.分析:对|x-1|与|x-2|赋予几何意义,利用数形结合解决.解:设A(1),B(2),P(x),那么|x-1|+|x-2|=|PA|+|PB|.如以下图所示:那么|PA|+|PB|≥|AB|=1,那么m≤1,即实数m取值范围是[1,+∞).课堂小结本节课学习了:1.直线坐标系及其两点间距离公式;2.直线坐标系中向量及其坐标.作业本节练习A 5题,练习B 3,4题.设计感想本节教学设计首先通过对数轴温故知新,学习一维坐标系,沟通实数及其运算与数轴上点及两点间相对位置之间关系.创立直线坐标系中根本计算公式.按本节教学设计讲解效果很好.备课资料备选习题1.以下说法中正确是( )A.零向量有确定方向B.数轴上等长向量叫做相等向量C .AB =-BAD .|AB|=BA 答案:C2.1在数轴上对应点是A ,在数轴上把A 向左平移4个单位长度得到点B ,再向右平移3个单位长度,所得点C 对应数是什么?向量AB→与向量BC →坐标分别是什么?向量AC →坐标为多少? 答案:C 对应数是0,向量AB→与向量BC →坐标分别是-4、3,向量AC→坐标为-1. 3.数轴上A 、B 两点坐标为x 1=a +b ,x 2=a -b ,分别求AB 、BA 、d(A ,B)、d(B ,A).解:AB =x 2-x 1=(a -b)-(a +b)=-2b.BA =-AB =2b. d(A ,B)=|x 2-x 1|=|-2b|=2|b|,d(B ,A)=d(A ,B)=2|b|.。

高中数学 第二章 平面解析几何初步 2.1 平面直角坐标

高中数学 第二章 平面解析几何初步 2.1 平面直角坐标
第二章 平面解析几何初步
2.1 平面直角坐标ຫໍສະໝຸດ 中的基本公式课程目标1.理解实数与数轴上的点的对应关 系,理解实数与位移的对应关系. 2.掌握数轴上两点间的距离公式,理 解数轴上的向量加法的坐标运算. 3.探索并掌握平面直角坐标系中两 点的距离公式和中点公式. 4.通过对两点的距离求解过程的探 索,进一步体会“坐标法”的基本思 想,学会构造直角三角形解决问题的 基本思路.
思考 4 点 P(x,y)关于点 G(x0,y0)的对称点的坐标是什么?
提示:点 P(x,y)关于点 G(x0,y0)的对称点的坐标为(2x0-x,2y0-y).
思考 5 教材中的“?”
如果数轴上的单位长取作 1 cm,你能在数轴上标出数 0.001,0.000 1 和 2对应的点吗?你能说明在数轴上确实存在这些点吗?
若 AB∥x 轴或与 x 轴重合,则|AB|=|x2-x1|;若 AB∥y 轴或与 y 轴重合,则 |AB|=|y2-y1|.
思考 3 算术平方根 ������2 + ������2的几何意义是什么?
提示: ������2 + ������2表示点(x,y)到原点的距离.
3.中点公式 (1)直线上的中点坐标公式. 已知数轴上两点 A(x1),B(x2),则线段 AB 的中点 M 的坐标为������1+2������2. (2)平面内的中点坐标公式. 设平面内两点 A(x1,y1),B(x2,y2)的中点 M(x,y),则 x=������1+2������2,y=������1+2 ������2.
2.平面直角坐标系中的基本公式 平面直角坐标系中两点 A(x1,y1),B(x2,y2)的距离公
式:d(A,B)= (������2-������1)2 + (������2-������1)2.

2.1.1数轴上的基本公式

2.1.1数轴上的基本公式

3向量的表示方法(一):
A
B
3 2 1 0 1 2 3 4 x
从点A到点B的向量,记作AB
(1)点A叫做向量AB的 起点. (2)点B叫做向量AB的 终点.
(3)线段AB的长度叫做向量AB的 长度.
记作| AB |
4特殊的向量:
单位向量:长度为1的向量.
零向量:长度为0的向量,它没有确定的方向. (或起点和终点重合的向量.)
记作:AC AB BC
AC AB BC
若:AB 3,BC 4
AC AB BC 7
(1)OB OA AB
AB OB OA
(2)AB BC CD DE __A_E_____
(3)AB BC CD DA 0
O
A
3 2 1 0 1 2 3 4 x
AB x2 x1 向量坐标公式
d(A,B) | AB || BA || x2 x1 | 两点距离公式
8练习:
(1)已知A(2),且的d(A,M) 3求M点的坐标?
M(1)或M(5)
(2)已知| AB | 5,| BC| 3求 | AC | __2_或__8__
(3)A(x1), B(x2)求AB中点M的坐标.
3
(2) | 2x 1| 6
{x |
5 2

x

7} 2
解方程:
(1)| x 3 | | x 1| 5 (2)| x 3 | | x 1| 4 (3)| x 3 | | x 1(1) | 5 (4)| x 3 | | x 1| 4
思考
| AB || BA | 2 | AC || CA | 4

高中数学人教B版二学案:第二单元 2.1.1 数轴上的基本公式 含答案

高中数学人教B版二学案:第二单元 2.1.1 数轴上的基本公式 含答案

2.1.1数轴上的基本公式学习目标 1.理解实数与数轴上的点的对应关系,理解实数运算在数轴上的几何意义.2.掌握数轴上两点间的距离公式。

3。

掌握数轴上向量加法的坐标运算.知识点一数轴(或直线坐标系)思考1数轴是怎样定义的?思考2实数集与数轴上的点有怎样的关系?梳理数轴的概念(1)数轴(直线坐标系)的定义:一条给出了________、________________和____________的直线叫做数轴,或者说在这条直线上建立了________________.(2)数轴上的点P与实数x的对应法则依据这个法则,实数集和数轴上的点之间建立了________________关系.(3)数轴上点P的坐标如果点P与实数x对应,则称点P的坐标为x,记作P(x).知识点二数轴上的向量及有关概念思考1在物理中,力、速度、加速度、位移等有何共同特征?思考2一名同学从A地直接跑到B地,用AB,→表示,你能用这种方法表示该同学从B地返回到A地吗?它们相等吗?思考3相等的向量的起点与终点相等吗?学必求其心得,业必贵于专精梳理数轴上的向量及有关概念(1)向量的定义如果数轴上的任意一点A沿着轴的________________移动到另一点B,则说点在轴上作了一次________,点不动则说点作了________,位移是一个既有________又有________的量,通常叫做________________,简称为________.(2)向量的描述(3)相等的向量________________________的向量叫做相等的向量.知识点三数轴上的基本公式向量坐标运算法则对数轴上任意三点A,B,C,都具有关系________向量坐标表示及距离公式已知数轴上两点A(x1),B(x2),则AB=________,d(A,B)=__________________类型一数轴上的点与实数的对应关系例1(1)如果点P(x)位于点M(-2),点N(3)之间,求x的取值范围;(2)试确定点A(x2+x+1)与点B错误!的位置关系.反思与感悟根据数轴上点与实数的对应关系,数轴上的点自左到右对应的实数依次增大.跟踪训练1不在数轴上画点,判断下列各组点的位置关系(主要说明哪一个点位于另一个点的右侧).(1)A(-1.5),B(-3);(2)A(a),B(a2+1);(3)A(|x|),B(x).类型二数轴上的向量和基本公式例2已知数轴上有A、B两点,A,B之间的距离为1,点A与原点O的距离为3.(1)求OA,AB的坐标;(2)求所有满足条件的点B到原点O的距离之和.反思与感悟数轴上的向量的计算策略(1)熟练掌握一些条件变换,如-MQ=QM。

[高中数学必修2]第二章 平面解析几何初步 知识梳理

[高中数学必修2]第二章  平面解析几何初步 知识梳理

第二章 平面解析几何初步2.1 平面直角坐标系中的基本公式1.数轴上的基本公式(1)数轴上的点与实数的对应关系直线坐标系:一条给出了原点、度量单位和正方向的直线叫做数轴,或说在这条直线上建立了直线坐标系。

数轴上的点与实数的对应法则:点P ←−−−→一一对应实数x 。

记法:如果点P 与实数x 对应,则称点P 的坐标为x ,记作P(x),当点P(x)中x >0时,点P 位于原点右侧,且点P 与原点O 的距离为|OP|=x ;当点P 的坐标P(x)中x <0时,点P 位于原点左侧,且点P 与原点O 的距离|OP|=-x 。

可以通过比较两点坐标的大小来判定两点在数轴上的相对位置。

(2)向量位移是一个既有大小又有方向的量,通常叫做位移向量,简称为向量。

从点A 到点B的向量,记作AB 。

线段AB 的长叫做向量AB 的长度,记作|AB|。

我们可以用实数表示数轴上的一个向量AB ,这个实数叫做向量AB 的坐标或数量。

例如:O 是原点,点A 的坐标为x 1,点B 的坐标为x 2,则AB=OB-OA ,所以AB=x 2-x 1。

注:①向量AB 的坐标用AB 表示,当向量AB 与其所在的数轴(或与其平行的数轴)的方向相同时,规定AB=|AB |;方向相反时,规定AB=-|AB |;②注意向量的长度与向量的坐标之间的区别:向量的长度是一个非负数,而向量的坐标是一个实数,可以是正数、负数、零。

③对数轴上任意三点A 、B 、C ,都有关系AC=AB+BC ,可理解为AC 的坐标等于首尾相连的两向量AB ,BC 的坐标之和。

(3)数轴上的基本公式在数轴上,如果点A 作一次位移到点B ,接着由点B 再作一次位移到点C ,则位移AC叫做位移AB 与位移BC 的和,记作:AC AB BC =+ 。

对数轴上任意三点A 、B 、C ,都有关系AC=AB+BC 。

已知数轴上两点A(x 1),B(x 2)则AB=x 2-x 1,d(A,B)=|x 2-x 1|。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

坐标法
2.数量的和:对数轴上任意三点A、B、C都有关系AC=AB+BC;
是数轴上的任意一个向量,点A的坐标为x ,点B的坐标为x , 设 AB 1 2
3.向量的坐标表示: AB=x2-x1;
4.数轴上两点间的距离公式:用d(A,B)表示A、B两点间的距离,则
d(A,B)=|x2-x1|.
数轴上线段中点的坐标公式如何推导?
一条给出了原点、度量单位和正方向的直线叫做 数轴,或说在这条直线上建立了直线坐标系。如图:
1、数轴上点的坐标
N P(x) M
-3
-2
-1
0
1
2
3
x
若点P与实数x对应,则称点P的坐标为 x 记作
数轴上的一点M的坐标为3 记作:
二、向量的定义
-3 -2 -1 0 A 1
B
2 3
x
如果数轴上任意一点沿着轴的正向或负向移动到另一 点,则说点在数轴上作了一次位移,位移是一个既有 大小又有方向的量,通常叫做位移向量,简称为向量
4.数轴上两点间的距离公式:
用d(A,B)表示A、B两点间的距离, 则 d(A,B) = AB = |x2-x1|.
基本公式 3
小结
• 一、数轴即直线坐标系的定义与数轴上向量的定义
• • 1、数轴上点的坐标 2、数轴上向量的坐标
• 二、数轴上的 基本公式
1.位移的和:AC AB BC
d(A,B)= 8 d(A,C)= 20
d(B,C)= 20 又A,B,C三点不共线, 所以△ABC是等腰三角形
【例3】已知 :平行四边形ABCD的三个顶点坐标
A(- 3,0),B(2,-2),C(5,2).求:顶点D的坐标。
解:因为平行四边形的两条对角线中点相同, 所以它们的中点的坐标也相同. 设D 点的坐标为(x,y). 则
坐标为0
相等的向量
(B) C -3 -2 -1 0
A 1 2
B 3
x
数轴上同向且等长的向量 叫做相等的向量
相等的向量 坐标相等
4、位移的和 (即向量的和简称和向 量)
(B) C -3 -2 -1 0
A 1 2
B 3Βιβλιοθήκη x在数轴上,如果点A作一次位移到点B,接着由 点B再作一次位移到点C,则位移AC叫做位移AB与 位移BC的和。
教学目标:
1、了解两点间距离公式和中点 公式的推导过程;熟练掌握两 点间的距离公式、中点公式;
2、灵活运用两点间的距离公式
和中点公式解题; 3、培养学生的数学思维能力。
思考
1、已知平面上两点A (x1,y1),B (x2,y2),如何 推导A 、B两点间的距离公式呢?
d ( A, B) AB
运算结果翻译成 几何关系。 因此,平行四边形四条边的平方和等于两条对角线 的平方和。
| AB |2 | CD |2 | AD |2 | BC |2 2(a 2 b2 c 2 ) 2 2 2 2 2 | AC | | BD | 2(a b c ) 第三步:把代数 2 2 2 2 2 2 | AB | | CD | | AD | | BC | | AC | | BD |
2.1.2 平面直角坐标系中的基本公式
平面直角坐标系内A(x1,y1)、B(x2,y2)
1.
平面上A、B两点间的距离
d ( A, B) AB
( x2 x1) ( y2 y1)
2
2
2、设M(x,y)是线段AB的中点,则
x1 x 2 中点坐标公式为 x 2 y1 y 2 y 2
记法 从点A到点B的向量,记作AB 线段AB 的长叫做向量 AB 的长度, 记作 AB
2、数轴上向量的表示方法 -------坐标(数量)
-3
(B) C -2 -1 0
A 1 2
B 3
x
一般的,我们用实数表示数轴上的一个向量。
例如,向量AB,即从点A沿X轴的正向移动2个单位到达B点,可用正数 2 表示;
向量AC,即从点A沿X轴的负方向移动2个单位到达C点,可用 – 2 表示
向量AB的坐标用AB表示
1. 2.
AB=
2
AC=
-2
AB=
2
AB= - BA
BA= -2
3. 向量的长 度
(B) C -3 -2 -1 0
A 1 2
B 3
x
向量坐标的绝对值等于向量的长 度
AB =2 零向量:
AC =2
起点和终点重合的向量叫做零向量 零向量没有确定的方向
2.1.1.数轴上的基本公式
学习目标: 1、理解实数与数轴上的点的一一对应关系及实 数运算在数轴上的几何意义。 2、理解向量及其相等的概念。 3、掌握数轴上向量的加法的坐标运算及数轴上 两点间的距离公式。 重点:理解和掌握数轴上的基本公式。 难点:建立实数与 数轴上的点或位移的对应关 系
一.直线坐标系 定义
x 2 35 2 2 y2 02 2 2
y
D (x,y)
M
C(5,2)
A(-3,0)
O
解得
x=0
x B(2,-2)
∴D(0,4)
y=4
〖课堂检测2〗 1、求线段AB的中点: (1) A(3,4) , B(-3,2) (2) A (-8,-3) , B (5,-3) 2、求P(x,y)关于坐标原点的对称点P’ 的坐标.关于点M(a,b)的对称点呢? 3、已知 :平行四边形的三个顶点坐 标分别是(- 1,-2),(3,1),(0,2).求: 第四个顶点的坐标?
记作: AC=AB+BC
基本公式1
对数轴上任意三点A,B,C,都具有关系
AC=AB+BC
A
B
o x1
x2
A x1
o
B x2
3.向量的坐标表示: 设 AB 是数轴上的任意一个向量,点A的坐标为x1,点B的
坐标为x2,因为OB=OA+AB 而OB= x2 OA= x1 AB= OB-OA 基本公式 2 则 AB = x2-x1
小结
• • • • • • 1、数轴上点的坐标 2、向量的定义 3、向量的坐标 4、向量的坐标表示AB=xB -xA; 5、数轴上两点间的距离公式 6、平面内两点间的距离公式 7、中点坐标公式
备用:证明平行四边形四条边的平方和和等于两 条对角线的平方和。 证明:以A为原点,AB为x轴 y D (b,c) C (a+b,c) 建立直角坐标系。 第一步:建立坐 则四个顶点坐标分别为 标系,用坐标表 A(0,0),B(a,0),D(b,c)C(a+b,c) 示有关的量。 2 2 x | AB | a | CD |2 a 2 A (0,0) B (a,0) | AD |2 b2 c 2 | BC |2 b2 c 2 第二步:进行有 2 2 2 2 2 2 | BD | (b a关代数运算 ) c | AC | (a b) c
四、课堂检测1
-3 -2 -1 0 1 2 3
x
1、已知两点A、B的坐标: A(-1), B(1)
求:AB、|AB|
练习: 已知A(-2), B(-5),求:AB、|AB| 2、下列说法中正确的是( ) A、零向量有确定的方向; B、数轴上等长的向量叫做相等的向量; C、AB=-BA D、|AB|=BA
( x2 x1) ( y2 y1)
2
2
2、如何推导平面内线段中点的坐标公式?
x1+ x2 x= 2 y1+ y2 y= 2
典例精析
三.例1. 已知A(2,-4),B(-2,3),求d(A,B).
解:……
d(A,B)
例2. 证明:
65
已知点A(1,2),B(3, 4), C(5, 0), 求证△ABC是等腰三角形
相关文档
最新文档