1-数轴上的距离公式与中点公式
两点间的距离公式和中点公式ppt课件

设点 A(x1,y1),B(x2,y2) ,则
| AB | (x2 x1)2 ( y2 y1)2.
x
Page 4
例1 已知 A(2,-4),B(-2,3) ,求 |AB| .
解: 因为 x1=2,x2=-2,y1=-4,y2=3,
所以
dx=x2-x1=-2-2=-4, dy=y2-y1=3-(-4)=7.
x x1 x2 , y y1 y2 .
2
2
Page 9
例2 求证:任意一点 P(x,y) 与点 P (-x,-y)
关于坐标原点成中心对称.
证明 设 P 与P 的对称中心为(x0,y0),则 x (x)
x0 2 0,
y0
y ( y) 2
0.
所以坐标原点为 P 与 P 的对称中心.
Page 10
(1)你能说出垂足A1,A2,B1,B2, M1,M2的坐标吗? (2)点M是AB中点,M1是A1,B1的 中点吗?它们的坐标有怎样的关系?
A A2
(3)M2是A2,B2的中点吗?它们的
A1 O M1 B1 x 坐标有怎样的关系?
(4)你能写出点 M 的坐标吗?
Page 8
中点公式
在坐标平面内,两点 A(x1,y1),B(x2,y2) 的中点 M(x,y) 的坐标之间满足:
坐标是多少 ?
(4)由以上分析,点P 的坐 (标2是)多PP少与?x 轴的交点 M 是线 段 PP 的中点吗?点 M 的纵坐 标(是5多)少你?能求出P 的坐标吗?
Page 12
求下列各点关于 x 轴和 y 轴的对称点的坐标: A(2,3),B(-3,5),C(-2,-4),D(3,-5).
Page 13
直线
初一动点问题的解题公式口诀

初一动点问题的解题公式口诀
1、数轴上两点之间的距离。
可用绝对值来表示,即两点所表示的数差的绝对值。
如,数轴上点A,B所表示的数是a,b,则AB=|a-b|或|b-a|。
2、数轴上一个动点用字母来表示。
用有理数的加法或减法即可解决,就是起点所表示的数加上或减去动点运动的距离,向正方向用加,负方向用减。
如,数轴上点A对应的数为-1,点P从A出发,以每秒2个单位长度的速度向右运动,设运动的时间是t,则点P所表示的数是-1+2t。
3、数轴上任意两点间的线段的中点。
两点所表示的数相加的和除以2,如数轴上的点所表示的数是a,b,则线段AB的中点所表示的数是(a+b)/2。
8.1.1数轴上的距离公式和中点公式--李晓玲

如,点 A 的坐标为 1 ,记作 A(1);
点 B 的坐标为-4,记作 B(-4) .
观察数轴,完成下列题目:
P
-4 -3
B
-2 -1
O
0 1 2
A
3 4 x
(1)点 P 与 -3.5 对应,则点 P 的坐标是 (2)点 A 的坐标是 (3)点 B 的坐标是 (4)点 O 的坐标是 ,记作 ,记作 ,记作 ; ; .
(2)设点 M(x) 是 A,B 两点的中点,则
x=
3 5 =1. 2
即 A,B 的中点坐标为 1 .
已知点 A(-6),B(-1), C(2),D(4.5),E(7)
求:(1)|AB|,|AC|,|BD|,|DE|; (2)A,B 的中点坐标;B,E
的中点坐标.
1.数轴上点的坐标. 2.数轴上两点间的距离公式.
x B 1 0 -1 A -2 -3 -4 2 4 3 4 3 2 1 0 -1 -2 -3 -4 B
A
试求两个图中点 A 与 B 之间的距离.
如图:
C
-4 -3 -2
A
-1 0 1
D
2 3 4 x
(1)点 A(-1),C(-3)的中点坐 标是多少?中点坐标与 A,C 两点的坐标有 怎样的关系? (2)点 A(-1),D(2)的中点坐标是
3.数轴上两点的中点公式.
1. 已知点 A(-5),B(-1),
C(3),D(4),E(8)
求:(1)|AB|,|AC|,|BD|,|DE|;
(2)A,B 的中点坐标;B,E 的中点坐标.
2.在数轴上标出坐标满足下列条 件的所有点: (1)x<2; (2) ∣x∣≥5;
(3)2<x<5;
七上数学动点问题

七上数学动点问题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七上数学动点问题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七上数学动点问题的全部内容。
动点问题(1)数轴上两点之间的距离公式:|a —b|(2)数轴上两点之间的中点公式:1。
已知A 、B 分别为数轴上两点,A 点对应的数是-20,B 点对应的数为100(1)求AB 中点M 对应的数;(2)若电子蚂蚁P 从B 出发,以6个单位/秒向左运动,电子蚂蚁Q 从A 出发,以4个单位/秒向左运动,电子蚂蚁R 从A 出发,以7个单位/秒向右运动。
当t 为多少的时候,蚂蚁R 恰好位于P 和Q 的中点?2。
如图,已知数轴上有三点A 、B 、C,AB=AC ,点C 对应的数是200(1)若BC=300,求A 点对应的数;(2)在(1)的条件下,动点P 、Q 分别从A 、C 两点同时出发向左运动,同时动点R 从A 点出发向右运动,当P 、Q 、R 的速度分别为每秒10单位长度、每秒5单位长度、每秒2单位长度,点M 为PR 中点,点N 为线段RQ 中点,多少秒恰好满足MR=4RN?3.已知数轴上两点A 、B 对应的数分别为-1、3,点P 为数轴上一动点。
当点P 以每分钟1个单位长度的速度从O 点向左运动时,点A 以每分钟5个单位长度向左运动,点B 以每分钟20个单位长度向左运动,若他们同时出发,那么多少分钟后P 点到点A 、点B 的距离相等?4。
如图,若点A 在数轴上对应的数为a ,点B 在数轴上对应的数为b ,且a 、b 满足:|a+2|+(b —1)2=0(1)求线段AB 的长;(2)若点P 是A 左侧的一点,PA 的中点为M ,PB 的中点为N ,当点P 在A 点左侧运动时,有两个结论: ①PM+PN 的值不变②PN—PM 的值不变其中只有一个结论正确,请判断正确结论,并求出其值.5。
数轴上的基本公式

一.直线坐标系定义
数轴: 一条给出了原点、度量单位和正方向的直线叫做 数轴,或说在这条直线上建立了直线坐标系。如图:
1、数轴上点的坐标
N P(x)
1
-3
-2
-1
0
2
M
3
x
若点P与实数x对应,则称点P的坐标为 x 记作
数轴上的一点M的坐标为3 记作:
x1
A M(x)
x2 B x
【变式】 :平行四边形的三个顶点坐标分别为
(- 3,0),(2,-2),(5,2).求:第四个顶点D的坐标。
y D (x,y)
M
C(5,2)
A(-3,0)
O
x B(2,-2)
课本:P71页,A组题目,B组1、2
例2. 已知点A(1,2),B(3, 4), C(5, 0),
求证:△ABC是等腰三角形
证明:
d(A,B)= 8
d(A,C)= 20
d(B,C)= 20 又A,B,C三点不共线, 所以△ABC是等腰三角形
【例3】已知 :平行四边形ABCD的三个顶点坐标
A(- 3,0),B(2,-2),C(5,2).求:顶点D的坐标。
2.数轴上两点间的距离公式:
用d(A,B)表示A、B两点间的距离,
则
d(A,B) = AB = |x2-x1|.
3.中点公式 已知平面直角坐标系中的两点 A(x1), B(x2),点 x1+x2 M(x)是线段 AB 的中点,则 x=_______ 2 ,
2.1.2 平面直角坐标系中的基本公式
1、已知平面上两点A (x1,y1),B (x2,y2),A 、B 两点间的距离:
d ( A, B ) AB
数轴上的距离公式和中点公式

填空: 已知数轴上点A表示的数是a, 点B表示的数是b, 点A,B的中点C表示的数是c, AB表示A,B两点的距离:
a b
两点距离AB= |a-b|或 |b-a| ,中点C表示的数c= 2
;
(1)若a=3,b=7,AB= 4
,中点C表示的数c= 5
;
(2)若a=3,b= —7,AB= 10 ,中点C表示的数c= —2 ;
2:如果中点是2? 或-2?或 -1呢? 请同学们自己试试看!
-4 -3 -2 -1 0 1
23
4
x
1.数轴上两点间的距离公式.
|AB|=|a-b|= |b-a|
两点距离怎么找,右减左来大减小, 如果分不清大小,套绝对值错不了。
2.数轴上两点的中点公式.
X ab 2
我在它俩中间住, 就是它倆平均数。
;
(1)若a=3, AB=2,则b= 1或5 ,中点C表示的数c= 2或4 ;
(2)若a=3,b= 6,中点C表示的数c= 4.5 ;
(3)若a=—7,中点C表示的数c=—4,b= —1
;
(4)若b=—5,中点C表示的数c=1,则a= 7
;
谈谈收获
• 熟悉了两点间距离公式和中点公式,; • 数形结合,有图有真相;
两点距离怎么找,右减左来大减小, 如果分不清大小,套绝对值错不了。
A(a)
B(b)
X
-4
-3
-2
-1
0
1
2
3
4
x
X =?
A,B的中点X的值是多少?
如图:
C
A
D
-4 -3 -2 -1 0 1 2 3 4
x
(1)线段 AC的中点对应的数是多少?中点 对应的数与 A、C 两数有什么关系?
数轴上的距离公式与中点公式

数轴上的距离公式与中点公式考点解析及例题讲解1. 数轴上点的坐标在数轴上,如果点P 与x 对应,则称点P 的坐标为x ,记作P (x ).练习一观察数轴,完成下列题目:(1)点P 与-3.5对应,则点P 的坐标是 ,记作 ;(2)点A 的坐标是 ,记作 ;(3)点B 的坐标是 ,记作 ;(4)点O 的坐标是 ,记作 .2. 数轴上的距离公式探究一如图,填空:(1)图中点A 的坐标是 ,B 的坐标是 ,C 的坐标是 ,点D 的坐标是 ;(2)点A 与B 之间的距离|AB |=,点C 与A 之间的距离|CA |=,点B 与C 之间的距离|BC |=;(3)你能找出数轴上两点间距离与两个点坐标之间的关系吗? 一般地,如果A (x 1),B (x 2),则这两点的距离公式为|AB |=|x 2-x 1|.探究二在以上例子中,我们遇到的数轴都是水平放置的,如果数轴不是水平放置的(如下图所示),数轴上的距离公式成立吗?x ● xP ● ● ● B A O ● x● ● C ● ● 1 2 4 12 34B试求两个图中点A 与B 之间的距离.3. 数轴上的中点公式探究三根据下图回答问题:(1)点A (-1),C (-3)的中点坐标是多少?中点坐标与A ,C 两点的坐标有怎样的关系?(2)点A (-1),D (1)的中点坐标是多少?中点坐标与A ,D 两点的坐标有怎样的关系?一般地,在数轴上,A (x 1),B (x 2)的中点坐标x 满足关系式x = x 1+x 22.4. 应用例 已知点A (-3),B (5),求:(1)|AB |;(2)A ,B 两点的中点坐标.解 (1)|AB |=|5-(-3)|=8;(2)设点M (x )是A ,B 两点的中点,则x = -3+52=1.即A ,B 的中点坐标为1.平面直角坐标系中的距离公式和中点公式1. 距离公式探究一如图,设A (x 1,y 1),B (x 2,y 2).y 轴作垂线AA 1,AA 2和BB 1,BB 2,垂足分别为A 1,A 2,B 1,B 2,其中直线BB 1和AA 2相交于点C .两点的距离公式|AB |=(x 2-x 1)2+(y 2-y 1)2.x● ● C A D ●探究二求两点之间的距离的计算步骤:S1 给两点的坐标赋值x 1=?,y 1=?,x 2=?,y 2=?S2 计算两个坐标的差,并赋值给另外两个变量,即d x =x 2-x 1,d y =y 2-y 1;S3 计算d =d 2x +d 2y ; S4 给出两点的距离d .例1 已知A (2,-4),B (-2,3),求|AB |.解 因为x 1=2,x 2=-2,y 1=-4,y 2=3,所以dx =x 2-x 1=-2-2=-4,d y =y 2-y 1=3-(-4)=7.因此|AB |=d 2x +d 2y =(-4)2+72 =65.练习一求两点之间的距离:(1)A (6,2),B (-2,5);(2)C (2,-4),D (7,2).2. 中点公式探究三如图所示,若已知A (x 1,y 1),B (x 2,y 2),那么怎么求它们的对称中心的坐标?设M (x ,y )是A ,B 的对称中心,即线段AB 的中点.过A ,B ,M 分别向x 轴,y 轴作垂线,AA 1,AA 2,BB 1,BB 2,MM 1,MM 2,垂足分别是A 1,A 2,B 1,B 2,M 1,M 2.在平面直角坐标系内,两点A (x 1,y 1),B (x 2,y 2)的中点M (x ,y )的坐标满足x =x 1+x 22,y =y 1+y 22.例2 求证:任意一点P (x ,y )与点P '(-x ,-y )关于坐标原点成中心对称. 证明 设P 与P '的对称中心为(x 0,y 0),则x 0=x +(-x )2=0,y 0=y +(-y )2=0.所以坐标原点为P 与P ′的对称中心.练习二求下列各点关于坐标原点的对称点:A (2,3),B (-3,5),C (-2,-4),D (3,-5).例3 已知坐标平面内的任意一点P (a ,b ),分别求它关于x 轴的对称点P ′,关于y 轴的对称点P ′′的坐标.练习三求下列点关于x 轴和y 轴的对称点坐标:A (2,3),B (-3,5),C (-2,-4),D (3,-5).例4 已知平行四边形ABCD 的三个顶点A (-3,0),B (2,-2),C (5,2),求顶点D 的坐标.解 因为平行四边形的两条对角线的中点相同,所以它们的坐标也相同.设点D 的坐标为(x ,y ),则⎩⎪⎨⎪⎧x +22=-3+52=1y -22=0+22=1解得⎩⎪⎨⎪⎧x =0y =4所以顶点D 的坐标为(0,4).。
数轴上两点间中点公式

数轴上两点间中点公式
(a+b)/2。
如果这两点的坐标分别为a和b,中点坐标是:(a+b)/2。
在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,在数学中有着广泛的运用。
两根互相垂直且有同一原点的数轴可以构成平面直角坐标系;三根互相垂直且有同一原点的数轴可以构成空间直角坐标系,以确定物体的位置。
具体如下:
数轴上两点的中点公式
中点表示的数值:(a+b)/2
简单证明:如图,设A>B,P点是AB的中点对应的数是x。
则PB的距离是x-b;则PA的距离是a-x;根据P是中点所以PB=PA。
即x-b=a-x 解得x=(a+b)/2
当A<B时,也可以得到x=(a+b)/2;A=B时也成立。
所以无论a,b为何值这个中点公式都成立,非常方便(不用分情况讨论)。
我们还可以把它变形成:a + (b-a)/2
(a+b)/2=a/2 + b/2=a- a/2 + b/2=a + (b-a)/2
这个变形公式可以清晰的看出中点和A点(x与a)的关系。
还有其它一些变形,例如a+b=2x,a=2x-b等等也是经常用到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生理解概念,教师强调记法.
请同学们结合定义抢答下列问题.
学生回答,教师点评.
教师投影提出问题,学生分组讨论探究.
教师巡视.
第(2)题主要是引导学生从图象上直观地求距离.
学生在尝试解决问题(3)的过程中,使认知得到升华.
在探究的基础上,教师给出数轴上两点的距离公式.
小组合作完成,并采用抢答形式,提高课堂学习气氛.
教师针对学生的解答给予点评.
由二维坐标到一维坐标,似乎违反了人的认知规律,但在以往的学习中,学生对两维坐标是熟悉的.通过类比平面坐标得到轴上坐标,学生容易理解.
强化新知识的记忆与应用,以形成学生内在的素质.
让学生通过小组合作,在探究过程中,归纳出数轴上两点间的距离公式,形成知识的主动认知.
使学生由感性认知(算法)上升到理性认知(公式).
探究二使学生认识到非水平放置的数轴上的两点间的距离公式是不改变的,特别是竖直放置的数轴上的距离问题,为下节解决平面直角坐标系中两点间的距离公式打下基础.
让学生通过小组合作,在探究过程中,归纳得出数轴上两点间的中点公式.
在实践中应用本节知识解决有关数轴上的距离和中点问题.
师:数轴的三要素是什么?
学生回答,教师展示数轴.
通过引入激发学生学习的兴趣.
新
课
新
课
新
课
1. 数轴上点的坐标
在数轴上,如果点P与x对应,则称点P的坐标为x,记作P(x).
练习一
观察数轴,完成下列题目:
(1)点P与-3.5对应,则点P的坐标是,记作;
(2)点A的坐标是,记作;
(3)点B的坐标是,记作;
教师提出问题,学生观察并尝试解决.
师:不管数轴在平面上怎么放置,两点间的距离公式是不变的.
教师投影提出问题,学生分组讨论探究.
教师巡视.
学生在尝试解决问题的过程中,探究中点公式.
在探究的基础上,教师引导学生归纳出数轴上两点的中点公式.
教师投影,先让学生思考,小组内合作尝试解答.
教师在学生思考的基础上,找个别学生回答,并给予点评.
授课主要内容或板书设计
教 学 过 程
环节
教学内容
师生互动
设计意图
引
入
1.数轴
2.数轴上的点与实数是对应的.
师:人类早期用石子来记数,但是石子记数不能移动,无法携带,于是人们又想到了用结绳等方法记数.我国古书《易经》上记载有“结绳记数”的历史,即在一根长绳上打上结表示数.随着社会的进步,记数的方法也越来越准确、科学.到了17世纪,法国数学家笛卡儿发明了用直线和直线上的点来表示数的方法,这就是我们现在仍在沿用的数轴表示数的方法.
|AB|=|x2-x1|.
探究二
在以上例子中,我们遇到的数轴都是水平放置的,如果数轴不是水平放置的(如下图所示),数轴上的距离公式成立吗?
试求两个图中点A与B之间的距离.
3. 数轴上的中点公式
探究三
根据下图回答问题:
(1)点A(-1),C(-3)的中点坐标是多少?中点坐标与A,C两点的坐标有怎样的关系?
检验并强化本节知识的应用.
小
结
1.数轴上点的坐标.
2.数轴上两点间的距离公式.
3.数轴上两点的中点公式.
回顾本节主要内容,强化一个定义及两个公式.
简洁明了地概括本节课的重要知识,学生易于理解记忆.
作
业
教材P67练习A组第1题.
教材P67练习B组第3题(选做).
学生标记作业.
针对学生实际,对课后书面作业实施分层设置.
(4)点O的坐标是,记作.
2. 数轴上的距离公式
探究一
如图,填空:
(1)图中点A的坐标是,B的坐标是,C的坐标是,点D的坐标是;
(2)点A与B之间的距离|AB|=,点C与A之间的距离|CA|=,点B与C之间的距离|BC|=;
(3)你能找出数轴上两点间距离与两个点坐标之间的关系吗?
一般地,如果A(x1),B(x2),则这两点的距离公式为
(2)点A(-1),D(1)的中点坐标是多少?中点坐标与A,D两点的坐标有怎样的关系?
一般地,在数轴上,A(x1),B(x2)的中点坐标x满足关系式
x= x1+x22.
4. 应用
例 已知点A(-3),B(5),求:
(1)|AB|;
(2)A,B两点的中点坐标.
解 (1)|AB|=|5-(-3)|=8;
教案
授课日期
授课班级
授课课时
授课形式
授课章节名 称使用教具 Nhomakorabea教学目的
1.理解数轴上的点与实数之间的一一对应关系,会表示数轴上某一点的坐标.
2.掌握数轴上的距离公式和中点公式,并能用这两个公式解决有关问题.
3.培养学生勇于发现、勇于探索的精神;培养学生合作交流等良好品质.
教学重点
数轴上的距离公式、中点公式.
(2)设点M(x)是A,B两点的中点,则
x= -3+52=1.
即A,B的中点坐标为1.
练习二
已知点A(-6),B(-1),C(2),D(4.5),E(7),求:
(1)|AB|,|AC|,|BD|,|DE|;
(2)A,B的中点坐标,B,E的中点坐标.
师:平面上我们用一对有序实数来表示一个点的位置,在数轴上,我们应当怎么表示一个点的位置呢?
教学难点
距离公式与中点公式的应用.
内容更删
课外作业
教学后记
这节课主要采用问题解决法和分组教学法.先从数轴入手,在使学生进一步明确了数与数轴上的点的一一对应关系后,给出数轴上点的坐标的定义及记法,在此基础上进一步学习数轴上距离公式及中点公式.本节教学中,始终要坚持数形结合的思想和方法,让学生积极大胆的猜想,在探索过程中发现和归纳两个公式,以此增强学生的参与意识,提高学生的学习兴趣.