三角形的内切圆课件
合集下载
(沪科版)九年级数学下册课件:24.5三角形的内切圆

内切圆的性质
01
02
03
内心性质
三角形的内心是三角形内 切圆的圆心,内心到三角 形三边的距离相等。
切线性质
内切圆的半径垂直于三角 形的三边,即内切圆的半 径是三角形的角的平分线。
面积性质
三角形的面积等于其内切 圆半径与三角形周长的乘 积的一半。
与三角形的关系
内切圆与三角形的边长关系
内切圆的半径与三角形的边长之间存在一定的关系,可以通 过公式计算。
05
练习与巩固
基础练习
基础概念理解
通过简单的题目,让学生理解三角形 的内切圆的基本概念和性质,如半径、 圆心等。
简单计算
让学生掌握如何计算三角形的内切圆 半径,以及如何利用内切圆半径解决 简单的几何问题。
提高练习
复杂计算
在基础练习的基础上,增加一些需要复 杂计算的题目,如求多个三角形的内切 圆半径等。
已知三角形一边和这边上的高作内切圆
总结词
利用三角形面积公式求出内切圆的半径,然后确定圆心和圆的位置。
详细描述
首先,根据三角形面积公式计算出已知边上的高所对应的三角形的面积。然后,根据公式 $r=sqrt{frac{2S}{l}}$,其中S为三角形面积,l为已知边上的高,计算内切圆的半径r。最后,根据圆心在 高的延长线上且与相对的顶点距离等于半径,确定圆心和圆的位置。
已知三角形一边和这边所对的角作内切圆
总结词
利用三角函数求出内切圆的半径,然后确定圆心和圆的位置。
详细描述
首先,根据三角函数计算出已知边所对的角的正弦值。然后,根据公式$r=frac{2Rsinfrac{A}{2}}{2}$,其中R为 三角形的外接圆半径,A为已知边所对的角,计算内切圆的半径r。最后,根据圆心在角的平分线上且与相对的边 距离等于半径,确定圆心和圆的位置。
三角形内切圆

解:设AF=x (cm), 则AE=x (cm)
CD=CE=AC﹣AE=13﹣x
BD=BF=AB﹣AF=9﹣x 由 BD+CD=BC可得
A
x
xF
(13﹣x)+(9﹣x)=14 E
解得
X=4
O
因此 AF=4 cm BD=5 cm CE=9 cm
13﹣x
D
13﹣x
C
9﹣x
B
9﹣x
例2、如图,△ABC中,∠ ABC=50°∠ACB=75 °, O是⊙O的内心,求∠ BOC的度数。
思考
• 一张三角形铁皮,如何在它上面截一个面 积最大的圆形铁皮?
• 怎么画出这个圆?
A
• 圆心是三个角的角平分线
• 半径是圆心到一边的距离
• 请你尺规作图作出这个圆
B
C
三角形内切圆
• 定义
• 与三角形各边都相切的圆叫做三角形的内切 圆,内切圆的圆心是三角形三条角平分线的 交点,叫做三角形的内心。
解:∵点O是⊙O的内心 ∴∠OBC=1/2∠ABC=25°
∠OCB=1/2∠ACB=37.5° ∴ ∠BOC=180°﹣25°﹣37.5°
=117.5° B
A
O C
例3、⊙I内切于△ABC,切点分别为D、E、F,试说明
(1)△ABC三边长分别为a、b、c,⊙I的半径r, 则有S△ABC= 1 r(a+b+c)
小结
• 三角形内切圆和内心的概念和画法 • 三角形内切圆和外接圆的区别 • 直角三角形内切圆半径的求法
证明:由切线长定理得
∴AL=AP,LB=MB, NC=MC,DN=DP
∴AL+LB+NC+DN=
【教学课件】《三角形的内切圆》精品教学课件

✓ 作圆的关键是什么? 角圆平心分到线三上条的边点到角 确定圆心和半径. 的的两距边离的相距等离相等
✓ 怎样确定圆心的位置? 作两条角平分线,其交点就是圆心的位置.
✓ 圆心的位置确定后,怎样确定圆的半径? 过圆心作三角形一边的垂线,垂线段的长
就是圆的半径. 相切时圆心到三角形 三边的距离等于半径
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
延伸 类别
A
O
B
C
三角形的内切圆
⊙O的名称 △ABC的名称
△ABC的内切圆 ⊙O的外切三角形
圆心O的名称
圆心O的确定 内心与外 心的性质
△ABC的内心
作两角的角平分线
内心O到三角形 三边的距离相等
B A
OC
三角形的外接圆
△ABC的外接圆 ⊙O的内接三角形 △ABC的外心 作两边的中垂线 外心O到三个顶 点的距离相等
∴ ∠BIC=180°–(∠IBC+ ∠ICB)=130°.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
随堂练习
3.在△ABC中,∠C=90°,BC=3,AC=4,求这个三角形
的内切圆半径.
B
解:如图,设△ABC的内切圆半径是r,
切点是D、E、F,连接OA、OB、OC、
OD、OE、OF,
【变式训练】 (1)若∠A=60°,则∠BIC= 120°. (2)若∠BIC =100°,则∠A= 20°.
I
B
C
∠BIC=90°+ 1∠A
2
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
随堂练习 1.在△ABC中,AB=AC=4 cm,以点A为圆心、2 cm为半径
✓ 怎样确定圆心的位置? 作两条角平分线,其交点就是圆心的位置.
✓ 圆心的位置确定后,怎样确定圆的半径? 过圆心作三角形一边的垂线,垂线段的长
就是圆的半径. 相切时圆心到三角形 三边的距离等于半径
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
延伸 类别
A
O
B
C
三角形的内切圆
⊙O的名称 △ABC的名称
△ABC的内切圆 ⊙O的外切三角形
圆心O的名称
圆心O的确定 内心与外 心的性质
△ABC的内心
作两角的角平分线
内心O到三角形 三边的距离相等
B A
OC
三角形的外接圆
△ABC的外接圆 ⊙O的内接三角形 △ABC的外心 作两边的中垂线 外心O到三个顶 点的距离相等
∴ ∠BIC=180°–(∠IBC+ ∠ICB)=130°.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
随堂练习
3.在△ABC中,∠C=90°,BC=3,AC=4,求这个三角形
的内切圆半径.
B
解:如图,设△ABC的内切圆半径是r,
切点是D、E、F,连接OA、OB、OC、
OD、OE、OF,
【变式训练】 (1)若∠A=60°,则∠BIC= 120°. (2)若∠BIC =100°,则∠A= 20°.
I
B
C
∠BIC=90°+ 1∠A
2
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
随堂练习 1.在△ABC中,AB=AC=4 cm,以点A为圆心、2 cm为半径
浙教版九年级数学下册课件 2.3 三角形的内切圆

2 如图,点O是△ABC的内心,若∠ACB=70°,则 ∠AOB=( ) A.140° B.135° C.125° D.110°
(来自《典中点》)
知2-练
3 下列说法错误的是( ) A.三角形有且只有一个内切圆 B.等腰三角形的内心一定在它的底边的高上 C.三角形的内心不一定都在三角形的内部 D.若I是△ABC的内心,则AI平分∠BAC
(来自《典中点》)
总结
知2-讲
因为三角形的内心是三角形三条角平分线的交 点,所以三角形的内心与任一顶点的连线平分三角 形的内角.
(来自《点拨》)
13 三角形内切圆的圆心是( ) A.三个内角平分线的交点 B.三边中垂线的交点 C.三条中线的交点 D.三条高线的交点
知2-练
(来自《典中点》)
知2-练
知1-讲
见切点,连半径,结合等腰三角形、等边三角形的 性质求出半径长.
(来自《点拨》)
知1-讲
例2 已知:如图, ⊙O是△ABC的内切圆,切点分别为D, E,F.设△ABC的周长为l,求证: AE+BC= 1 l. 2
证明:∵⊙O是△ABC的内切圆,E,F为切点,
∴AE=AF(根据什么?).
A
同理,BD=BF,CD=CE.
理解三角形内切圆的概念要注意以下三点: ①与各边相切; ②在三角形内部; ③圆心叫做三角形的内心.
知1-讲
例1 如图,等边三角形ABC的边长为3 cm,求△ABC
的内切圆⊙O的半径.
解:如图,设⊙O切AB于点D,连结OA,OB,OD.
∵ ⊙O是△ABC的内切圆,
∴AO,BO 是∠BAC, ∠ABC,
(来自《典中点》)
1. 三角形的内切圆中“切”是指三角形的三边与圆的 位置关系.
(来自《典中点》)
知2-练
3 下列说法错误的是( ) A.三角形有且只有一个内切圆 B.等腰三角形的内心一定在它的底边的高上 C.三角形的内心不一定都在三角形的内部 D.若I是△ABC的内心,则AI平分∠BAC
(来自《典中点》)
总结
知2-讲
因为三角形的内心是三角形三条角平分线的交 点,所以三角形的内心与任一顶点的连线平分三角 形的内角.
(来自《点拨》)
13 三角形内切圆的圆心是( ) A.三个内角平分线的交点 B.三边中垂线的交点 C.三条中线的交点 D.三条高线的交点
知2-练
(来自《典中点》)
知2-练
知1-讲
见切点,连半径,结合等腰三角形、等边三角形的 性质求出半径长.
(来自《点拨》)
知1-讲
例2 已知:如图, ⊙O是△ABC的内切圆,切点分别为D, E,F.设△ABC的周长为l,求证: AE+BC= 1 l. 2
证明:∵⊙O是△ABC的内切圆,E,F为切点,
∴AE=AF(根据什么?).
A
同理,BD=BF,CD=CE.
理解三角形内切圆的概念要注意以下三点: ①与各边相切; ②在三角形内部; ③圆心叫做三角形的内心.
知1-讲
例1 如图,等边三角形ABC的边长为3 cm,求△ABC
的内切圆⊙O的半径.
解:如图,设⊙O切AB于点D,连结OA,OB,OD.
∵ ⊙O是△ABC的内切圆,
∴AO,BO 是∠BAC, ∠ABC,
(来自《典中点》)
1. 三角形的内切圆中“切”是指三角形的三边与圆的 位置关系.
人教版九年级数学课件《三角形的内切圆》

解得 x=4.
B
典例解析
1.求边长为6 cm的等边三角形的内切圆半径与外接圆半径.
解:如图,由题意可知BC=6cm,∠ABC=60°,OD⊥BC,OB平分∠ABC.
∴∠OBD=30°,BD=3cm,△OBD为直角三角形.
内切圆半径
外接圆半径
针对练习
2.设△ABC的面积为S,周长为L, △ABC内切圆的半径为r,则S,L与r之间存在怎样的数量关系?
第二十四章第2节三角形的内切圆
人教版数学九年级上册
学习目标
了解三角形的内切圆和三角形内心的概念.
根据三角形内心的性质进行计算与证明.
切线长定理: 过圆外一点作圆的两条切线,两条切线长相等.圆心与这一点的连线平分两条切线的夹角.
PA、PB分别切☉O于A、B
PA = PB
∠OPA=∠OPB
几何语言:
120°
达标检测
4.如图所示,已知在△ABC中,∠B=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于E,与AC相切于点D.求证:DE∥OC.
证明:连接OD,∵AC切⊙O点D,∴OD⊥AC,∴∠ODC=∠B=90°.在Rt△OCD和Rt△OCB中, OD=OB ,OC=OC ∴Rt△ODC≌Rt△OBC(HL),∴∠DOC=∠BOC.∵OD=OE,∴∠ODE=∠OED,∵∠DOB=∠ODE+∠OED,
所以a-r+b-r=c,
针对练习
2.如图,已知点O是△ABC 的内心,且∠ABC= 60 °, ∠ACB= 80 °,则∠BOC= .
1.如图,PA、PB是☉O的两条切线,切点分别是A、B,如果AP=4, ∠APB= 40 ° ,则∠APO= ,PB= .
知识精讲
B
典例解析
1.求边长为6 cm的等边三角形的内切圆半径与外接圆半径.
解:如图,由题意可知BC=6cm,∠ABC=60°,OD⊥BC,OB平分∠ABC.
∴∠OBD=30°,BD=3cm,△OBD为直角三角形.
内切圆半径
外接圆半径
针对练习
2.设△ABC的面积为S,周长为L, △ABC内切圆的半径为r,则S,L与r之间存在怎样的数量关系?
第二十四章第2节三角形的内切圆
人教版数学九年级上册
学习目标
了解三角形的内切圆和三角形内心的概念.
根据三角形内心的性质进行计算与证明.
切线长定理: 过圆外一点作圆的两条切线,两条切线长相等.圆心与这一点的连线平分两条切线的夹角.
PA、PB分别切☉O于A、B
PA = PB
∠OPA=∠OPB
几何语言:
120°
达标检测
4.如图所示,已知在△ABC中,∠B=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于E,与AC相切于点D.求证:DE∥OC.
证明:连接OD,∵AC切⊙O点D,∴OD⊥AC,∴∠ODC=∠B=90°.在Rt△OCD和Rt△OCB中, OD=OB ,OC=OC ∴Rt△ODC≌Rt△OBC(HL),∴∠DOC=∠BOC.∵OD=OE,∴∠ODE=∠OED,∵∠DOB=∠ODE+∠OED,
所以a-r+b-r=c,
针对练习
2.如图,已知点O是△ABC 的内心,且∠ABC= 60 °, ∠ACB= 80 °,则∠BOC= .
1.如图,PA、PB是☉O的两条切线,切点分别是A、B,如果AP=4, ∠APB= 40 ° ,则∠APO= ,PB= .
知识精讲
24.切线长定理及三角形的内切圆课件

作法:
M
1. 作∠ABC 和∠ACB 的平分线
BM 和 CN,交点为 O.
O
2. 过点 O 作OD⊥BC,垂足为 D.
3. 以O为圆心,OD为半径作圆O.
D
CC ☉O 就是所求的圆.
24.2.4切线长定理及三角形的内切圆
知识要点
1. 与三角形三边都相切的圆叫做三角形的内切圆.
2. 三角形内切圆的圆心叫做这个三角形的内心.
问题2 PA 为☉O 的一条切线,沿着直线 PO 对折,设圆上与
点 A 重合的点为 B.
➢ OB 是☉O 的一条半径吗?
A
➢ PB 是☉O 的切线吗?
O
P
➢ PA、PB 有何关系? B
➢∠APO 和∠BPO 有何关系?
(利用图形轴对称性解释)
24.2.4切线长定理及三角形的内切圆
A
要点归纳
切线长定理:
∴PA = PB ,∠OPA=∠OPB.
∴PC=PC.
∴ △PCA ≌ △PCB,
∴AC=BC.
24.2.4切线长定理及三角形的内切圆
典例精析
例1 已知:如图,四边形 ABCD 的边 AB、BC、CD、
DA 与 ⊙O 分别相切于点 E、F、G、H.
D
求证:AB + CD = AD + BC.
G C
解:连接 IB,IC.
A
∵ 点 I 是△ABC 的内心,
∴ BI,CI 分别平分∠ABC,∠ACB.
I
在△IBC 中,
B
C
BIC 180° (IBC ICB)
180° 1 (ABC ACB) 180° 1 (43° 61°)
2
数学:26.6《三角形的内切圆》课件(沪科版九年级下)

[判断题]化学热处理不仅改变了钢的组织,而且表层的化学成分也发生了变化。()A.正确B.错误 [单选]根据系统论的理论,物流系统可分为四个层次,错误的是()A.上级系统B.下级系统C.本级系统D.外级系统 [单选]串励直流电动机若空载运行则会发生()现象。A.飞车B.停车C.因电流极大冒烟D.因转矩极小而拖不动负载 [单选,A2型题,A1/A2型题]结核性胸膜炎胸腔内是否用药的原则是()A.最好每个患者都注射结核药物B.一般情况下,抽胸水后没有必要胸腔内注入抗结核药物C.最好注射糖皮质激素D.可以注射胸膜粘连剂E.绝对不能胸腔内用药,以免产生胸膜反应 [单选]船舶在近海、沿岸航行时通常都采用恒向线航法,这是因为()。A.恒向线在墨卡托海图上是直线,即两点间最短航程航线B.船舶按恒向线航行,操纵方便,且航程增加不多C.恒向线能满足海图的纬度渐长特性D.墨卡托海图是等角投影海图,只能使用等角航线 [单选]施工合同规定,由甲方承担的保险义务是()。A.机器设备损坏险B.建筑工程一切险C.人身意外险D.勘察设计一切险 [单选]不属于二次环境污染物的是A.光化学烟雾B.可吸入颗粒物C.酸雨D.甲基汞E.有机汞 [单选,A2型题,A1/A2型题]据《素问·四气调神大论》,“发陈”描述的是哪一季节的物候规律()A.春B.夏C.秋D.冬E.长夏 [单选]体的压力、密度<ρ>、温度<T>三者之间的变化关系是().A、ρ=PRTB、T=PRρC、P=Rρ/TD、P=RρT [单选,A1型题]不属于采用注射法接种的疫苗是()A.麻疹活疫苗B.乙肝疫苗C.脊髓灰质炎三型混合疫苗D.卡介苗E.百白破混合制剂 [单选]下列资产中,属于不可确指的资产的是()。A.商标B.专利C.商誉D.土地使用权 [单选]下列各项中,除哪一项外,均由风热夹痰或湿热蕴阻所致()A.颈痈B.脐痈C.乳痈D.臀痈E.背痈 [单选]下列选项中,按配送区域划分配送中心的是()。A.城市配送中心B.流通加工配送中心C.家电商品配送中心D.第三方配送中心 [问答题,简答题]营销信息系统内抄表段管理包括哪些功能? [单选]正气不足,精气轻度损伤,脏腑功能减弱者,属A.得神B.少神C.失神D.假神E.神乱 [单选]决定分娩过程的要素是()。A.母畜年龄B.产力C.怀孕期D.胎位 [单选]数字微波通信中波道切换一般不在()上进行.A.射频B.中频C.基带 [单选]以下关于斑点状掌跖角化病临床表现的描述,错误的是()A.常染色体显性遗传病B.可发生于任何年龄C.典型皮损为掌跖部直径2~1Omm角化性丘疹D.多伴手足多汗表现 [单选]在放射免疫分析中常用到RIA标准曲线(Standardcurve),其作用是()A.用来校正计数器(counter)B.用得到的计数率去推算试样中所含样品的浓度或含量C.做质控D.用来追踪试样的变化E.鉴定核素的放射化学纯度 [单选]了解某市国有工业企业生产设备情况,则统计总体是()。A.该市国有的全部工业企业B.该市国有的每一个工业企业C.该市国有的某一台设备D.该市国有工业企业的全部生产设备 [单选]根据《行政复议法》的规定,下列各项中不属于行政复议中一并申请审查范围的有()。A.国务院各部门的规定B.省政府所在地的市的人民政府制定的规章C.县级以上地方人民政府及其工作部门的规定D.乡、镇人民政府的规定 [单选,A型题]下列哪种片剂可避免肝脏的首过作用()A、泡腾片B、分散片C、舌下片D、普通片E、溶液片 [不定项选择]属于从传播途径上降低噪声的方法的是()。A.在工程设计中改进生产工艺和加工操作方法,降低工艺噪声B.在生产管理和工程质量控制中保持设备良好运转状态,不增加不正常运行噪声C.合理安排建筑物功能和建筑物平面布局,使敏感建筑物远离噪声源, [单选]双方目标的达成是一种正向关联的协商是()。A.关联型协商B.双赢型协商C.竞争型协商D.合作型协商 [填空题]量臀围时应在臀围()部位量一周。 [单选,A1型题]下列哪项是正常产褥的表现()A.产后第l天,宫底平脐B.产后12小时体温可超过38℃C.产后10天为血性恶露D.产后脉搏一般偏快E.产褥早期白细胞即恢复正常 [单选]证据审查的主体是()。A、行政主体B、行政相对人C、行政程序参加人D、行政主体或行政程序参加人 [问答题,简答题]化石形成的原因和条件? [单选]一般认为,延迟显像是指显像剂注入体内几小时以后所进行的显像()A.8小时B.6小时C.4小时D.2小时E.1小时 [单选]《部标》中规定:列车员在列车进出站时,面向站台()。A、行举手礼B、致注目礼C、站立D、敬礼 [单选,A2型题,A1/A2型题]DSA的中文全称叫做()A.数字减影成像B.数字血管成像C.数字减影血管造影D.数字造影血管减影E.数字血管断层成像 [单选]下列关于会计凭证,表述错误的是()。A.会计凭证是记录经济业务、明确经济责任的书面证明B.会计凭证是登记账簿的依据C.填制原始凭证是会计处理程序的第一个关键步骤D.会计凭证根据填制的程序和用途不同分为原始凭证和记账凭证 [单选]铁路旅客运输合同是明确承运人与()之间权利义务关系的协议。A.托运人B.收货人C.旅客D.押运人 [填空题]发现牵引供电设备断线及其部件损坏,或发现牵引供电设备上挂有线头、绳索、塑料布或脱落搭接等异物,均不得与之(),应立即通知附近车站,在牵引供电设备检修人员到达未采取措施以前,任何人员均应距已断线索或异物处所()以外。 [填空题]在冶炼、浇铸和钢水凝固过程中产生或混入的非金属相,一般称为()。 [单选]记账凭证账务处理程序的适用范围是()。A.规模较小、经济业务量较少的单位B.采用单式记账的单位C.规模较大、经济业务量较多的单位D.会计基础工作薄弱的单位 [单选,A1型题]患者女,50岁。下蹲或腹部用力时,出现不由自主的排尿,其正确的护理诊断是()A.功能性尿失禁:与膀胱过度充盈有关B.功能性尿失禁:与腹压升高有关C.反射性尿失禁:与膀胱收缩有关D.完全性尿失禁:与神经传导功能减退有关E.压迫性尿失禁:与膀 [单选]右侧小脑幕切迹疝时,其瞳孔和肢体的改变是()A.右侧瞳孔散大,右侧肢体瘫痪B.右侧瞳孔缩小,左侧肢体瘫痪C.左侧瞳孔散大,右侧肢体瘫痪D.左侧瞳孔散大,右侧肢体瘫痪E.右侧瞳孔散大,右侧肢体瘫痪 [单选]外燃锅壳式锅炉,烟管构成了锅炉的主要()受热面,水冷壁和大锅筒下腹壁面则为锅炉的辐射受热面。A、辐射B、对流C、间壁D、上锅筒 [单选,A2型题,A1/A2型题]患者女,38岁,工人。一周前无明显诱因开始出现少食,睡眠差,与人讲话小声,把家里的电话线、电脑线均拔掉,说有人监听。近2天,突然站在阳台上叫骂,自言自语说不害怕。对医生的问话以唱代说。不时捂住耳朵、跺脚、哭泣。经住院治
九年级数学下册3.2三角形的内切圆课件浙教版

课程背景与知识点概述
三角形的内切圆是与三角形三边都相切的圆,其圆 心是三角形三条角平分线的交点,半径等于交点到 三角形一边的距离。
本节课将介绍三角形内切圆的基本性质,包括切线 长定理、角平分线定理和欧拉定理等。
通过学习三角形内切圆,可以解决一些实际问题, 如土地分割、面积计算等。
02
三角形的内切圆基本概念
基础练习题
2、题目:若一个三角形的内心到这个三角形的三个顶点的距离相等,则 这个三角形是 ( )
A.直角三角形 B.等腰三角形
C.等边三角形 D.任意三角形
基础练习题
01
02
03
3、题目:若一个三角形 的内心到这个三角形的 三个边的距离相等,则
这个三角形是 ( )
A.直角三角形 B.等腰三 角形
提高练习题
01
A. 1/2 B. 1/3 C. 1/4 D. 1/5
02
3、题目:若一个三角形的内心到这个三角形的三个边的距离之积等于这个三角 形的一边的长的平方,则这个三角形的面积是 ( )
03
A. 1/2 B. 1/3 C. 1/4 D. 1/5
综合练习题
1、题目
已知△ABC的内切圆半径为 r,三角形的周长为 p,则三角形的面积 S=()
在求解三角形面积中的应用
01
利用三角形的内切圆半径与三角 形面积的关系,求解三角形的面 积。例如,利用内切圆半径的公 式计算三角形的面积。
02
利用内切圆的性质,通过将三角 形分成几个小三角形,然后求和 得到三角形的面积。这种方法称 为分割法。
在解决实际问题中的应用
在几何图形中,经常需要用到三角形 的内切圆来求解实际问题。例如,在 平面几何中,可以利用内切圆来计算 多边形的面积和周长。