关于三角形的内切圆课件

合集下载

【教学课件】《三角形的内切圆》精品教学课件

【教学课件】《三角形的内切圆》精品教学课件
✓ 作圆的关键是什么? 角圆平心分到线三上条的边点到角 确定圆心和半径. 的的两距边离的相距等离相等
✓ 怎样确定圆心的位置? 作两条角平分线,其交点就是圆心的位置.
✓ 圆心的位置确定后,怎样确定圆的半径? 过圆心作三角形一边的垂线,垂线段的长
就是圆的半径. 相切时圆心到三角形 三边的距离等于半径
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
延伸 类别
A
O
B
C
三角形的内切圆
⊙O的名称 △ABC的名称
△ABC的内切圆 ⊙O的外切三角形
圆心O的名称
圆心O的确定 内心与外 心的性质
△ABC的内心
作两角的角平分线
内心O到三角形 三边的距离相等
B A
OC
三角形的外接圆
△ABC的外接圆 ⊙O的内接三角形 △ABC的外心 作两边的中垂线 外心O到三个顶 点的距离相等
∴ ∠BIC=180°–(∠IBC+ ∠ICB)=130°.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
随堂练习
3.在△ABC中,∠C=90°,BC=3,AC=4,求这个三角形
的内切圆半径.
B
解:如图,设△ABC的内切圆半径是r,
切点是D、E、F,连接OA、OB、OC、
OD、OE、OF,
【变式训练】 (1)若∠A=60°,则∠BIC= 120°. (2)若∠BIC =100°,则∠A= 20°.
I
B
C
∠BIC=90°+ 1∠A
2
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
随堂练习 1.在△ABC中,AB=AC=4 cm,以点A为圆心、2 cm为半径

《三角形的内切圆》PPT课件2

《三角形的内切圆》PPT课件2

NIM
2.过点I作ID⊥BC,垂足为D. B
D
C
3.以I为圆心,ID为半径作
⊙I,⊙I就是所求的圆.
想一想
三角形与圆的位置关系
这样的圆可以作出几个?为什么?
∵直线BE和CF只有一个交点I, 并且点I到△ABC三边的距离相
F
等(为什么?),
A
E I
●●
B

C
∴因此和△ABC三边都相切的圆可以作出一个, 并且只能作一个.
∠BAC=50°,求∠BOC的度数。
O
2
4
变式2:在△ABC中,点O是内心, B 1
3 C
∠BOC=120°,求∠BAC的度数。
题2:
想想,做做
求边长为6cm的等边三角形的内切圆半径r与外
接圆半径R。
A
老师提示:
先画草图,由等腰三角形底边上的中
O
垂线与顶角平分线重合的性质知,等边三
R
角形的内切圆与外接圆是两个同心圆。
名称
外心: 三角形 外接圆 的圆心
确定方法
图形
A
性质
三角形三边
1.OA=OB=OC
O
2.外心不一定
中垂线的交

B
在三角形的内 C 部.
内心: 三角形 内切圆 的圆心
三角形三条 角平分线的 交点
B
A
1.到三边的距离
相等;
2.OA、OB、OC
O
分别平分∠BAC、
∠ABC、∠ACB
3.内心在三角形内 C 部.
r
B
C
D
变式:
求边长为a的等边三角形的内切圆
半径r与外接圆半径R的比。

三角形的内切圆课件

三角形的内切圆课件

△ABC ⊙O的外 三角形三条 到三角形的
的内切 切三角 角平分线的 三条边的距 一定在三角形内部


交点
离相等
知2-讲
导引:根据△ABC的面积=△AOB的面积+△BOC的面积+
△AOC的面积即可求解.在Rt△ABC中,∵AC=6 m,BC
=8 m,∴AB= BC2 AC2 82 62 =10(m).∵输油
中心O到三条支路的距离相等,设距离是r m,又∵△ABC
的面积=△AOB的面积+△BOC的面积+△AOC的面积,
2. 要点精析: (1)任意一个三角形都只有一个内切圆、一个外接圆; (2)一个圆有无数个外切三角形、内接三角形.
知1-讲
例1 下列关于三角形的内心和外心的说法中,正确的说
法为( C )
①三角形的内心是三角形内切圆的圆心;
②三角形的内心是三个角平分线的交点;
③三角形的外心到三边的距离相等;
④三角形的外心是三边中垂线的交点.
知2-练
1 (202X·德州)《九章算术》是我国古代内容极为丰富的数学
名著,书中有下列问题“今有勾八步,股十五步.问勾中容 圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长 为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆 形 (内切圆)直径是多少?”( ) A.3步 B.5步 C.6步 D.8步
A.①②③④
B.①②③
C.①②④
D.②③④
知1-讲
导引:由三角形内心的定义以及三角形内心是三个角平分线的交点,三角 形外心的定义与三角形的外心是三边中垂线的交点的知识,分析求 解即可求得答案. 解答:①三角形的内心是三角形内切圆的圆心;是三角形的内心的 定义,故正确;②∵三角形内切圆与各边都相切,∴由切线长定理 可得:三角形的内心是三个角平分线的交点;故正确;③∵三角形 的外心是三角形外接圆的圆心,∴三角形的外心到三个顶点的距离 相等;故错误;④三角形的外心是三边中垂线的交点,正确.∴正 确的说法为:①②④.

人教版九年级数学上册课件《24.2.1三角形内切圆》

人教版九年级数学上册课件《24.2.1三角形内切圆》
谢谢观赏
You made my day!
我们,还在路上……
D N C (1)找出图中所有相等的线段 P O M DN=DP,AP=AL,BL=BM,CN=CM
(2)填空:AB+CD = AD+BC
A L B (>,<,=) 结论:圆的外切四边形的两组对边和相等。 比较圆的内接四边形的性质:
圆的内接四边形:的关系
圆的外切四边形:边的关系
基础题:
1.既有外接圆,又内切圆的平行四边形是______. 2.直角三角形的外接圆半径为5cm,内切圆半径为1cm,
不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面 上的话,另一眼睛看到纸的背面。2022年4月11日星期一上午8时58分15秒08:58:1522.4.11
书籍是屹立在时间的汪洋大海中的灯塔。2022年4月上午8时58分22.4.1108:58April 11, 2022 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022年4月11日星期一8时58分15秒08:58:1511 April 2022 书籍是屹立在时间的汪洋大海中的灯塔。
F
E
C
o.
o.o A B
三角形内切圆
C
.o
A
B
外切圆圆心:三角形三边 垂直平分线的交点。
外切圆的半径:交点到三 角形任意一个定点的距离。
内切圆圆心:三角形三个 内角平分线的交点。
内切圆的半径:交点到三 角形任意一边的垂直距离。
例题3
例3 △ABC的内切圆⊙O与BC、CA、AB分别相切于
思考 如图,一张三角形的铁皮,如何在它上面截下

最新三角形的内切圆PPT课件教学讲义PPT课件

最新三角形的内切圆PPT课件教学讲义PPT课件

2
2
B
Oc
a I
A
bC
思考题: 如图,某乡镇在进入镇区的道路交叉口的三角
地处建造了一座镇标雕塑,以树立起文明古镇的形象。已知 雕塑中心M到道路三边AC、BC、AB的距离相等,AC⊥BC, BC=30米,AC=40米。请你帮助计算一下,镇标雕塑中心M 离道路三边的距离有多远?
A 镇 商 业 区D
.M F
谢谢, 再见 !
2003年12月17日
例3 三条公路AB、AC、BC两两相交与A、B、C三点(如 图所示)。已知AC⊥BC,BC=3千米,AC=4千米。现想在 △ABC内建一加油站M,使它到三条公路的距离相等,请你帮 助计算一下,加油站M应建在离公路多远的地方?
A
C
B
读句画图:①以点O为圆心,1cm为半径画⊙O
B
C
理由: ∵点O是△ABC的内心,
∴ ∠OBC= ∠ABC, ∠OCB= ∠ACB
∴ ∠OBC+ ∠OCB = (∠ABC+ ∠ACB)
= (180 ° - ∠A )= 90 ° - ∠A
在△ABC中, ∠BOC =180 °-( ∠OBC+ ∠OCB )
= 180 °-( 90 ° - ∠A )= 90 °+ ∠A
2、通过类比三角形的外接圆与圆的内接三角形概念得出 三角形的内切圆、圆的外切三角形概念,并介绍了多边形的 内切圆、圆的外切多边形的概念。
3、学习 时要明确“接”和“切”的含义、弄清“内心” 与 “外心”的区别,
4、利用三角形内心的性质解题时,要注意整体思想的运 用,在解决实际问题时,要注意把实际问题转化为数学问题。
⊙ O是△ABC的 外接 圆,点O叫△ABC
的 外心 ,

人教版九年级数学课件《三角形的内切圆》

人教版九年级数学课件《三角形的内切圆》
解得 x=4.
B
典例解析
1.求边长为6 cm的等边三角形的内切圆半径与外接圆半径.
解:如图,由题意可知BC=6cm,∠ABC=60°,OD⊥BC,OB平分∠ABC.
∴∠OBD=30°,BD=3cm,△OBD为直角三角形.
内切圆半径
外接圆半径
针对练习
2.设△ABC的面积为S,周长为L, △ABC内切圆的半径为r,则S,L与r之间存在怎样的数量关系?
第二十四章第2节三角形的内切圆
人教版数学九年级上册
学习目标
了解三角形的内切圆和三角形内心的概念.
根据三角形内心的性质进行计算与证明.
切线长定理: 过圆外一点作圆的两条切线,两条切线长相等.圆心与这一点的连线平分两条切线的夹角.
PA、PB分别切☉O于A、B
PA = PB
∠OPA=∠OPB
几何语言:
120°
达标检测
4.如图所示,已知在△ABC中,∠B=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于E,与AC相切于点D.求证:DE∥OC.
证明:连接OD,∵AC切⊙O点D,∴OD⊥AC,∴∠ODC=∠B=90°.在Rt△OCD和Rt△OCB中, OD=OB ,OC=OC ∴Rt△ODC≌Rt△OBC(HL),∴∠DOC=∠BOC.∵OD=OE,∴∠ODE=∠OED,∵∠DOB=∠ODE+∠OED,
所以a-r+b-r=c,
针对练习
2.如图,已知点O是△ABC 的内心,且∠ABC= 60 °, ∠ACB= 80 °,则∠BOC= .
1.如图,PA、PB是☉O的两条切线,切点分别是A、B,如果AP=4, ∠APB= 40 ° ,则∠APO= ,PB= .
知识精讲

三角形的内切圆 完整版课件

三角形的内切圆 完整版课件

( ×) ( √)
二、填空:
1、直角三角形的两条直角边分别是5cm和12cm,则它的外接圆 半径——6—.5c—m,内切圆半径——2—cm—。
2、等边三角形外接圆半径与内切圆半径之比——2:—1 —。
三、选择题:
下列命题正确的是( C )
A、三角形外心到三边距离相等
B、三角形的内心不一定在三角形的内部
例3 如图,△ABC中,E是内心,∠A的平分线和△ABC
的外接圆相交于点D. 求证:DE=DB
A
12
O
3
4
B5
C
D
练习 分析作出已知的锐角三角形、直角三角形、 钝角三角形的内切圆,并说明三角形的内心是否 都在三角形内.
2、如图,菱形ABCD中,周长为40,∠ABC=120°,
则内切圆的半径为( )
又 ∵EB=EC ∴EB=EI=EC
I
3
B
4 5
D
C
E
课堂练习: 1、判断
(1)三角形的外心是三边中垂线的交点。(√ ) (2)三角形三边中线的交点是三角形内心。(×)
(3)若O为△ABC的内心,
则OA=OB=OC。( ×)
因此三角形的内心是三个内角的角平分线的交,点 它到 三边的距离相等 距离相等
C O就是所求的圆。
想一想:根据作法,和三角形各边都
相切的圆能作出几个? 概念;
1、和三角形各边都相切的圆叫做三角形 的内切圆,内切圆的圆心叫做三角形的内 心,这个三角形叫做圆的外切三角形。
A
2、和多边形的各边都相
切的圆叫做多边形的内
切圆,这个多边形叫做
圆的外切多边形。
O
B
C
三角形的外接圆与内切圆

数学:26.6《三角形的内切圆》课件(沪科版九年级下)

数学:26.6《三角形的内切圆》课件(沪科版九年级下)

[判断题]化学热处理不仅改变了钢的组织,而且表层的化学成分也发生了变化。()A.正确B.错误 [单选]根据系统论的理论,物流系统可分为四个层次,错误的是()A.上级系统B.下级系统C.本级系统D.外级系统 [单选]串励直流电动机若空载运行则会发生()现象。A.飞车B.停车C.因电流极大冒烟D.因转矩极小而拖不动负载 [单选,A2型题,A1/A2型题]结核性胸膜炎胸腔内是否用药的原则是()A.最好每个患者都注射结核药物B.一般情况下,抽胸水后没有必要胸腔内注入抗结核药物C.最好注射糖皮质激素D.可以注射胸膜粘连剂E.绝对不能胸腔内用药,以免产生胸膜反应 [单选]船舶在近海、沿岸航行时通常都采用恒向线航法,这是因为()。A.恒向线在墨卡托海图上是直线,即两点间最短航程航线B.船舶按恒向线航行,操纵方便,且航程增加不多C.恒向线能满足海图的纬度渐长特性D.墨卡托海图是等角投影海图,只能使用等角航线 [单选]施工合同规定,由甲方承担的保险义务是()。A.机器设备损坏险B.建筑工程一切险C.人身意外险D.勘察设计一切险 [单选]不属于二次环境污染物的是A.光化学烟雾B.可吸入颗粒物C.酸雨D.甲基汞E.有机汞 [单选,A2型题,A1/A2型题]据《素问·四气调神大论》,“发陈”描述的是哪一季节的物候规律()A.春B.夏C.秋D.冬E.长夏 [单选]体的压力、密度<ρ>、温度<T>三者之间的变化关系是().A、&rho;=PRTB、T=PR&rho;C、P=R&rho;/TD、P=R&rho;T [单选,A1型题]不属于采用注射法接种的疫苗是()A.麻疹活疫苗B.乙肝疫苗C.脊髓灰质炎三型混合疫苗D.卡介苗E.百白破混合制剂 [单选]下列资产中,属于不可确指的资产的是()。A.商标B.专利C.商誉D.土地使用权 [单选]下列各项中,除哪一项外,均由风热夹痰或湿热蕴阻所致()A.颈痈B.脐痈C.乳痈D.臀痈E.背痈 [单选]下列选项中,按配送区域划分配送中心的是()。A.城市配送中心B.流通加工配送中心C.家电商品配送中心D.第三方配送中心 [问答题,简答题]营销信息系统内抄表段管理包括哪些功能? [单选]正气不足,精气轻度损伤,脏腑功能减弱者,属A.得神B.少神C.失神D.假神E.神乱 [单选]决定分娩过程的要素是()。A.母畜年龄B.产力C.怀孕期D.胎位 [单选]数字微波通信中波道切换一般不在()上进行.A.射频B.中频C.基带 [单选]以下关于斑点状掌跖角化病临床表现的描述,错误的是()A.常染色体显性遗传病B.可发生于任何年龄C.典型皮损为掌跖部直径2~1Omm角化性丘疹D.多伴手足多汗表现 [单选]在放射免疫分析中常用到RIA标准曲线(Standardcurve),其作用是()A.用来校正计数器(counter)B.用得到的计数率去推算试样中所含样品的浓度或含量C.做质控D.用来追踪试样的变化E.鉴定核素的放射化学纯度 [单选]了解某市国有工业企业生产设备情况,则统计总体是()。A.该市国有的全部工业企业B.该市国有的每一个工业企业C.该市国有的某一台设备D.该市国有工业企业的全部生产设备 [单选]根据《行政复议法》的规定,下列各项中不属于行政复议中一并申请审查范围的有()。A.国务院各部门的规定B.省政府所在地的市的人民政府制定的规章C.县级以上地方人民政府及其工作部门的规定D.乡、镇人民政府的规定 [单选,A型题]下列哪种片剂可避免肝脏的首过作用()A、泡腾片B、分散片C、舌下片D、普通片E、溶液片 [不定项选择]属于从传播途径上降低噪声的方法的是()。A.在工程设计中改进生产工艺和加工操作方法,降低工艺噪声B.在生产管理和工程质量控制中保持设备良好运转状态,不增加不正常运行噪声C.合理安排建筑物功能和建筑物平面布局,使敏感建筑物远离噪声源, [单选]双方目标的达成是一种正向关联的协商是()。A.关联型协商B.双赢型协商C.竞争型协商D.合作型协商 [填空题]量臀围时应在臀围()部位量一周。 [单选,A1型题]下列哪项是正常产褥的表现()A.产后第l天,宫底平脐B.产后12小时体温可超过38℃C.产后10天为血性恶露D.产后脉搏一般偏快E.产褥早期白细胞即恢复正常 [单选]证据审查的主体是()。A、行政主体B、行政相对人C、行政程序参加人D、行政主体或行政程序参加人 [问答题,简答题]化石形成的原因和条件? [单选]一般认为,延迟显像是指显像剂注入体内几小时以后所进行的显像()A.8小时B.6小时C.4小时D.2小时E.1小时 [单选]《部标》中规定:列车员在列车进出站时,面向站台()。A、行举手礼B、致注目礼C、站立D、敬礼 [单选,A2型题,A1/A2型题]DSA的中文全称叫做()A.数字减影成像B.数字血管成像C.数字减影血管造影D.数字造影血管减影E.数字血管断层成像 [单选]下列关于会计凭证,表述错误的是()。A.会计凭证是记录经济业务、明确经济责任的书面证明B.会计凭证是登记账簿的依据C.填制原始凭证是会计处理程序的第一个关键步骤D.会计凭证根据填制的程序和用途不同分为原始凭证和记账凭证 [单选]铁路旅客运输合同是明确承运人与()之间权利义务关系的协议。A.托运人B.收货人C.旅客D.押运人 [填空题]发现牵引供电设备断线及其部件损坏,或发现牵引供电设备上挂有线头、绳索、塑料布或脱落搭接等异物,均不得与之(),应立即通知附近车站,在牵引供电设备检修人员到达未采取措施以前,任何人员均应距已断线索或异物处所()以外。 [填空题]在冶炼、浇铸和钢水凝固过程中产生或混入的非金属相,一般称为()。 [单选]记账凭证账务处理程序的适用范围是()。A.规模较小、经济业务量较少的单位B.采用单式记账的单位C.规模较大、经济业务量较多的单位D.会计基础工作薄弱的单位 [单选,A1型题]患者女,50岁。下蹲或腹部用力时,出现不由自主的排尿,其正确的护理诊断是()A.功能性尿失禁:与膀胱过度充盈有关B.功能性尿失禁:与腹压升高有关C.反射性尿失禁:与膀胱收缩有关D.完全性尿失禁:与神经传导功能减退有关E.压迫性尿失禁:与膀 [单选]右侧小脑幕切迹疝时,其瞳孔和肢体的改变是()A.右侧瞳孔散大,右侧肢体瘫痪B.右侧瞳孔缩小,左侧肢体瘫痪C.左侧瞳孔散大,右侧肢体瘫痪D.左侧瞳孔散大,右侧肢体瘫痪E.右侧瞳孔散大,右侧肢体瘫痪 [单选]外燃锅壳式锅炉,烟管构成了锅炉的主要()受热面,水冷壁和大锅筒下腹壁面则为锅炉的辐射受热面。A、辐射B、对流C、间壁D、上锅筒 [单选,A2型题,A1/A2型题]患者女,38岁,工人。一周前无明显诱因开始出现少食,睡眠差,与人讲话小声,把家里的电话线、电脑线均拔掉,说有人监听。近2天,突然站在阳台上叫骂,自言自语说不害怕。对医生的问话以唱代说。不时捂住耳朵、跺脚、哭泣。经住院治
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的 分别相切于D,E,F
应 求证:AE=AF=s-a A
E

BF=BD=s-b
Ir
C
CD=CE=s-c
F D
B
圆内接平行四边形是矩形

A
C


B
O· D
A
E
B
F

H

C
D
G

圆外切平行四边形是_菱__形____
2020/12/16
作法:1、作∠B、∠C的平分线 BM和CN,交点为I。
2.过点I作ID⊥BC,垂足为D。 A
3.以I为圆心,ID为
半径作⊙I. ⊙I就是所求的圆。
NM I
B
D
C
1、定义:和三角形各边都相切的圆叫做 三角形的内切圆,内切圆的圆心叫做三 角形的内心,这个三角形叫做圆的外切 三角形。
2、性质: 内心到三角形三边的距离相 等;内心与顶点连线平分内角。
部.
例1. 如图,△ABC中,O是内心,∠A的平分线和 △ABC的外接圆相交于点D. 求证:DO=DB
证明:连接BO,
∵ AD是∠BAC的平分线 ∴ ∠1=∠2, 同理 ∠3=∠4, 而 ∠BOD=∠1+∠3,
∠ OBD=∠4+∠5, 又 ∵∠2=∠5,
∴∠BOD=∠OBD.
∴DO=DB.
A
12
3
B
NC
A
O
图2
C
圆心0在∠ABC与∠ACB的两个角的角平分 线的交点上。
3.如何确定一个与三角形 三边都相切的圆的圆心位置 与半径的长?
作出三个内角的平分线,三条内角
平分线相交于一点,这点就是符合
条件的圆心,过圆心作一边的垂线,
垂线段的长是符合条件的半径。
4.你能作出几个与一个
三角形的三边都相切的
A
如:直角三角形的两 直角边分别是5cm, 12cm 则其内切圆的 半径为__2_c__m_。
c
D rO
C
B
E
变式训练:
Rt△ABC中,∠C=90º,AB等于5cm,内切圆半径 为1cm,求这个三角形的周长?
知 识
如图,设△ABC的边BC=a,
CA=b,AB=c,s= 1 (a+b+c),内切圆和各边 2
关于三角形的内切圆
1、确定一个圆的位置与大小的条件是什么? ①.圆心与半径 或②.不在同一直线上的三点
2、下图中△ABC与圆O的关系?
△ABC是圆O的内接三角
形;
A
圆O是△ABC的外接圆
圆心O点叫△ABC的外心
O
B
C
小明在一家木料厂上班,工作之余想对厂 里的三角形废料进行加工:裁下一块圆形用 料,且使圆的面积最大。
O
4
B5
C
D
例2、如图,已知⊙O 是△ABC的内切圆,
切点分别点D、E、F,设△ABC周长为L。 求证:A及切线的性 质
A
F O
B
D
E C
知识的应用:
如图,直角三角形的两直角边分别是a,b,斜边为
c 则其内切圆的半径r为:
(以含a、b、c的代数式表示r)
r = a+b-c 2
下图是他的几种设计,请同学们帮他确定一 下。
A
B
C


A
D
r
C
O
E F
B
法 合
作 探 究 : 三 角 形 内 切 圆 的 作
思考下列问题:
A
1.如图,若⊙O与∠ABC 的两边相切,那么圆心O的
位置有什么特点?
M O
圆心0在∠ABC的平分线上。 B 2.如图2,如果⊙O与 △ABC的内角∠ABC的两边 相切,且与内角∠ACB的两 边也相切,那么此⊙O的圆 心在什么位置?
A
圆?内切圆圆心能否在
三角形外部?
C
F E
I
D
B
练习
分别作出锐角三角形、直角三角形、钝角三角形 的内切圆,并说明三角形的内心是否都在三角形 内部.
圆心都在三角形内部,因为三角 形的三条内角平分线在三角形 内部,且相交只有一个交点。
试一试,你能画出一个三角形的内切圆吗?
每个学习小组请交流你们的画图方法
A
O
B
图2
C
名称
外心: 三角形 外接圆 的圆心
确定方法
三角形三边 中垂线的交 点
图形
性质
A 1.OA=OB=OC
2.外心不一定在三
o
角形的内部.
C
B
内心: 三角形 内切圆 的圆心
三角形三条 角平分线的 交点
A
1.到三边的距离
相等;
O
2.OA、OB、OC 分别平分∠BAC、
∠ABC、∠ACB
B
C 3.内心在三角形内
相关文档
最新文档