三角形的内心与内切圆解析
三角形的各个心

三角形中心三角形只有五种心重心:三中线的交点,三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍;垂心:三高的交点;内心:三内角平分线的交点,是三角形的内切圆的圆心的简称;外心:三中垂线的交点;旁心:一条内角平分线与其它二外角平分线的交点.(共有三个.)是三角形的旁切圆的圆心的简称.当且仅当三角形是正三角形的时候,四心合一心,称做正三角形的中心.三角形重心重心是三角形三边中线的交点,三线交一可用燕尾定理证明,十分简单。
证明过程又是塞瓦定理的特例。
已知:△ ABC中,D为BC中点,E为AC中点,AD与BE交于O, CO 延长线交AB于F。
求证:F为AB中点。
证明:根据燕尾定理,S △ AOB=S △ AOC,又S △ AOB=S △ BOC,二S△ A OC=S △ BOC,再应用燕尾定理即得AF=BF,命题得证。
重心的几条性质:1、重心到顶点的距离与重心到对边中点的距离之比为 2 : 1。
2、重心和三角形3个顶点组成的3个三角形面积相等。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,( Y1+Y2+Y 3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(z1+z2+z3)/35、三角形内到三边距离之积最大的点。
重心三条中线定相交,交点位置真奇巧,交点命名为重心”重心性质要明了,重心分割中线段,数段之比听分晓;长短之比二比一,灵活运用掌握好.三角形垂心的性质设/ ABC的三条高为AD、BE、CF,其中D、E、F为垂足,垂心为H,角A、B、C 的对边分别为a、b、c, p=(a+b+c)/2 .1、锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外.2、三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心;3、垂心H关于三边的对称点,均在△ABC的外接圆上。
三角形的内心与内切圆

三角形的内心与内切圆三角形是几何学中最基本的形状之一,在研究三角形的性质时,我们常常会接触到内心与内切圆这两个概念。
在本文中,我将详细介绍三角形内心与内切圆的定义、性质和应用。
一、内心的定义与性质内心是指一个三角形中,三条角平分线的交点。
在任意三角形ABC 中,角平分线AD、BE和CF的交点O称为三角形ABC的内心。
内心的位置十分特殊,它到三角形的三条边的距离相等,即OD=OE=OF,这是内心的重要性质之一。
此外,内心到三角形三边的距离之和等于三角形的周长,即AD+BD+CD=AB+BC+CA。
这个性质也为我们的后续讨论提供了便利。
二、内切圆的定义与性质内切圆是指一个圆与三角形的三条边都相切。
在任意三角形ABC 中,与三边AB、BC和CA相切的圆称为三角形ABC的内切圆。
内切圆有很多有趣的性质。
首先,内切圆的圆心与内心重合,即内心就是内切圆的圆心。
其次,内切圆的半径r等于三角形的面积S除以半周长s的值,即r=S/s。
这个性质为计算内切圆的半径提供了一种简便的方法。
三、内心与内切圆的应用内心与内切圆在几何学中有着广泛的应用。
下面,我将分别介绍内心与内切圆在三角形分类、面积计算和问题解决中的应用。
1. 三角形分类内心与内切圆可以帮助我们分类三角形。
如果一个三角形的内心到三边的距离相等,那么这个三角形一定是等边三角形。
如果一个三角形的内心到某一边的距离最小,那么这个三角形一定是锐角三角形。
如果一个三角形的内心到某一边的距离最大,那么这个三角形一定是钝角三角形。
2. 面积计算利用内心与内切圆的关系,我们可以更简便地计算三角形的面积。
根据前面提到的性质,三角形的面积可以表示为S=r*s,其中r为内切圆的半径,s为三角形的半周长。
这个公式可以帮助我们快速计算三角形的面积,省去了繁琐的高中几何学方法。
3. 问题解决内心与内切圆也常常在解决实际问题中发挥重要作用。
例如,在定向走行系统中,内心与内切圆可以帮助我们确定最佳路径。
初中数学知识点:三角形的内心、外心、中心、重心

初中数学知识点:三角形的内心、外心、中心、重心三角形的四心定义:1、内心:三角形三条内角平分线的交点,即内切圆的圆心。
内心是三角形角平分线交点的原理:经圆外一点作圆的两条切线,这一点与圆心的连线平分两条切线的夹角(原理:角平分线上点到角两边距离相等)。
2、外心:是三角形三条边的垂直平分线的交点,即外接圆的圆心。
外心定理:三角形的三边的垂直平分线交于一点。
该点叫做三角形的外心。
3、中心:三角形只有五种心重心、垂心、内心、外心、旁心,当且仅当三角形是正三角形的时候,四心合一心,称做正三角形的中心。
4、重心:重心是三角形三边中线的交点。
三角形的外心的性质:1.三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心;2三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合;3.锐角三角形的外心在三角形内;钝角三角形的外心在三角形外;直角三角形的外心与斜边的中点重合。
在△ABC中4.OA=OB=OC=R5.∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA6.S△ABC=abc/4R三角形的内心的性质:1.三角形的三条角平分线交于一点,该点即为三角形的内心2.三角形的内心到三边的距离相等,都等于内切圆半径r3.r=2S/(a+b+c)4.在Rt△ABC中,∠C=90°,r=(a+b-c)/2.5.∠BOC = 90 °+∠A/2 ∠BOA = 90°+∠C/2 ∠AOC = 90 °+∠B/26.S△=[(a+b+c)r]/2 (r是内切圆半径)三角形的垂心的性质:1.锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外。
第12章 三角形内心的性质及应用

第十二章 三角形内心的性质及应用【基础知识】三角形的内切圆的圆心简称为三角形的内心,内心有下列有趣的性质: 性质1:三角形的内心是三角形三条内角平分线的交点.性质2:设I 为ABC △内一点.I 为其内心的充要条件是:I 到ABC △三边的距离相等.性质3:设I 为ABC △内一点,AI 所在直线交ABC △的外接圆于D .I 为ABC △内心的充要条件是:ID DB DC ==.证明 如图12-1,必要性:连BI ,由1122DIB A B CBD IBC DBI ∠=∠+∠=∠+∠=∠,知ID B D D C ==.B充分性:由DB DC =,即知AD 平分BAC ∠.由DI DB =,有DIB DBI ∠=∠,即DBC CBI IAB ABI ∠+∠=∠+∠,而IAB IAC DBC ∠=∠=∠,从而CBI IBA ∠=∠,即BI 平分ABC ∠,故I 为ABC △的内心.性质4 设I 为ABC △内一点,I 为ABC △的内心的充要条件是:1902BIC A ∠=︒+∠,1902AIC B ∠=︒+∠,1902AIB C ∠=︒+∠证明 必要性显然.反正充分性:作ABC △的外接圆,与射线AI 交于点D ,连DB ,DC ,如图12-1由1902AIB ACB ∠=︒+∠,知1902DIB ACB ∠=︒-∠.又IDB ADB ACB ∠=∠=∠,在D I B △中,求得1902DBI ACB ∠=︒=-∠,则D I B D B I ∠=∠,故D B D I =.同样地,DC DI =,即DI DB DC ==,由性质3即证得结论成立.性质5 设I 为ABC △内一点,I 为ABC △的内心的充要条件是:IBC △,ICA △,IAB △的外心均在ABC △的外接圆上.证明 必要性:如图122-,设ABC △的内心,AI ,BI ,CI 的延长线分别交ABC △的外接圆于1A ,1B ,1C ,于是由性质3,知111A B A I AC ==,因此,1A 是IBC △的外心. 图 12-2I 'ABCIC 1B 1A 1A 2B 2C 2同理,1B ,1C 分别是ICA △,IAB △的外心.故必要性获证.充分性:又设I '为ABC △内另一点,I BC '△,I CA '△,I AB '△的外心2A ,2B ,2C 均在ABC △的外接圆上,由22A B A C =,11A B AC =,知2A 与1A 重合.同理2B 与1B 重合,2C 与1C 重合. 由于1A ,1C 分别是IBC △,IAB △的外心,知11A C 垂直平分线段BI ',由此可知I '与I 重合,即I '为ABC △的内心.注 性质5中,三个三角形I BC '△,I CA '△,I AB '△中有两个的外心在ABC △的外接圆上即可. 性质6 一条直线截三角形,把周长l 与面积S 分为对应的两部分:1l 与2l ,1S 与2S .此直线过三角形内心的充要条件是1122l Sl S =.证明 必要性:如图12-3,设I 是ABC △的内心,过I 的直线交AB 于P ,交AC 于Q .记BC a =,CA b =,AB c =,AP m =,AQ n =,内切圆半径为r ,则1()2ABC S a b c r s =++⋅=△,1()2APQ API AQI S S S m n r =+=+⋅△△△.图 12-3A BPQ nIm由111()21()2a b c rS a b c lS m n l m n r ++⋅++===++⋅,有1122l S l S =.充分性:设直线PQ 把ABC △的周长l 与面积S 分为对应的两部分成等比1122l S l S =,且与AB 交于P ,与AC 交Q ,与A ∠的平分线交于I .记BC a =,CA b =,AB c =,AP m =,AQ n =,I 到AB ,AC 的距离为r ,I 到BC 的距离为d .由1211()21()2a b c r l l a b c l m n m n r ++⋅+++==++⋅得1211112221122b rc r a dS S S m r n r ⋅+⋅+⋅+=⋅+⋅ 注意到121211l l S S l S ++=,从而有ad ar =,即d r =,故I 为ABC △的内心,即直线PQ 过内心.性质7 设I 为ABC △的内心,BC a =,AC b =,AB c =,I 在BC ,AC ,AB 边上的射影分别为D ,E ,F ;内切圆半径为r ,令1()2p a b c =++,则(1)ID IE IF r ===,S ABC pr =△;(2)2ABCS r a b c=++△,AE AF p a ==-,BD BF p b ==-,CE CD p c ==-;(3)abc r p AI BI CI ⋅=⋅⋅⋅.证明 仅证(3).在ABI △中,11sin sin cos 22AI C cAIB B C ==∠∠∠. 类似地还有两式,此三式相乘,即有111tan tan tan 222AI BI CI A B C abc ⋅⋅=∠⋅∠⋅∠=32ABC r r r pr rp a p b p c S p⋅⋅==---△,由此即证. 性质8 设I 为ABC △的内心,BC a =,AC b =,AB c =,A ∠的平分线交BC 于K ,交ABC △的外接圆于D ,则AI AD DI b cKI DI DK a+===. 证明 如图12-1,由AI BA AC AB AC b c KI BK KC BK KC a ++====+及ADC CDK △∽△,有AD AC CDDC CK DK==,亦有AD AC AB AB AC b c DI CK BK CK BK a ++====+,DI CD AC AB AB AC b cDK DK CK BK CK BK a ++=====+. 性质9 过ABC △内心I 任作一直线,分别交AB ,AC 于P 及Q 两点, 则AB AC AC AB AB AC BC AP AQ ⋅+⋅=++或sin sin sin sin sin AB AC B C A B C AP AQ⋅∠+⋅∠=∠+∠+∠. MABCNPQ图 12-4证明 如图12-4,先看一般情形:设M 为BC 上任意一点,直线PQ 分别交AB ,AM ,AC ,于P 、N 、Q ,则APQ MPQ APM AQMAPQABCS S S S AM AN NM AP AQ AN AN S S AB AC+++===⋅⋅⋅△△△△△△ ABM ACMABC AP AQ S S AC BM AB CM AB AC AP AQ AQ BC AP BC S AB AC⋅+⋅==⋅+⋅⋅⋅△△△. ①当N 为ABC △的内心时,由三角形内角平分线性质及合比、等比定理,有BM ABBC AB AC=+,MC AC BC AB AC =+,AM AB AC BCAN AB AC ++=+. 将上述三式代入①式即证得结论.性质10 设ABC △的内心为I ,ABC △内一定P 在BC ,CA ,AB 上的射影分别为D ,E ,F ,当P与I 重合时,BC CA ABPD PE PF++的值最小. 证明 设BC a =,CA b =,AB c =,PD x =,PE y =,PF z =,显然有2ABC ax by cz S ++=△是定值.由柯西不等式,有2()()()a b cax by cz a b c x y z ++++≥++,故2()2ABCBC CA AB a b c a b c PD PE PF x y z S ++++=++≥△(定值). 其中等号当且仅当a b cax by cz x y z==∶∶∶即x y z ==时成立,此时P 与I 重合. 对于内切圆我们还有如下性质: 性质11 三角形一内(外)角平分线上的点为三角形一顶点的射影的充分必要条件是另一顶点关于内切圆(旁切圆)的切点弦直线与这条角平分线的交点.证明 如图12-5,在ABC △中,内切圆I ⊙切边BC 、CA 、AB 分别于点E 、E 、F ,直线AI 、BI 、CI 为三条内角平分线.图 12-5X ZI YM NS FEDH GTABC仅证直线CI 上的点G ,有CG AG D ⊥⇔、G 、F 三点共线.充分性.由D 、G 、F 共线.联结FI ,11180180909018022AIG AIC B B BFD AFG ⎛⎫∠=︒-∠=︒︒+∠=︒-∠=∠=︒-∠ ⎪⎝⎭(当G 在ABC △外时,为AFG ∠).于是,A 、F 、G 、I 四点共圆,即90AGI AFI ∠=∠=︒.故CG AG ⊥. 必要性.由CG AG ⊥,联结FI ,由IF AB ⊥,知A 、F 、G 、I 四点共圆,又I 为内心,知1902AIC B ∠=︒+∠,则1180902A F G A I G A I C B ∠=︒-∠=∠=︒+∠.注意到,在等腰BDF △中,1902BFD B BFG ∠=︒-=∠.故D 、G 、F 三点共线.同理,直线CI 上的点H ,CH BH E ⊥⇔、F 、H 三点共线. 直线BI 上的点M ,BM AM D ⊥⇔、E 、M 三点共线. 直线BI 上的点N ,BN CN E ⊥⇔、N 、F 三点共线. 直线AI 上的点T ,AT BT E ⊥⇔、D 、T 三点共线. 直线AI 上的点S ,AS CS D ⊥⇔、S 、F 三点共线. 推论 三角形的一条中位线,与平行于此中位线的边的一端点处的内(外)角平线及另一端点关于内(旁)切圆的切点弦直线,这三条直线相交于一点,且该点为与中位线对应的顶点在这条内(外)交平分线上的射影. 事实上,若设Z 为AB 的中点,则ZM ZB =,且Z M B C ∥,有Z B M △为等腰三角形,从而知ZM 与AC 的交点Y 为AC 的中点,即ZY 为中为线.如图12-5,G 、M 在中位线ZY 上,H 、T 在中位线ZX 上,S 、N 在中位线XY 上.M 、N 、G 、H 、S 、T 均为三条直线的交点.注 在上述性质11及推论中,旁心的情形留给读者推证.性质12 设ABC △的内切圆(旁内圆)I ⊙分别切BC 、CA 、AB 边于点D 、E 、F ,设K 是DI 延长线上一点,AK 的延长线交BC 于点M ,则M 为BC 的中点的充要条件是点K 在线EF 上. 证明 如图12-6,过点K 用ST BC ∥交AB 于点S ,交AC 于点T ,则I K S T ⊥.联结SI 、FI 、TI 、EI . 充分性.当点K 在EF 上时,注意到F 、S 、I 、K 及I 、E 、T 、K 分别四点共圆,有ISK IFK IEK ITK ∠=∠=∠=,即知SIT △为等腰三角形.图 12-6C 'B 'Q K P M SF ED T IAB C注意到IK ST ⊥,知K 为ST 的中点.又ST BC ∥,故知M 为BC 中点.必要性.当M 为BC 中点时,则知K 为ST 的中点.由IK ST ⊥,知I S I T =,即有Rt Rt ISF ITE △≌△,亦有SIF TIE ∠=.注意到F 、S 、I 、K 及I 、E 、T 、K 分别四点共圆,有SKF SIF TIE TKE ∠=∠=∠=∠,于是E 、K 、F 三点共线.故点K 在直线EF 上.注 若P 为DK 延长线一点,直线AP 交BC 于点Q ,则BQ DC =的充要条件是点P 在I ⊙上. 事实上,过P 作B C BC ''∥分别交AB 于B ',交AC 于C ',如图12-6.充分性.若P 在I ⊙上时,则知B C '为I ⊙的切线.由Rt Rt PIC DCI '△∽△,有PI ID PC DC '⋅=⋅.同理PI ID B P BD '⋅=⋅.从而B P DCPC BD '='. 又由平行线性质,有B P BQ PC QC '='.即DC BQ BD QC =,亦即DC BQBC BC=. 从而BQ DC =.必要性.当BQ DC =,由旁切圆性质(第十六章性质7)知Q 为ABC △的旁切圆的切点.由位似形性质知P 为AB C ''△的旁切圆点,故P 在I ⊙上.性质13 设ABC △的内切圆I ⊙分别切BC 、CA 、AB 边于点D 、E 、F ,L 为劣弧EF 上一点,过点L 作内切圆的切线与BC 所在直线交于点G ,则G 、E 、F 三点共线的充要条件是A 、L 、D 三点共线.证法1 充分性.当A 、L 、D 共线时,如图127-,联结AI 交EF 于点K ,则KI EF ⊥. ① 联结EI 、DI 、KD ,则22ID EI IK IA ==⋅图 12-7BK IREDFL CA G即ID IKIA ID=.又DIK ∠公用,有IDA IKD △∽△,即有IDA IKD ∠=∠. ② 联结IL ,则ILD IDA IKD ∠=∠=∠,知D 、L 、K 、I 四点共圆. 又I 、D 、G 、L 四点共圆,从而I 、D 、G 、L 、K 五点共圆.于是90IKG ILG ∠=∠=︒,即K I K G ⊥. 由①、③可知,G 、E 、F 三点共线.必要性.当G 、E 、F 三点共线时,如图12-7,联结GI 交DL 于点R ,则IR DL ⊥.类似于充分性证明,由22FI ID IR IG ==⋅,得F 、I 、R 、E 四点共圆,又A 、F 、I 、E 四点共圆,即有90IRA IEA ∠=∠=︒,有IR AR ⊥.故A 、L 、D 三点共线.证法2 应用定差幂线定理,并注意AI FE ⊥,GI LD ⊥,则G 、E 、F 三点共线2222AI FG AF AG IF IG ⇔⊥⇔-=-.④ A 、L 、D 三点共线2222GI AD GA GD IA ID ⇔⊥⇔-=-.⑤ 由ID IF =及222222IG GD ID IF IA AF -===-, 既有2222IG AF IA GD +=+. ⑥而④式22222222IG AF IF AG ID AF IA GD ⇔+=+===+=+⇔⑥⑤式. 故G 、E 、F 三点共线A ⇔、L 、D 三点共线. 【典型例题与基本方法】例1 如图12-8,D 是ABC △的内心,E 是ABD △的内心,F 是BDE △的内心,若BFE ∠的读数为整数,求BFE ∠的最小度数.图 12-8F E DAB解 由性质4,知11111909090(90)112(4)24428BFE BDE BDA ACB ACB ∠=︒+∠=︒+∠=︒+︒+∠=︒+︒+∠.故当4ACB ∠=︒时,BFE ∠的最小度数为113︒.例2 如图12-9,设点M 是ABC △的BC 边的中点,I 是其内心,AH 是BC 边上的高,E 为直线IM 为AH 的交点.求证:AE 等于内切圆半径r .图 12-9M E IBP HA证明 设P 为内切圆与边BC 的切点,连IP ,设B C a =,CA b =,AB c =,则12M C a =,2a b cPC +-=,222cos 2a b c HC AC C a+-=⋅=. 由IMP EMH △∽△,有2EH HM MC HC a HC b cIP PM MC PC c b a--+====--. 又2()AH a S ABC r a b c ⋅==++△,即AH a b cr a++=. 再由EH b c r a +=(注意IP r =),及AE AH EH =-,有1A E A H E H a b c b c r r r a a +++=-=-=,故A E r =.注(1)此例的逆命题也是成立的,即若AE r =,则M 、I 、E 共线.(2)在图12-9,还可推证有如下结论:①直线MI 平分AP ;②设ABC △的内切圆I ⊙切AC 于Q ,切AB 于L ,则QL 与直线PI 的交点T 的直线AM 上;③设直线PI 交I ⊙于G ,即G 为直径端点,直线AG 交BC 于K ,则BK PC =;④ABC △的外心O 为KI 的中点……这些结论的证明可参见笔者著作《走向国际数学奥林匹克的平面几何试题诠释》(下册),哈尔滨工业大学出版社2007年元月出版. 例3 如图12-10,设ABC △的外接圆O ⊙的半径为R ,内心为I ,60B ∠=︒,A C ∠<∠,A ∠的外角平分线交O ⊙于E .证明:(1)IO AE =;(2)2(1R IO IA IC R <++<.图 12-10MIBOAEC证明(1)连BI 并延长交O ⊙于M ,则M 为AC 的中点.连OM ,AM ,OC ,MC ,由60B ∠=︒,则知AOM △,MOC △均为正三角形.由性质3知IM AM MC ==,即知M 为过点A ,O ,I ,C 四点的圆的圆心,且半径为R ,从而此圆与O ⊙为等圆.延长AI 交O ⊙于F ,由题设条件可证F ,O ,E 三点共线.于是12OAI OMI ∠=∠,12AFE EOA ∠=∠,而OAI AFE ∠=∠,故OMI EOA ∠=∠,由此即有IO AE =.(2)连FC ,由性质3知IF FC =,又60AFC B ∠=∠=︒,从而IC IF =, 故2IO AI IC AE AF EF R ++=+>=.又2cos 2sin IO AI IC AE AF R AEF R AEF ++++=⋅∠+⋅∠245)245)275R AEF R R =∠+︒<︒+︒=︒12(14R R ==.(其中60AEF ∠>︒)即证. 例4 如图12-11,在ABC △中,4AB =,6AC =,5BC =,A ∠的平分线AD 交ABC △的外接圆于K .O ,I 分别为ABC △的外心,内心.求证:OI AK ⊥.图 12-11证明 连接KO 并延长交O ⊙于E ,连AE ,则90KAE ∠=︒,2EKOK=. 因I 为ABC △的内心,由性质8知4625AK AB AC IK BC ++===. 于是OI AE ∥.从而90OIK KAE ∠=∠=︒,故OI AK ⊥. 【解题思维策略分析】1.注意到内心是角平分线的交点例5 如图12-12,设P 为ABC △内一点,APB ACB APC ABC ∠-∠=∠-∠,又设D ,E 分别是APB △及APC △的内心.证明:AP ,BD ,CE 交于一点.图 12-12PM N SED TRABC证明 过P 向三边作垂线,垂足分别为R ,S ,T .连RS ,ST ,TR ,易知,P ,R ,A ,S ;P ,T ,B ,R ;P ,S ,C ,T 分别四点共圆,则(180)(180)APB ACB ABP BAP B A PAC PBC PRS PRT SRT ∠-∠=︒-∠-∠-︒-∠-∠=∠+∠=∠+∠=∠. 同理,APC ABC RST ∠-∠=∠.由条件APB ACB APC ABC ∠-∠=∠-∠,知SRT RST ∠=∠,亦即RT ST =. 由sin RT PB B =⋅∠,sin ST PC C =⋅∠,知sin sin PB B PC C ⋅∠=⋅∠. 即sin sin PB C AB PC B AC ∠==∠,亦即PB PC AB AC=. 设BD 交AP 于M ,CE 交AP 于N ,则由角平分线性质,有AN AC AB AM NP PC PB MP ===,即AN AMAP AP=,故M ,N 重合,从而AP ,BD ,CE 交于一点.例6 如图12-13,设三角形的外接圆半径、内切圆半径分别为R ,r ,其外心、内心分别为O ,I .若IO d =,则222d R Rr =-.图 12-13证明 连AI 并延长交O ⊙于D ,作直径DE ,连BD ,BE ,设I ⊙切AB 于F ,连IF ,则IF r =.在Rt EBD △和Rt AFI △中,由BED FAI ∠=∠,知EBD AFI △∽△,从而DE BD AI FI =,即2R BDAI r=. 由性质3,知BD ID =,所以2Rr AI BD AI ID =⋅=⋅.将OI 两端延长交O ⊙于M ,N ,则由相交弦定理,得22()()AI ID MI IN R d R d R d ⋅=⋅=+-=- 故222d R Rr =-.例7 如图12-14,在ABC △中,有一个圆O '⊙内切于ABC △的外接圆O ⊙,并且与AB ,AC 分别相切于P ,Q .求证:线段PQ 的中点I 是ABC △的内心.图 12-14证明 设AI 的延长线交O ⊙于M ,则O '在AM 上.连O P ',由O P AB '⊥,O A PQ '⊥,有2O P O I O A '''=⋅. ①作两圆连心线OO '交O ⊙于R ,T ,则O R TO O A MO ''''⋅=⋅. ② ①+②并注意到O P O T ''=,有O P TR O A MI ''⋅=⋅ ③再作O ⊙的直径MN ,可知B M B N ⊥,MNB MAB ∠=∠,从而R t R t B M N P O A △∽△,即有O P MN O A BM ''⋅=⋅.比较③,④,注意到MN TR =,故BM MI +. 由性质3,即知I 为ABC △的内心.另证 显然,PQ 的中点I ,圆心O ',BC 的中点M 都在BAC ∠的平分线上,若设2BAC α∠=,O '⊙的半径为r ,则s i n rAO α'=.设直线OO '交O ⊙于R ,T ,且O ⊙的半径为*r ,则,即**(2)s i n (2)/s i nR O O T r r rO M αr r AO r α'⋅-⋅'===⋅-'.由Rt PIO '△,知sin IO αr '=⋅,**sin sin (2)sin 2IM IO O M αr αr r αr ''=+=⋅+⋅-=⋅.由ABM △,知*2sin BM r αBM IM =⋅⇒=,即证.例8 ABC △的A ∠的平分线与ABC △的外接圆交于D ,I 是ABC △的内心,M 是边BC 的中点,P 是I 关于M 的对称点(设点P 在圆内),延长DP 与外接圆相交于点N .试证:在AN ,BN ,CN 三条线段中,必有一条线段是另两条线段之和.证明 如图12-15,不妨设N 在BC 上,即证BN CN AN +=.图 12-15θθPMNDAB C连BD ,MN ,MD ,CD ,注意到共底ND 的三个三角形面积,即由2BND QND MND S S S +=△△△,及P 在ND 上,且IM MP =,知2MND IND BND CND S S S S ===△△△△.令NAD θ∠=,则NBD NCD θ∠=∠=,于是1sin 2BND S BD BN θ=⋅⋅△,1sin 2CND S CD CN θ=⋅⋅△,1sin 2IND NAD NAI S S S ID AN θ=-=⋅⋅△△△.注意到性质3,知BD CD ID ==,从而由①式即得BN CN AN +=.例9 如图12-16,在ABC △中,O 是外心,I 是内心,30C ∠=︒,边AC 上的点D 与边BC 上的点E 使AD BE AB ==.求证:OI DE ⊥,OI DE =.图 12-16BCD IE AMO证明 连AI 并延长交ABC △的外接圆于M ,连BD ,OM ,OB ,BM .由I 为内心,知BM CM =.又OC OB =,则OM EB ⊥.由AI 平分BAC ∠,且AB AD =,则AI BD ⊥.从而知OMI ∠与EBD ∠的两组对边分别垂直,且它们都是锐角,因此,OMI EBD ∠=∠. ①由正弦定理,有2sin 2sin 30AB R C R R OB OM =⋅=⋅︒===,又12BAD BMC ∠=的度数=BM 的度数=BOM ∠,从而DAB MOB △≌△,即有BD BM =. 由性质3知BM IM =,从而BD IM =. 又AD BE AB ==,则BE OM =.由①,②,③得OMI EBD △≌,从而知通过旋转90︒和平移可使用两个三角形重合,故OI DE ⊥,OI DE =.2.注意过内心的直线的性质 例10 如图12-17,在R ABC △中,AD 是斜边BC 上的高,连接ABD △的内心与ACD △的内心的直线,分别与AB 边交于K ,AC 边交于L ,ABC △与AKL △的面积分别记为S 与T .求证:2S T ≥.图 12-17证明 设AD 与KL 交于E ,由性质9可得AB AD AD AB AB AD BD AK AE ⋅+⋅=++,AD AC AC AD AC AD DC AE AL ⋅+⋅=++.此两式可变为1111BDAK AE AD AB AB AD +=++⋅, ① 1111DCAE AL AD A C AC AD+=++⋅. ② 由ADB CAB △∽△,有AC AB AD BD =,即1BD AB AD AC =⋅. ③ 由ADC BAC △∽△,AB AC AD DC =,即1DC AC AD AB=⋅. ④ 由①,②,③,④得AK AL =,即1145AKO ALO ∠=∠=︒. 又1O 是ABD △的内心,易得11AKO ADO △≌△.从而AK AD =.于是111122sin sin sin cos sin 2S AB AC AB AC T AK AL AD AD B C B B B⋅==⋅=⋅=⋅=≥⋅∠∠∠∠∠, 故2S T ≥.例11 如图12-18,在ABC △中,AB AC ≠,AD BC ⊥,D 为垂足,过Rt ABD △的内心1O 和Rt ACD △的内心2O 的直线啊交AB 于K 交AC 于L .若AK AL =,则90BAC ∠=︒.图 12-18证明 设KAD α∠=,LAD β∠=,由性质9及正弦定理,有sin sin90sin sin sin90AB ADB B αAK AE ∠⋅+︒⋅=∠++︒,sin90sin sin sin sin90AD ACC C βAE AL︒⋅+∠⋅=∠++︒.将AK AL =,sin AD B AB ∠=,sin ADC AC∠=,代入上述两式,得sin sin sin sin B αC β∠+=∠+.又sin BD αAB =,sin DC βAC =,即有ADBD AD DCAB AB AC AC+=+.而AB =AC, =,亦即2()()0BD DC AD BD DC --⋅=. 因AB AC ≠,知BD DC ≠,从而20AD BD DC -⋅=, 则Rt Rt ABD CAD △∽△,即有B β∠=,C α∠=.又180BAC B C ∠+∠+∠=︒,故90BAC βαB C ∠=+=∠+∠=︒.注 例10,例11的证法见孙哲先生的文章《三角形内心的一个性质与三道几何名题的新证》(《中学数学》1999年第6期).3.注意内切圆(旁切圆性质的应用)例12 设E 、F 分别为ABC △内切圆I ⊙与边AC 、AB 的切点,M 为BC 的中点,AM 与EF 交于点N ,以BC 为直径的圆M ⊙分别交BI 、CI 于点X 、Y .证明:NX ACNY AB=. 证明 如图12-19,由题设知X 、Y 分别为C 、B 在角平分线BI 、CI 上的射影,由性质11知,X 、Y 均在内切圆的切点弦EF 所在直线上.又由性质12知,N 、I 、D 三点共线.图 12-19IMN F DX Y BC ATES延长BY 、CX 交于点S .则I 为SBC △的垂心,即知S 在直线ND 上,又由垂心性质11知I 为DXY△的内心,有1122ABC DBI CYX DYX ∠=∠=∠=∠,即得ABC DYX ∠=∠.同理ACB DXY ∠=∠.于是sin sin sin sin NX XD DYX ABC AC NY DY DXY ACB AB∠∠====∠∠. 例13 已知ABC △的中线AM 交其内切圆Γ于点K ,L ,分别过K 、L 且平行于BC 的直线交圆Γ于点X 、Y 、A 、AY 分别交BC 于P 、Q .证明:BP CQ =.证明 如图12-20,设内切圆圆心为I ,I ⊙分别切BC 、CA 、AB 于点D 、E 、F ,直线DI 交EF 于点T ,则由性质12知点T 在直线AM 上.图 12-20LTPM FZDY I ΓQK XCSEBA设过点K 、L 的两条切线交于点S ,则由性质13知,F 、E 、S 三点共线.由调和点列性质5后的推论8知KA KTAL TL=. ① 设直线YL 交AP 于点Z ,由KX YL ∥知KX AKLZ AL=. ② 注意到等腰梯形YLXK 中KL 为其对角线,两底的公垂线为TI .从而KX KTYL TL=.再注意到①、②式KX KXLZ YL=,即知L 识YZ 的中点.因此,M 是QP 的中点.故BQ PC =,即有BP CQ =. 例14 设J 是ABC △顶点A 所对旁切圆的圆心,该旁切圆与边BC 切于点M ,与直线AB 、AC 分别切于点K 、L ,直线LM 与BJ 交于点F ,直线KM 与CJ 交于点G .设S 是直线AF 与BC 的交点,T 是直线AG 与BC 的交点.证明:M 是线段ST 的中点.图 12-21LMF YG JXSKA B C证明 如图12-21,由性质11及其推论,知AF FJ ⊥,AF JG ⊥.设直线FG 分别交AB 、AC 于X 、Y ,则XY 为ABC △的中位线.从而S 关于直线FB 与A 对称,T 关于直线GC 与A 对称,于是SJ AJ TJ ==.注意到Jm ST ⊥,故SM MT =. 【模拟实战】习题A1.已知1O ⊙与2O ⊙相交于A 、B 两点,延长1O A 交2O ⊙于点C ,延长2O A 交1O ⊙于D .求证:A 是BCD △的内心.2.在Rt ABC △中,90C ∠=︒,CD 是斜边上的高.1O ,2O 分别是ACD △和BCD △的内心.求证:21AO C BO C ∠=∠.3.设ABC △的内切圆I 与AB 、AC 边分别切于点E 、F ,射线BI 、CI 分别交EF 于点M 、N .试证:四边形AMIN 与IBC 的面积相等.4.在梯形ABCD 中,BC DA ∥,对角线AC 与BD 相交于P .记PAB △、PBC △、PCD △、PDA△的内切线半径依次为1r 、2r 、3r 、4r ,且13241111r r r r +=+.求证:AB CD BC DA +=+.5.在凸四边形ABCD 中,AC BD AB ==,且AC BD ⊥,垂足为E .设I 为AEB △的内心,M 为AB边的中点.求证:MI CD ⊥,且12MI CD =.6.设I 为ABC △的内心,A B C '''△是从I 向BC ,CA ,AB 所作垂线的垂足三角形.证明:cot cot cot cot cot cot A B C A B C '''∠+∠+∠≥∠+∠+∠.7.已知AO 是等腰AEF △的底EF 上的高,有AO EF =,延长AE 到B ,使B E A E =,过点B 作AF 的垂线,垂足为C .求证:点O 是ABC △的内心.8.设ABC △的外接圆半径为R ,内切圆的半径r ,内心为I ,延长AI 交外接圆于D .求证:2AI ID Rr ⋅=.9.在ABC △中,C ∠的平分线交边AB 及三角形的外接圆于D ,K ,I 是ABC △的内心.求证:(1)111ID IK IC -=;(2)1IC IDID DK-=.10.I 为ABC △的内心,且A ',B ',C '分别为IBC ∠,IAC ∠,IAB ∠的外心.求证:A B C '''△与ABC 有相同的外心.习题B1.在ABC △中,A ∠,B ∠,C ∠的平分线分别交外接圆于点P ,Q ,R .求证: AP BQ CR BC CA AB ++>++.2.四边形ABCD 内接圆,BCD △,ACD △,ABD △,ABC △的内心依次记为A I ,B I ,C I ,D I .证明:A B C D I I I I 是矩形.3.在锐角ABC △中,A ∠,B ∠,C ∠的平分线延长后分别与ABC △的外接圆交于1A ,1B ,1C .直线1AA 与B ∠,C ∠的外角平分线相交于0A ,0B ,0C 与此类似.求证:(1)000A B C △的面积是六边形111AC BACB 的2倍;(2)000A B C △的面积至少是ABC △面积的4倍. 4.ABC △的A ∠,B ∠,C ∠的内角平分线分别与外接圆交于1A ,1B ,1C .证明:111A B C △的面积大于或等于ABC △的面积.5.设K 为ABC △的内心,点1C ,1B 分别为边AB ,AC 的中点,直线AC 与1C K 交于点2B ,直线AB 与1B K 交于点2C .若22AB C ABC S S =△△,求CAB ∠.6.设I 是ABC △的内心,并设ABC △的内切圆与三边BC ,CA ,AB 分别相切于点K ,L ,M .过B 点平行于MK 的直线分别交直线LM 及LK 于点R 和S .证明:RIS ∠是锐角.7.在Rt ABC △中,AD 是斜边BC 上的高,连接ABD △的内心与ACD △的内心的直线分别交AB 边于K ,交AC 边于L ,KL 与AD 交于E .求证:111AB AC AE+=. 8.设ABC △的内心为I ,外接圆分别交AI ,BI ,CI 于A ',B ',C '.证明:IA IB IC I IB IC '''⋅⋅≤⋅⋅. 9.已知等腰梯形ABCD 中,AB CD ∥,又BCD △的内切圆切CD 于E ,F 是DAC ∠的角平分线上一点,且EF CD ⊥,ACF △的外接圆交CD 于G .证明:AFG △是等腰三角形.10.ABC △具有下面性质:存在一个内部的点P 使10PAB ∠=︒,20PBA ∠=︒,30PCA ∠=︒,40PAC ∠=︒.证明:ABC △是等腰三角形. 11.已知R ,Q 分别是ABC △的边BC ,AB 上的点.并且使AB BR AC CR +=+,CB BQ CA AQ +=+,AR ,CQ 相交于J ,又M 是BC 的中点,I 是ABC △的内心.求证:AJ MI ∥,2AJ MI =.12.在ABC △中,30BAC ∠=︒,70ABC ∠=︒,M 为形内一点,20MAB MCA ∠=∠=︒,求MBA ∠的度数.13.在ABC △,AD 为A ∠的平分线,M ,N 分别为AB ,AC 的中点.若B ∠,MDN ∠,C ∠成等差数值,求证:AB ,BC ,AC 也成等差数值.。
人教版九年级数学课件《三角形的内切圆》

B
典例解析
1.求边长为6 cm的等边三角形的内切圆半径与外接圆半径.
解:如图,由题意可知BC=6cm,∠ABC=60°,OD⊥BC,OB平分∠ABC.
∴∠OBD=30°,BD=3cm,△OBD为直角三角形.
内切圆半径
外接圆半径
针对练习
2.设△ABC的面积为S,周长为L, △ABC内切圆的半径为r,则S,L与r之间存在怎样的数量关系?
第二十四章第2节三角形的内切圆
人教版数学九年级上册
学习目标
了解三角形的内切圆和三角形内心的概念.
根据三角形内心的性质进行计算与证明.
切线长定理: 过圆外一点作圆的两条切线,两条切线长相等.圆心与这一点的连线平分两条切线的夹角.
PA、PB分别切☉O于A、B
PA = PB
∠OPA=∠OPB
几何语言:
120°
达标检测
4.如图所示,已知在△ABC中,∠B=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于E,与AC相切于点D.求证:DE∥OC.
证明:连接OD,∵AC切⊙O点D,∴OD⊥AC,∴∠ODC=∠B=90°.在Rt△OCD和Rt△OCB中, OD=OB ,OC=OC ∴Rt△ODC≌Rt△OBC(HL),∴∠DOC=∠BOC.∵OD=OE,∴∠ODE=∠OED,∵∠DOB=∠ODE+∠OED,
所以a-r+b-r=c,
针对练习
2.如图,已知点O是△ABC 的内心,且∠ABC= 60 °, ∠ACB= 80 °,则∠BOC= .
1.如图,PA、PB是☉O的两条切线,切点分别是A、B,如果AP=4, ∠APB= 40 ° ,则∠APO= ,PB= .
知识精讲
中考数学复习----《三角形的内切圆与内心》知识点总结与专项练习题(含答案解析)

中考数学复习----《三角形的内切圆与内心》知识点总结与专项练习题(含答案解析)知识点总结1. 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
几何语言:若弦CD AB ,交于点P ,则PD PC PB PA ⋅=⋅。
推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。
几何语言:若AB 是直径,CD 垂直AB 于点P ,则PB PA PD PC ⋅==22。
2. 弦切角定理:(1)弦切角的定义:如图像∠ACP 这样,顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。
(2)弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半。
等于这条弧所对的圆周角。
即∠PCA=∠PBC 。
3. 切线长定理:(1)切线长定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长。
(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角。
4. 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
几何语言:∵PT切⊙O于点T,PBA是⊙O的割线∴PT2=PA•PB(切割线定理)。
推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
几何语言:∵PBA,PDC是⊙O的割线∴PD•PC=PA•PB由上可知:PT2=PA•PB=PC•PD。
5. 三角形的内切圆与内心:内切圆与内心的概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形。
三角形的内心就是三角形三个内角角平分线的交点。
练习题1、(2022•恩施州)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,⊙O为Rt△ABC的内切圆,则图中阴影部分的面积为(结果保留π).【分析】根据题意,先作出相应的辅助线,然后求出内切圆的半径,再根据图形可知:阴影部分的面积=△ABC的面积﹣正方形CEOD的面积﹣⊙O面积的,代入数据计算即可.【解答】解:作OD⊥AC于点D,作OE⊥CB于点E,作OF⊥AB于点F,连接OA、OC、OB,如图,∵∠C=90°,OD=OE=OF,∴四边形CEOD是正方形,∵AC=4,BC=3,∠C=90°,∴AB===5,∵S△ABC=S△AOC+S△COB+S△BOA,∴=,解得OD=OE=OF=1,∴图中阴影部分的面积为:﹣1×1﹣π×12×=5﹣π,故答案为:5﹣π.2、(2022•泰州)如图,△ABC中,∠C=90°,AC=8,BC=6,O为内心,过点O的直线分别与AC、AB边相交于点D、E.若DE=CD+BE,则线段CD的长为.【分析】连接BO,CO,结合内心的概念及平行线的判定分析可得当DE=CD+BE时,DE∥BC,从而利用相似三角形的判定和性质分析计算.【解答】解:如图,过点O的直线分别与AC、AB边相交于点D、E,连接BO,CO,∵O为△ABC的内心,∴CO平分∠ACB,BO平分∠ABC,∴∠BCO=∠ACO,∠CBO=∠ABO,当CD=OD时,则∠OCD=∠COD,∴∠BCO=∠COD,∴BC∥DE,∴∠CBO=∠BOE,∴BE=OE,则DE=CD+BE,设CD=OD=x,BE=OE=y,在Rt△ABC中,AB==10,∴,即,解得,∴CD=2,过点O作D′E′⊥AB,作DE∥BC,∵点O为△ABC的内心,∴OD=OE′,在Rt△ODD′和Rt△OE′E中,,∴△ODD′≌△OE′E(ASA),∴OE=OD′,∴D′E′=DE=CD+BE=CD′+BE′=2+=,在△AD′E′和△ABC中,,∴△AD′E′∽△ABC,∴,∴,解得:AD′=,∴CD′=AC﹣AD′=,故答案为:2或.3、(2022•黔东南州)如图,在△ABC中,∠A=80°,半径为3cm的⊙O是△ABC的内切圆,连接OB、OC,则图中阴影部分的面积是cm2.(结果用含π的式子表示)【分析】根据角A的度数和内切圆的性质,得出圆心角DOE的度数即可得出阴影部分的面积.【解答】解:∵∠A=80°,⊙O是△ABC的内切圆,∴∠DOE=180°﹣()=180°﹣(180°﹣∠A)=130°,∴S扇形DOE==(cm2),故答案为:.4、(2022•宜宾)我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为.【分析】如图,设内切圆的圆心为O,连接OE、OD,则四边形EODC为正方形,然后利用内切圆和直角三角形的性质得到AC+BC=AB+6,(BC﹣AC)2=49,接着利用完全平方公式进行代数变形,最后解关于AB的一元二次方程解决问题.【解答】解:如图,设内切圆的圆心为O,连接OE、OD,则四边形EODC为正方形,∴OE=OD=3=,∴AC+BC﹣AB=6,∴AC+BC=AB+6,∴(AC+BC)2=(AB+6)2,∴BC2+AC2+2BC×AC=AB2+12AB+36,而BC2+AC2=AB2,∴2BC×AC=12AB+36①,∵小正方形的面积为49,∴(BC﹣AC)2=49,∴BC2+AC2﹣2BC×AC=49②,把①代入②中得AB2﹣12AB﹣85=0,∴(AB﹣17)(AB+5)=0,∴AB=17(负值舍去),∴大正方形的面积为289.故答案为:289.。
三角形内切圆的性质及其应用_彭代光

三角形内切圆的性质及其应用彭代光(四川省成都市郫县犀浦镇实验学校,611731) 初中数学中内切圆的内容看似简单,其实它有丰富的内涵,也是初中几何中一个重要的知识点,三角形内切圆的应用与三角形的面积、三角形的全等及相似等知识有着密切的联系.本文旨在对三角形内切圆的性质及应用作一些分析.一、三角形内切圆的基本性质三角形内切圆的圆心称为内心.由三角形内切圆的定义可以直接得到下面的结论:1.内心的位置由三角形任意两个角的平分线的交点确定,反过来内心与三角形的每个顶点的连线平分这个角.2.内心到三角形三边的距离相等,这个距离就是三角形内切圆的半径.例1 如图1,已知点O 是 A B C 的内心,∠A O C=110°,∠A O B=130°,求 A B C 的三个内角的度数.简析 可设∠B A C =x ,∠A B C =y ,∠A C B=z .据上述结论,再结合三角形内角和定理,可得:12x +12y=180-130,12x +12z =180-110.∴x+y=100,x +z =140.∴z =80,y=40.∴x=60,y=40,z =80.于是三个内角便可求得.例2 如图2,已知⊙O 是R t A B C 的内切圆,∠C=90°,切点分别是点D ,E ,F .连接A O 并延长交B C 于点G .求证:A F ·A G=A O ·A C .简析 由题设知O 是内心,那么根据结论1知A O 就是∠B A C 的平分线,连接O F ,由格标上数1或-1.如果能使60个方格剪成15块符合要求的“四连格”,则每一“四连格”中数字之和为2或-2.设其中数字之和为2的有x 块,数字之和为-2的有y 块,由于方格中“1”和“-1”的个数是相同的,故有x +y=15,2x-2y=0.解得x=152,y=152.这与x 、y 都为整数相矛盾.因此,余下的方格不能剪成15块符合要求的“四连格”.请注意:倘若按上述推理方法,对某一类似的图形则得x ,y 为整数.不能断定可以剪成若干块形如图1的“四连格”,你能举出这样的例子吗?·7·第12期 初中数学教与学切线的性质知O F⊥A B .于是∠C=∠A F O ,那么 A F O∽ A C G .根据相似三角形的性质以及比例的性质就可得结论.二、三角形内切圆的三个切点到各个顶点的距离若已知三角形的三边长,则可以求出其内切圆的三个切点分别到三角形各个顶点的距离.如图3,已知: A B C 的三边分别为a ,b ,c .⊙O 是内切圆,切点分别是点D ,E ,F .设A D=A E=x ,B D=B F=y ,C E=C F =z .运用切线长定理可得x +y=c ,y +z =a ,x +z =b.解得x=b +c -a2,y=a+c -b2,z=a+b-c 2.为了方便记忆,如果我们设三角形三边和的一半为q ,即q=a+b +c2.显然有x=q -a ,y=q -b ,z=q -c .于是得到A D =A E=q -a ,B D=B F =q-b ,C F=C E=q -c .三、三角形的面积、三边长与内切圆半径之间的关系如图4,连接A O ,B O ,C O ,D O ,E O ,F O ,由切线的性质以及三角形面积公式得:S A B C =S B O C +S A O C +S A O B =12a r +12b r +12c r =12r (a+b+c ).另海伦公式是重要的三角形面积公式,即:S=q (q -a )(q -b )(q -c ),(其中q=a+b +c2).这样若知道三角形的三条边的长度,就可以求出内切圆的半径与面积.例3 如图4,已知 A B C 的三边为a ,b ,c ,并且a=14c m ,b =13c m ,c =15c m .求这个三角形的内切圆的面积.解 ∵a 2+b 2≠c 2,∴ A B C 显然不是直角三角形.∴q=13+14+152=21,由S=12r (a+b+c )r=q r ,则21(21-14)(21-13)(21-15)=21r ,得r =8421=4.∴ A B C 的内切圆面积为:πr 2=π×42=16π(c m 2).四、直角三角形的内切圆半径如图5,⊙O 是R t A B C 的内切圆,∠A C B=90°,三边分别是a ,b ,c .切点分别是点D ,E ,F .连接O E ,O F ,显然∠C=∠O E C=∠O F C =90°,则四边形O E C F 是矩形.又O E=O F=·8·初中数学教与学 2010年r ,所以四边形O E C F 是正方形.并且由勾股定理a 2+b 2=c 2,及直角三角形面积S=12a b ,我们可进一步推导发现新的规律.由上述结论可得12a b=12r (a+b +c ),容易得r =a ba+b +c.于是我们就得到直角三角形的内切圆半径为:r=a +b -c 2=a ba+b +c.通过对以上这个等式的变形,很容易就得到a 2+b 2=c 2.这也是证明勾股定理的一种方法.掌握好内切圆的上述几个知识点,并能够灵活应用,就能解决较为复杂的数学问题.例4 如图6,已知A D 是R t A B C 斜边B C 上的高.∠B A C=90°,⊙O 1,⊙O 2,⊙O 分别是R t A B D ,R t A D C ,R t A B C 的内切圆.圆心分别是O 1,O 2,O,求证:(1) A B O 1∽ C A O 2;(2)S ⊙O 1∶S ⊙O 2=BD∶C D ;(3)S ⊙O =S ⊙O 1+S ⊙O 2.提示 (1)在此条件中容易得到∠B A D =∠A C D ,∠A B D =∠D A C ,可运用结论1知A O 1平分∠B A D ,B O 1平分∠A B D ,A O 2平分∠D A C ,C O 2平分∠AC D ,可得结论.(2)S ⊙O 1∶S ⊙O2=r 21∶r 22=r1r 22=A B 2A C2.(3)直接应用(2)的结论,有:S ⊙O 1S ⊙O +S ⊙O 2S ⊙O=A B 2B C 2+A C2B C 2=1.例5 抛物线y=x 2-4x +k +2与x 轴有两个不同的交点.(1)求k 的取值范围.(2)当两个交点的横坐标的平方和等于10时,求这个抛物线的解析式.(3)在(2)的条件下,设抛物线的顶点为M ,它与x 轴的两个交点从左到右依次为A ,B ,与y 轴的交点为P ,求 P M B 的内切圆与外接圆半径之比.(成都市中考题)略解 (1)k<2;(2)y=x 2-4x +3;(3)P B=32+32=32,P M =22+(3+1)2=25,M B=12+12=2.根据勾股定理逆定理,可判断 P M B 为直角三角形,P M 为斜边.设 P M B 的外接圆半径为R ,内切圆半径为r ,则R = P M2=5.由上述结论知:S P M B =12(P B+M B+P M )r .于是122·32=12(32+2+25)·r .整理得r =22-5.∴r R =22-55=210-55.可见,三角形内切圆的知识有着广泛的应用,它可与全等三角形、相似三角形、面积、函数等知识结合起来形成综合题型,表现出代数与几何知识的有机融合.熟练应用这些知识,能够培养学生思维的灵活性、严密性,提高分析问题解决问题的能力,有利于养成良好的数学思维品质.·9·第12期 初中数学教与学。
三角形的外接圆和内切圆的性质

三角形的外接圆和内切圆的性质三角形是几何学中重要的基本形状之一,其外接圆和内切圆是与其密切相关的几何概念。
本文将探讨三角形的外接圆和内切圆的性质及其应用。
一、三角形外接圆外接圆是指可以完全包围三角形的圆,圆心位于三角形的外部,且圆的半径等于外接圆的直径。
以下是外接圆的性质:1. 外接圆的圆心:三角形的三条边的垂直平分线的交点即为外接圆的圆心。
2. 外接圆的半径:外接圆的半径等于三角形的任何一条边的一半。
3. 直径关系:三角形的任意一条边都是外接圆的直径。
外接圆的性质使得它在解决三角形相关问题时具有重要的地位。
例如,利用外接圆的性质,我们可以求得三角形的面积、周长等。
二、三角形内切圆内切圆是指可以切刚好接触三角形内部的圆,圆心位于三角形的内部,且圆切到三角形的每一边。
以下是内切圆的性质:1. 内切圆的圆心:三角形内切圆的圆心位于三角形的内角平分线的交点。
2. 内切圆的半径:三角形的内切圆半径等于三角形的面积除以半周长。
3. 接触点关系:内切圆与三角形的每一条边都有且只有一个接触点。
内切圆的性质也是解决三角形相关问题时的重要工具。
内切圆在实际应用中具有广泛的运用,如在工程设计中用于定位和测量等方面。
三、外接圆和内切圆的关系三角形的外接圆和内切圆之间存在着一定的关系。
当三角形存在内切圆时,内切圆的圆心、三角形的外接圆的圆心和三角形的垂心(三条高的交点)位于同一条直线上。
这个性质被称为"欧拉-威尔逊定理",它将三角形的外接圆、内切圆和垂心联系在了一起,为解决复杂的三角形问题提供了便利。
四、应用举例1. 利用外接圆性质解决问题:已知三角形的三个顶点坐标,可以通过求外接圆的圆心和半径,进而计算出三角形的面积、周长等。
2. 利用内切圆性质解决问题:已知三角形的边长,可以通过求内切圆的半径,进而计算出三角形的面积、周长等。
3. 利用外接圆和内切圆关系解决问题:已知三角形内接圆的半径和外接圆的半径,可以进一步计算出其他相关的几何参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形的内心与内切圆解析
三角形是几何学中基础的图形之一,其内心与内切圆是三角形独特
的性质之一。
在本文中,我们将探讨三角形的内心与内切圆的定义、
特性以及相关定理的证明。
通过深入理解三角形的内心与内切圆的解析,我们可以更好地理解和应用三角形的相关概念。
一、内心与内切圆的定义
在讨论内心与内切圆之前,我们先来了解一下什么是内心和内切圆。
对于任意三角形ABC,我们将其三边的角平分线交点称为三角形的内
心I。
而内切圆是唯一一个与三角形的三边都相切的圆,圆心恰好是三
角形的内心I。
二、内心与内切圆的性质
1. 内心到三角形三边的距离相等
由于内心I是三角形ABC的角平分线的交点,所以内心到三角形的三边的距离相等,即IA=IB=IC。
2. 内角平分线与三角形边的关系
内心I到三角形各个顶点A、B、C的连线分别与三角形边BC、AC、AB相交,这些分割线称为内角平分线。
内角平分线将三角形的边等分,即∠BAI=∠CAI=∠CBI=∠ABI=∠BCI=∠ACI。
3. 内切圆的切点
内切圆与三角形的三边的切点分别为D、E、F。
这些切点将三角形
的各边平分,即BD=DC=CE=EA=AF=FB。
三、内心与内切圆定理的证明
1. 内心到三边的距离相等的证明
设内心I到三角形的三边AB、BC、CA的距离分别为d₁、d₂、
d₃。
由于内心是角平分线的交点,根据角平分线的性质,可得d₁/d₂=BA/AC, d₂/d₃=CB/BA, d₃/d₁=AC/CB
将上述三个等式联立并整理,可得
(d₁/d₂)·(d₂/d₃)·(d₃/d₁)=1
即 (d₁/d₂)²·(d₂/d₃)²·(d₃/d₁)²=1
由于三个等式中的分子与分母均为相邻边的长度,故它们是等长的。
因此,d₁=d₂=d₃,证明了内心到三边的距离相等。
2. 内角平分线与三边的关系的证明
设∠BAC=a,∠ABC=b,∠BCA=c。
根据三角形内角和为180°的
性质,可得
∠BAI=(180-a)/2=90-a/2
∠ABI=(180-b)/2=90-b/2
而∠BAI=∠ABI,故∠BAI=∠ABI=90-(a+b)/2
同样地,可证明∠CBI=∠BCI=90-(b+c)/2 和∠ACI=∠CAI=90-
(c+a)/2
根据三角形内角和为180°的性质,(a+b)+(b+c)+(c+a)=180
则 (a+b+c)=180/2=90
由此可知∠BAI=∠ABI=∠CBI=∠BCI=∠ACI=∠CAI=45°,证明了
内角平分线与三边的关系。
3. 内切圆的切点的证明
在证明内切圆的切点时,我们可以利用相似三角形的性质进行推导。
根据相似三角形的性质,可得
BD/DC=BA/AC, CE/EA=CB/BA, AF/FB=AC/CB
将上述三个等式联立并整理,可得
(BD/DC)·(CE/EA)·(AF/FB)=1
即 (BD/DC)²·(CE/EA)²·(AF/FB)²=1
由于三个等式中的分子与分母均为相邻边的长度,故它们是等长的。
因此,BD=DC=CE=EA=AF=FB,证明了内切圆的切点。
四、总结
通过以上的解析,我们了解了三角形的内心与内切圆的定义、特性
以及相关定理的证明。
内心与内切圆是三角形独特的性质,具有一系
列的特点和性质。
深入理解和掌握这些知识,能够帮助我们更好地解决与三角形相关的问题,为几何学的学习提供了重要的基础。
(此文仅为示例,字数不足1500字,请根据需要适当增加。
)。