2019中考数学押题卷

合集下载

2019年山西省中考数学复习模拟卷压轴【几何模型问题】解析

2019年山西省中考数学复习模拟卷压轴【几何模型问题】解析

2019年山西省中考数学复习模拟卷压轴【几何模型问题】精选解析模型一、一线三等角型基本经验图形1.如图, 折痕EF,D 是等边△ABC 边AB 上的一点,且A 。

: BD=1: 2,现将如也(7折叠,.使点C 与D 重合, 点E 、F 分别在AC 和BC 上,则CE: CF=( )563A. 一44B.—5 c.6D.一7【答案]B【解析】...三角形ABC 为等边三角形,.•.ZA=£B=,C=60°,又•折叠△ABC,使得点C 恰好与边AB 上的点D 重合,折痕为EF, :. ZEDF=ZC=60°, CE=CE,CF=CF,二 /ADE+/FDB=120°, :. ZAED =ZFDB,・.・ 4AEDs/\BDF,AD DEfiF _ FD .AE * BD设等边△ABC 边长为 6 个单位,CE=x, CF=y, AE=6 - x, BF=6 - y,6—x2x147----=-----=—,解得x=—,y=—,x:y=4:5,故选择B.4 6-y y5-272.如图,在ZSABC中,AB=AC=LO,点D是边BC±一动点(不与B,C重合),ZADE=ZB=a,DE交AC于点E,且cosa=—.下列结论:①△ADEs^ACD;②当BD=6时,AABD与Z\DCE全等;5③左DCE为直角三角形时,BD为8或类;©0<CE<6.4.其中正确的结论是.(把你认2为正确结论的序号都填上)[答案]①②③④【解析】VAB=AC,.,.ZB=ZC,又V ZADE=ZB.\ZADE=ZC,AAADE^AACD故①正确;作4AG J_BC于G,AB=AC=10,/ADE=NB=a,cosa=—,BG=ABcosB,.•.BC=2BG=2ABcosB=2xl0xy=16,VBD=6,.,.DC=10,.,.AB=DC,AAABD^ADCE(ASA).故②正确;当ZAED=90°时,由①可知:AADE^AACD,A ZADC=ZAED,V ZAED=90°,4.•.ZADC=90°,即AD_LBC,VAB=AC,.-.BD=CD,A ZADE=ZB=a且cosa=—,AB=10,BD=8.当ZCDE=90。

2019年数学中考备考冲刺:中考模拟卷填空压轴题精选含精析

2019年数学中考备考冲刺:中考模拟卷填空压轴题精选含精析

2019年中考备考:中考模拟卷填空压轴题精选1.(2019山东省东港区模拟)如图,正三角形和矩形具有一条公共边,矩形内有一个正方形,其四个顶点都在矩形的边上,正三角形和正方形的面积分别是2和2,则图中阴影部分的面积是.2.(2019山东省日照市模拟)一个正方体的平面展开图如图所示,该正方体相对应的两个面上的代数式的积分别为A,B,C,若a,b,c都为有理数,且A=B=C,则a=.3.(2019湖北省保定市模拟)如图,在△ABC中,BC=AC=5,AB=8,CD为AB边的高,点A在x轴上,点B在y轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动△ABC在平面内滑动,设运动时间为t秒,当B到达原点时停止运动(1)连接OC,线段OC的长随t的变化而变化,当OC最大时,t=;(2)当△ABC的边与坐标轴平行时,t=.4.(2019浙江省台州市模拟)如图,直角三角形ABC中,∠C=90°,BC=6,AC=8,点D是AB的中点,以D为顶点的角绕D旋转分别交AC于点M、N,若∠MDN=∠A,则当DM=DN时,MN 的长为.5.(2019山东省莱芜市模拟)如图,将一块含30°角的直角三角版和半圆量角器按如图的方式摆放,使斜边与半圆相切.若半径OA=4,则图中阴影部分的面积为.(结果保留π)6.(2019四川省成都市模拟)如图,⊙O的半径是2,弦AB=2,点C为是优弧AB上一个动点,BD⊥BC交直线AC于点D,则是△ABD的面积的最大值为.7.(2019浙江省温州市模拟)如图,在R△ABC中,∠CAB=90°,D是BC边上一点,连结AD,作△ABD的外接圆,将△ADC沿直线AD翻折,若点C的对应点E落在的中点,CD=,则BD 的长为.8.(2019浙江省射阳县模拟)如图,已知矩形ABCD中,AB=6,AD=10,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(x),当P,E,B三点在同一直线上时对应t的值为.9.(2019福建省三明市模拟)如图,在菱形ABCD中,∠ABC=60°,AB=5,点E是AD边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点D时,点F的运动路径长为.10.(2019浙江省九校联考模拟)抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是.(只填写序号)11.(2019浙江省外国语学校模拟)如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.12.(2019浙江省金华市模拟)如图,⊙O的半径为10,点A、E、B在圆周上,∠AOB=45°,点C、D分别在OB、OA上,菱形OCED的面积为.13.(2019安徽省六安市模拟)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N.下列结论:①△APE≌△AME;②PM+PN=AC;③△POF∽△BNF;④当△PMN ∽△AMP时,点P是AB的中点,其中一定正确的结论有.(填上所有正确的序号).14.(2019山东省滨州市模拟)如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将△CDO以C为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:.15.(2019山东省临沂市模拟)如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为.16.(2019山东省枣庄市模拟)如图,在边长为1的菱形ABCD中,∠ABC=120°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠ACE=120°,连接AE,再以AE为边作第三个菱形AEGH,使∠AEC=120°,…,按此规律所作的第2018个菱形的边长是.17.(2019江苏省扬州市模拟)如图,点A在双曲线y=(x>0)上,点B在双曲线y=(x>0)上,且AB∥x轴,BC∥y轴,点C在x轴上,则△ABC的面积为.18.(2019上海市静安区模拟)如图,在平面直角坐标系xOy中,已知A(2,0),B(0,6),M(0,2).点Q在直线AB上,把△BMQ沿着直线MQ翻折,点B落在点P处,联结PQ.如果直线PQ与直线AB所构成的夹角为60°,那么点P的坐标是.19.(2019广西省河池模拟)如图,直径为10的⊙A经过点C(0,6)和点O(0,0),与x轴的正半轴交于点D,B是y轴右侧圆弧上一点,则cos∠OBC的值为.20.(2019四川省绵阳市模拟)已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个21.(2019山东省聊城市模拟)如图,抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①a﹣b+c>0②3a+b=0③b2=4a(c﹣n)④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,其中正确的是(填序号)22.(2019天津市模拟)如图,△ABC是等边三角形,AB=,点D是边BC上一点,点H是线段AD上一点,连接BH、CH.当∠BHD=60°,∠AHC=90°时,DH=.23.(2019福建省晋江市模拟)如图,点P为线段AB(不含端点A、B)上的动点,分别以AP、PB为斜边在AB的同侧作Rt△AEP与Rt△PFB,∠AEP=∠EPF=∠PFB=90°,若AE+PF=8,EP+FB =6,则线段EF的取值范围是.24.(2019山东省章丘市模拟)在平面直角坐标系中,直线y=x+c过y轴上的动点C,直线:y=x、y=x+c的图象分别与函数y=(x>0)交于点A、点B,横、纵坐标都是整数的点叫做整点.记图象y=(x>0)在点B和点C之间的部分与线段OA、BC、OC围成的区域(不含边界)为S.若区域S内恰有4个整点,则c的取值范围是.25.(2019重庆市长寿区模拟)在正方形ABCD中,AB=4,E为BC中点,连接AE,点F为AE上一点,FE=2,FG⊥AE交DC于G,将GF绕着G点逆时针旋转使得F点正好落在AD上的点H=.处,过点H作HN⊥HG交AB于N点,交AE于M点,则S△MNF26.(2019北京市海淀区模拟)一块直角三角形板ABC,∠ACB=90°,BC=12cm,AC=8cm,测得BC边的中心投影B1C1长为24cm,则A1B1长为cm.27.(2019福建省龙岩市模拟)如图,已知在Rt△ABC中,AB=AC=3,在△ABC内作第一个内接正方形DEFG;然后取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,则第2014个内接正方形的边长为.28.(2019深圳市光明新区模拟)用棋子按下列方式摆图形,依照此规律,第n个图形有枚棋子.29.(2019江苏省徐州市模拟)我们发现:若AD是△ABC的中线,则有AB2+AC2=2(AD2+BD2),请利用结论解决问题:如图,在矩形ABCD中,已知AB=20,AD=12,E是DC中点,点P在以AB为直径的半圆上运动,则CP2+EP2的最小值是.30.(2019山东省济南市模拟)如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°,则k的值为.2019年中考备考:中考模拟卷填空压轴题精选1.(2019山东省东港区模拟)如图,正三角形和矩形具有一条公共边,矩形内有一个正方形,其四个顶点都在矩形的边上,正三角形和正方形的面积分别是2和2,则图中阴影部分的面积是.【分析】由正方形的面积公式和正三角形的面积公式求得图中大矩形的宽和长,然后求大矩形的面积,从而求得图中阴影部分的面积.【解答】解:设正三角形的边长为a,则a2×=2,解得a=2.则图中阴影部分的面积=2×﹣2=2.故答案是:2.【点评】考查了二次根式的应用.解题的关键是根据图中正三角形和正方形的面积求得大矩形的长和宽.2.(2019山东省日照市模拟)一个正方体的平面展开图如图所示,该正方体相对应的两个面上的代数式的积分别为A,B,C,若a,b,c都为有理数,且A=B=C,则a=.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.根据二次根式恒等时,有理数部分与有理数部分和无理数部分与无理数部分对应相等的关系,列出恒等式即可解答【解答】解:(a+)(a+)==(b+)(c+)=(bc+2)+(b+c)根据题意得=(bc+2)+(b+c)∵a,b,c都为有理数,∴bc=a2,b+c=2a∴b(2a﹣b)=a2,∵b2﹣2ab+a2=0,∴(a﹣b)2=0,∴a=b=c又∵(a+)2=(a+﹣1)(b,∴(a+)含有因式(),而a又是有理数,故a=2,当a=b=c=2时,A=B=C,【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.得到等式找出abc之间的数量关系.3.(2019湖北省保定市模拟)如图,在△ABC中,BC=AC=5,AB=8,CD为AB边的高,点A在x轴上,点B在y轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动△ABC在平面内滑动,设运动时间为t秒,当B到达原点时停止运动(1)连接OC,线段OC的长随t的变化而变化,当OC最大时,t=;(2)当△ABC的边与坐标轴平行时,t=.【分析】(1)根据勾股定理可得CD,AD,BD的长度,当O,D,C共线时,OC的长度最大,即△AOB是等腰直角三角形时,OC的长度最大,可求t.(2)分AC∥y轴、BC∥x轴两种情况,根据相似三角形的判定定理和性质定理列式计算即可【解答】解:(1)∵BC=AC=5,AB=8,CD⊥AB∴BD=4=AD,∴由勾股定理得:CD=3∵AD=BD,∠AOB=90°∴OD=AB=4∵在△OCD中,OC<OD+DC∴当O,D,C三点共线时,OC值最大,即OD⊥AB,∵AD=BD,DO⊥AB∴BO=AO,且AB=8∴AO=BO=4,且点A的速度为每秒1个单位长度∴t==4(2)若BC∥x轴∴∠CBA=∠BAO且∠CDB=∠AOB∴△BOC∽△AOB∴,即∴t=若AC∥y轴,∴∠CAB=∠ABO且∠CDA=∠AOB∴△ACD∽△AOB∴即∴t=∴当t=或时,△ABC的边与坐标轴平行【点评】本题考查的是勾股定理,等腰三角形的性质,相似三角形的性质和判定,关键是利用分类思想解决问题.4.(2019浙江省台州市模拟)如图,直角三角形ABC中,∠C=90°,BC=6,AC=8,点D是AB的中点,以D为顶点的角绕D旋转分别交AC于点M、N,若∠MDN=∠A,则当DM=DN时,MN 的长为.【解答】解:连接CD,∵在直角三角形ABC中,∠C=90°,∴AB===10,∵点D是AB的中点,∴CD=AD=AB=5,∴∠A=∠ACD,∵DM=DN,∴∠DMN=∠DNM,∵∠DMN=∠A+∠ADM,∠DNM=∠ACD+∠CDN,∴∠ADM=∠CDN,∴△ADM≌△CDN(SAS),∴AM=CN,∵∠CDM=∠MDN+∠CDN,∠A=∠MDN,∴∠CMD=∠CDM,∴AM=CD=5,∴AM=CN=AC﹣CM=3,∴MN=2.故答案为:2.5.(2019山东省莱芜市模拟)如图,将一块含30°角的直角三角版和半圆量角器按如图的方式摆放,使斜边与半圆相切.若半径OA=4,则图中阴影部分的面积为.(结果保留π)【解答】解:如图所示:∵斜边与半圆相切,点B是切点,∴∠EBO=90°.又∵∠E=30°,∴∠EBC=60°.∴∠BOD=120°,∵OA=OB=4,∴OC=OB=2,BC=2.∴S阴影=S扇形BOD+S△BOC=+×2×2=+2.故答案为:+2.6.(2019四川省成都市模拟)如图,⊙O的半径是2,弦AB=2,点C为是优弧AB上一个动点,BD⊥BC交直线AC于点D,则是△ABD的面积的最大值为.【解答】解:如图,以AB为边向上作等边三角形△ABF,连接OA,OB,OF,DF,OF交AB于H.∵F A=FB,OA=OB,∴OF⊥AB,AH=BH=,∴sin∠BOH=,∴∠BOH=∠AOH=60°,∴∠AOB=120°∴∠C=∠AOB=60°,∵DB⊥BC,∴∠DBC=90°,∴∠CDB=30°,∵∠AFB=60°,∴∠ADB=∠AFB,∴点D的运动轨迹是以F为圆心,F A为半径的圆,∴当D在OF的延长线上时,△ABD的面积最大,最大面积=×(2+3)=6+3,故答案为6+3.7.(2019浙江省温州市模拟)如图,在R△ABC中,∠CAB=90°,D是BC边上一点,连结AD,作△ABD的外接圆,将△ADC沿直线AD翻折,若点C的对应点E落在的中点,CD=,则BD 的长为.【分析】连接BE,作EF⊥BD于F,由折叠的性质得:∠DAC=∠DAE,DE=CD=,求出,得出BE=DE=,由圆周角定理得出∠DAE=∠BAE=∠BDE=∠DBE,得出∠DAC=∠DAE=∠BAE,求出∠BAE=∠BDE=∠DBE=30°,由等腰三角形的性质和直角三角形的性质得出DF=BF,EF=DE=,求出DF=EF=,即可得出结果.【解答】解:连接BE,作EF⊥BD于F,如图所示:由折叠的性质得:∠DAC=∠DAE,DE=CD=,∵点E是的中点,∴,∴BE=DE=,∠DAE=∠BAE=∠BDE=∠DBE,∴∠DAC=∠DAE=∠BAE,∵∠CAB=90°,∴∠BAE=30°,∴∠BDE=∠DBE=30°,∵EF⊥BD,∴DF=BF,EF=DE=,∴DF=EF=,∴BD=2DF=;故答案为:.【点评】本题考查了翻折变换的性质、圆周角定理、垂径定理、等腰三角形的判定与性质、勾股定理等知识;熟练掌握圆周角定理,求出∠BAE=30°是解题关键.8.(2019浙江省射阳县模拟)如图,已知矩形ABCD中,AB=6,AD=10,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(x),当P,E,B三点在同一直线上时对应t的值为.【分析】设PD=t.则PA=10﹣t.首先证明BP=BC=10,在Rt△ABP中利用勾股定理即可解决问题.【解答】解:如图,设PD=t.则PA=6﹣t.∵P、B、E共线,∴∠BPC=∠DPC,∵AD∥BC,∴∠DPC=∠PCB,∴∠BPC=∠PCB,∴BP=BC=10,在Rt△ABP中,∵AB2+AP2=PB2,∴62+(10﹣t)2=102,∴t=2或18(舍去),∴PD=2,∴t=2s时,B、E、P共线.故答案为:2.【点评】本题考查了矩形的性质、勾股定理等知识,解题的关键是学会利用特殊位置解决问题.9.(2019福建省三明市模拟)如图,在菱形ABCD中,∠ABC=60°,AB=5,点E是AD边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点D时,点F的运动路径长为.【分析】如图,连接AC、BD交于点O,连接OM.首先说明点E从点A运动到点D时,点F的运动路径长为,求出圆心角,半径即可解决问题.【解答】解:如图,连接AC、BD交于点O,连接OM,∵BF⊥CE∴∠BFC=90°,∴点F的运动轨迹在以边长BC为直径的⊙M上,当点E从点A运动到点D时,点F的运动路径长为,∵四边形ABCD是菱形∴AB=BC=5,∠ABD=∠DBC=∠ABC=30°∵BM=MO∴∠MBO=∠BOM=30°,∴∠OMC=60°∴的长==π故答案为:π【点评】本题考查菱形的性质、弧长公式、轨迹等知识,解题的关键是正确寻找点F的运动轨迹,属于中考常考题型.10.(2019浙江省九校联考模拟)抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是.(只填写序号)【解答】解:如图,∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以①的结论正确;∵抛物线过点(﹣1,0)和(m,0),且1<m<2,∴0<﹣<,∴+=>0,∴a+b>0,所以②的结论正确;∵点A(﹣3,y1)到对称轴的距离比点B(3,y2)到对称轴的距离远,∴y1>y2,所以③的结论错误;∵抛物线过点(﹣1,0),(m,0),∴a﹣b+c=0,am2+bm+c=0,∴am2﹣a+bm+b=0,a(m+1)(m﹣1)+b(m+1)=0,∴a(m﹣1)+b=0,所以④的结论正确;∵<c,而c≤﹣1,∴<﹣1,∴b2﹣4ac>4a,所以⑤的结论错误.故答案为③⑤.11.(2019浙江省外国语学校模拟)如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.【分析】当以点C为圆心,1.5cm为半径的圆与直线EF相切时,即CF=1.5cm,又因为∠EFC=∠O=90°,所以△EFC∽△DCO,利用对应边的比相等即可求出EF的长度,再利用勾股定理列出方程即可求出t的值,要注意t的取值范围为0≤t≤4.【解答】解:当以点C为圆心,1.5cm为半径的圆与直线EF相切时,此时,CF=1.5,∵AC=2t,BD=t,∴OC=8﹣2t,OD=6﹣t,∵点E是OC的中点,∴CE=OC=4﹣t,∵∠EFC=∠O=90°,∠FCE=∠DCO∴△EFC∽△DCO∴=∴EF===由勾股定理可知:CE2=CF2+EF2,∴(4﹣t)2=+,解得:t=或t=,∵0≤t≤4,∴t=.故答案为:【点评】本题考查圆的切线性质,主要涉及相似三角形的判定与性质,勾股定理,切线的性质等知识,题目综合程度较高,很好地考查学生综合运用知识的能力.12.(2019浙江省金华市模拟)如图,⊙O的半径为10,点A、E、B在圆周上,∠AOB=45°,点C、D分别在OB、OA上,菱形OCED的面积为.【分析】作辅助线,构建直角三角形,设OF=x,则DF=x,OD=x,证明△DFC∽△OGD,则,得DC=,根据勾股定理列方程可得,计算x2=50﹣25,根据两条对角线乘积的一半可得菱形的面积.【解答】解:连接OE,CD交于点G,过D作DF⊥OB于F,∵∠AOB=45°,∴△ODF是等腰直角三角形,设OF=x,则DF=x,OD=x,∵四边形OCED是菱形,∴OE⊥CD,OG=EG=OE=5,∵OC=OD,∴∠ODG=∠DCF,∵∠DFC=∠OGD=90°,∴△DFC∽△OGD,∴,∴,DC =,在Rt △OCG 中,,解得x 2=50+25(舍)或50﹣25,∴菱形OCED 的面积=CD •OE =•10==50﹣50,故答案为:50﹣50.【点评】本题考查了菱形的性质、半径的性质、相似三角形的判定和性质、勾股定理等知识,寻找相似三角形利用相似三角形性质求线段是常用的数学方法.13.(2019安徽省六安市模拟)如图,在正方形ABCD 中,点P 是AB 上一动点(不与A ,B 重合),对角线AC 、BD 相交于点O ,过点P 分别作AC 、BD 的垂线,分别交AC 、BD 于点E 、F ,交AD 、BC 于点M 、N .下列结论:①△APE ≌△AME ;②PM +PN =AC ;③△POF ∽△BNF ;④当△PMN ∽△AMP 时,点P 是AB 的中点,其中一定正确的结论有 .(填上所有正确的序号).【分析】依据正方形的性质以及勾股定理、矩形的判定方法即可判断△APM 和△BPN 以及△APE 、△BPF 都是等腰直角三角形,四边形PEOF 是矩形,从而作出判断. 【解答】解:∵四边形ABCD 是正方形, ∴∠BAC =∠DAC =45°. 在△APE 和△AME 中,,∴△APE ≌△AME (ASA ),故①正确; ∴PE =EM =PM ,同理,FP=FN=NP.∵正方形ABCD中,AC⊥BD,又∵PE⊥AC,PF⊥BD,∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE∴四边形PEOF是矩形.∴PF=OE,∴PE+PF=OA,又∵PE=EM=PM,FP=FN=NP,OA=AC,∴PM+PN=AC,故②正确;∵△BNF是等腰直角三角形,而△POF不一定是,∴△POF与△BNF不一定相似,故③错误;∵△AMP是等腰直角三角形,当△PMN∽△AMP时,△PMN是等腰直角三角形.∴PM=PN,又∵△AMP和△BPN都是等腰直角三角形,∴AP=BP,即P是AB的中点.故④正确.故答案为:①②④.14.(2019山东省滨州市模拟)如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将△CDO以C为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:.【分析】根据题意和旋转变换的性质、平移的性质画出图形,根据坐标与图形的变化中的旋转和平移性质解答.【解答】解:∵△CDO绕点C逆时针旋转90°,得到△CBD′,则BD′=OD=2,∴点D坐标为(4,6);当将点C与点O重合时,点C向下平移4个单位,得到△OAD′′,∴点D向下平移4个单位.故点D′′坐标为(4,2),故答案为:(4,2).15.(2019山东省临沂市模拟)如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为.【分析】根据正方形的性质得到∠ABC=90°,推出∠BEC=90°,得到点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交⊙O于E,则线段EF的长即为PD+PE的长度最小值,根据勾股定理即可得到结论.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∵∠ABE=∠BCE,∴∠BCE+∠CBE=90°,∴∠BEC=90°,∴点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交半圆O于E,则线段EF的长即为PD+PE的长度最小值,OE=4,∵∠G=90°,FG=BG=AB=8,∴OG=12,∴OF==4,∴EF=4﹣4,∴PD+PE的长度最小值为4﹣4,故答案为:4﹣4.16.(2019山东省枣庄市模拟)如图,在边长为1的菱形ABCD中,∠ABC=120°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠ACE=120°,连接AE,再以AE为边作第三个菱形AEGH,使∠AEC=120°,…,按此规律所作的第2018个菱形的边长是.【分析】连接DB于AC相交于M,根据已知和菱形的性质可分别求得AC,AE,AG的长,从而可发现规律根据规律不难求得第n个菱形的边长.【解答】解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM=,∴AC=,同理可得AE=AC=()2,AG=AE=3=()3,按此规律所作的第n个菱形的边长为()n﹣1,所以所作的第2018个菱形的边长是()2017,故答案为()2017.【点评】此题主要考查菱形的性质、等边三角形的判定和性质、解直角三角形等知识,解题的关键是掌握探究规律的方法,属于中考常考题型.17.(2019江苏省扬州市模拟)如图,点A在双曲线y=(x>0)上,点B在双曲线y=(x>0)上,且AB ∥x 轴,BC ∥y 轴,点C 在x 轴上,则△ABC 的面积为 .【分析】作AE ⊥x 轴于E ,BF ⊥x 轴于F ,延长BA 交y 轴于点D ,如图,根据反比例函数比例系数k 的几何意义得S 矩形AEOD =1,S 矩形BFOD =4,于是得到S 矩形AEFB =3,然后根据矩形的性质和三角形面积公式易得S △ABC =S △FAB =1.5.【解答】解:作AE ⊥x 轴于E ,BF ⊥x 轴于F ,延长BA 交y 轴于点D ,如图, ∵AB ∥x 轴,∴S 矩形AEOD =1,S 矩形BFOD =4, ∴S 矩形AEFB =4﹣1=3, ∴S △FAB =1.5, ∴S △ABC =S △FAB =1.5. 故答案为1.5.【点评】本题考查了反比例函数系数k 的几何意义,矩形的面积,熟练掌握反比例函数系数k 的几何意义是解题的关键.18.(2019上海市静安区模拟)如图,在平面直角坐标系xOy 中,已知A (2,0),B (0,6),M(0,2).点Q 在直线AB 上,把△BMQ 沿着直线MQ 翻折,点B 落在点P 处,联结PQ .如果直线PQ 与直线AB 所构成的夹角为60°,那么点P 的坐标是 .【分析】先求出OA=2,OB=6,OM=2,BM=OB﹣OM=4,tan∠BAO=,得出∠BAO=60°,AB=2OA=4,分∠PQB=120°或∠PQB=60°两种情况,(1)当∠PQB=120°时,又分两种情况:①延长PQ交OB于点N,则∠BQN=60°,QN⊥BM,由折叠得出BM=MP=4,求出BN=NM=BM=2,由勾股定理得出NP==2,ON=OM+NM=4,即可得出P点的坐标;②QM⊥OB,BM=MP,OP=PM﹣OM=BM﹣OM=4﹣2=2,即可得出P点的坐标;(2)当∠PQB=60°时,Q点与A点重合,AB=AP=4,OP=AP﹣OA=2,即可得出P点的坐标;综上情况即可P点的坐标.【解答】解:∵A(2,0),B(0,6),M(0,2),∴OA=2,OB=6,OM=2,BM=OB﹣OM=4,∴tan∠BAO===,∴∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∴AB=2OA=4,∵直线PQ与直线AB所构成的夹角为60°,∴∠PQB=120°或∠PQB=60°,(1)当∠PQB=120°时,分两种情况:①如图1所示:延长PQ交OB于点N,则∠BQN=60°,∴∠QNB=90°,即QN⊥BM,由折叠得:BM=MP=4,∠BQM=∠PQM,∵∠PQB=120°,∴∠BQM=∠PQM=120°,∴∠BQN=∠MQN=60°,∵QN⊥BM,∴BN=NM=BM=2,在Rt△PNM中,NP===2,ON=OM+NM=4,∴P点的坐标为:(2,4);②如图2所示:QM⊥OB,BM=MP,OP=PM﹣OM=BM﹣OM=4﹣2=2,∴P点的坐标为:(0,﹣2);(2)当∠PQB=60°时,如图3所示:Q点与A点重合,由折叠得:AB=AP=4,OP=AP﹣OA=4﹣2=2,∴P点的坐标为:(﹣2,0);综上所述:P点的坐标为:(2,4)或(0,﹣2)或(﹣2,0).【点评】本题考查了翻折变换的性质、直角三角形的性质、勾股定理、三角函数、坐标等知识,熟练掌握翻折变换的性质、直角三角形的性质,并进行分类讨论是关键.19.(2019广西省河池模拟)如图,直径为10的⊙A经过点C(0,6)和点O(0,0),与x轴的正半轴交于点D,B是y轴右侧圆弧上一点,则cos∠OBC的值为.【分析】连接CD,易得CD是直径,在直角△OCD中运用勾股定理求出OD的长,得出cos∠ODC 的值,又由圆周角定理,即可求得cos∠OBC的值.【解答】解:连接CD,∵∠COD=90°,∴CD是直径,即CD=10,∵点C(0,6),∴OC=6,∴OD==8,∴cos∠ODC===,∵∠OBC=∠ODC,∴cos∠OBC=.故答案为:.【点评】此题考查了圆周角定理,勾股定理以及三角函数的定义.此题难度适中,注意掌握辅助线的作法,注意掌握转化思想的应用.20.(2019四川省绵阳市模拟)已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个【分析】从抛物线与x轴最多一个交点及b>a>0,可以推断抛物线最小值最小为0,对称轴在y轴左侧,并得到b2﹣4ac≤0,从而得到①②为正确;由x=﹣1及x=﹣2时y都大于或等于零可以得到③④正确.【解答】解:∵b>a>0∴﹣<0,所以①正确;∵抛物线与x轴最多有一个交点,∴b2﹣4ac≤0,∴关于x的方程ax2+bx+c+2=0中,△=b2﹣4a(c+2)=b2﹣4ac﹣8a<0,所以②正确;∵a>0及抛物线与x轴最多有一个交点,∴x取任何值时,y≥0∴当x=﹣1时,a﹣b+c≥0;所以③正确;当x=﹣2时,4a﹣2b+c≥0a+b+c≥3b﹣3aa+b+c≥3(b﹣a)≥3所以④正确.故选:D.【点评】本题考查了二次函数的解析式与图象的关系,解答此题的关键是要明确a的符号决定了抛物线开口方向;a、b的符号决定对称轴的位置;抛物线与x轴的交点个数,决定了b2﹣4ac的符号.21.(2019山东省聊城市模拟)如图,抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①a﹣b+c>0②3a+b=0③b2=4a(c﹣n)④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,其中正确的是(填序号)【分析】根据已知条件得到当x=﹣1时,y>0,即a﹣b+c>0,故①正确;根据抛物线的对称轴为直线x=1,即﹣=1,得到3a+b≠0,故②错误;根据已知条件得到方程ax2+bx+c=n有两个相等的实数根,得到b2=4a(c﹣n),故③正确;根据抛物线的开口向下,得到y=n,于是得到直最大线y=n﹣1与抛物线由两个交点,即可得到一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,故④正确.【解答】解:∵抛物线顶点坐标为(1,n),∴抛物线的对称轴为直线x=1,∵与x轴的一个交点在点(3,0)和(4,0)之间,∴当x=﹣1时,y>0,即a﹣b+c>0,故①正确;∵抛物线的对称轴为直线x=1,即﹣=1,∴2a+b=0,∵a≠0,∴3a+b≠0,故②错误;∵抛物线顶点坐标为(1,n),∴抛物线y=ax2+bx+c(a≠0)与直线y=n有唯一一个交点,即方程ax2+bx+c=n有两个相等的实数根,∴△=b2﹣4a(c﹣n)=0,∴b2=4a(c﹣n),故③正确;∵抛物线的开口向下,=n,∴y最大∴直线y=n﹣1与抛物线由两个交点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,故④正确;故答案为:①③④.【点评】本题考查的是二次函数图象与系数的关系,图象开口方向判断出a,由对称轴得出b,抛物线与y轴的交点判断c,抛物线与x轴交点的个数确定b2﹣4ac.22.(2019天津市模拟)如图,△ABC是等边三角形,AB=,点D是边BC上一点,点H是线段AD上一点,连接BH、CH.当∠BHD=60°,∠AHC=90°时,DH=.【分析】作AE⊥BH于E,BF⊥AH于F,如图,利用等边三角形的性质得AB=AC,∠BAC=60°,再证明∠ABH=∠CAH,则可根据“AAS”证明△ABE≌△CAH,所以BE=AH,AE=CH,在Rt△AHE中利用含30度的直角三角形三边的关系得到HE=AH,AE=AH,则CH=AH,于是在Rt△AHC中利用勾股定理可计算出AH=2,从而得到BE=2,HE=1,AE=CH=,BH=1,接下来在Rt△BFH中计算出HF=,BF=,然后证明△CHD∽△BFD,利用相似比得到=2,从而利用比例性质可得到DH的长.【解答】解:作AE⊥BH于E,BF⊥AH于F,如图,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BHD=∠ABH+∠BAH=60°,∠BAH+∠CAH=60°,∴∠ABH=∠CAH,在△ABE和△CAH中,∴△ABE≌△CAH,∴BE=AH,AE=CH,在Rt△AHE中,∠AHE=∠BHD=60°,∴sin∠AHE=,HE=AH,∴AE=AH•sin60°=AH,∴CH=AH,在Rt△AHC中,AH2+(AH)2=AC2=()2,解得AH=2,∴BE=2,HE=1,AE=CH=,∴BH=BE﹣HE=2﹣1=1,在Rt△BFH中,HF=BH=,BF=,∵BF∥CH,∴△CHD∽△BFD,∴===2,∴DH=HF=×=.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了全等三角形的判定与性质和等边三角形的性质.23.(2019福建省晋江市模拟)如图,点P为线段AB(不含端点A、B)上的动点,分别以AP、PB为斜边在AB的同侧作Rt△AEP与Rt△PFB,∠AEP=∠EPF=∠PFB=90°,若AE+PF=8,EP+FB =6,则线段EF的取值范围是.【分析】设AE=x,PE=y,则PF=8﹣x,BF=6﹣y,通过角的关系得到PE∥BF,由平行得到△PEA∽△BFP;由相似得到x与y的关系,在Rt△FEP中,FE2=FP2+EP2,得到FE2=(x)2+x2﹣16x+64=x2﹣16x+64=(x﹣)2+,结合x的取值范围,确定EF的范围.【解答】解:设AE=x,PE=y,则PF=8﹣x,BF=6﹣y,∵∠AEP=∠EPF=∠PFB=90°,∴PE∥BF,∴△PEA∽△BFP,∴=,∴4y=3x,在Rt△FEP中,FE2=FP2+EP2,∴FE2=y2+(8﹣x)2,∴FE2=(x)2+x2﹣16x+64=x2﹣16x+64=(x﹣)2+,∵0<x<8,∴当x=时,FE有最小值,当x=0时,EF有最大值8,∴≤EF<8.故答案为≤EF<8.【点评】本题考查二次函数最值,三角形相似,勾股定理,平行线的判定,是综合性很强的一道题;能够通过平行得到三角形相似,能够通过相似得到边的关系,利用勾股定理得到二次函数的解析式,再由二次函数的值的范围求解,因此熟练掌握相似、平行、二次函数最值的求法是解题的关键.24.(2019山东省章丘市模拟)在平面直角坐标系中,直线y=x+c过y轴上的动点C,直线:y=x、y=x+c的图象分别与函数y=(x>0)交于点A、点B,横、纵坐标都是整数的点叫做整点.记图象y=(x>0)在点B和点C之间的部分与线段OA、BC、OC围成的区域(不含边界)为S.若区域S内恰有4个整点,则c的取值范围是.【分析】分两种情况:直线BC在OA的下方和上方,画图计算边界时点c的值,可得c的取值.【解答】解:如图所示1,直线BC在OA的下方时当c=﹣1时,区域S内的整点有(1,0),(2,0),(3,0),有3个;当直线BC:y=+c过(1,﹣1)时,c=﹣,且经过(5,0)∴区域S内恰有4个整点,c的取值范围是﹣≤c<﹣1.如图2,直线BC在OA的上方时,∵点(2,2)在函数y=(x>0)的图象上,当直线BC:y=过(1,2)时,c=,。

2019年中考数学原创押题密卷(河北卷)(全解全析)

2019年中考数学原创押题密卷(河北卷)(全解全析)

3112019年河北中考押题密卷数学·全解全析1.【参考答案】B【全解全析】∵a 与–3互为倒数,∴–3a =1,∴a =.故选B . 2.【参考答案】A【全解全析】170000用科学记数法表示为1.7×105,故选A .3.【参考答案】C【全解全析】圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.故选C . 4.【参考答案】C【全解全析】A 、不是中心对称图形,故此选项错误;B 、不是中心对称图形,故此选项错误;C 、是中心对称图形,故此选项正确;D 、不是中心对称图形,故此选项错误;故选C . 5.【参考答案】D【全解全析】∵AE ∥BC ,∴∠B =∠DAE =65°,又∵∠DAC =100°,∴∠EAC =∠DAC –∠DAE =100°–65°=35°,故选D . 6.【参考答案】B【全解全析】∵实数–3,x ,3,y 在数轴上的对应点分别为M 、N 、P 、Q ,原点在点M 与P 之间,N 在点M 与原点之间,∴这四个数中绝对值最小的数对应的点是点N .故选B . 7.【参考答案】B【全解全析】乙和△ABC 全等;理由如下:在△ABC 和图乙的三角形中,满足三角形全等的判定方法:SAS ,所以乙和△ABC 全等;在△ABC 和图丙的三角形中,满足三角形全等的判定方法:AAS ,所以丙和△ABC 全等;不能判定甲与△ABC 全等;故选B . 8.【参考答案】A【全解全析】红红和娜娜玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:3131 2由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布). 因此,红红和娜娜两人出相同手势的概率为,两人获胜的概率都为,红红不是胜就是输,所以选项B ,C ,D 说法正确,不合题意;选项A 说法错误,符合题意,故选A . 9.【参考答案】C【全解全析】∵∠B =60°,将△ABC 沿射线BC 的方向平移,得到△A ′B ′C ′,再将△A ′B ′C ′绕点A ′逆时针旋转一定角度后,点B ′恰好与点C 重合,∴∠A ′B ′C =60°,AB =A ′B ′=A ′C =4,∴△A ′B ′C 是等边三角形,∴B ′C =4,∠B ′A ′C =60°,∴BB ′=6–4=2,∴平移的距离和旋转角的度数分别为:2,60°.故选C . 10.【参考答案】D【全解全析】A 、当t =9时,h =136;当t =13时,h =144;所以点火后9s 和点火后13s 的升空高度不相同,此选项错误;B 、当t =24时h =1≠0,所以点火后24s 火箭离地面的高度为1m ,此选项错误;C 、当t =10时h =141m ,此选项错误;D 、由h =–t 2+24t +1=–(t –12)2+145知火箭升空的最大高度为145m ,此选项正确; 故选D . 11.【参考答案】A【全解全析】A 、Δ=0–24=–24<0,即方程没有实数根,符合题意;B 、Δ=4–0=4>0,方程有两个不相等的实数根,不符合题意;C 、Δ=16+4=20>0,方程有两个不相等的实数根,不符合题意;D 、Δ=64–64=0,方程有两个相等的实数根,不符合题意,故选A . 12.【参考答案】C【全解全析】∵点P (1,a )与Q (b ,2)关于x 轴成轴对称,∴b =1,a =–2,∴a –b =–3,故选C . 13.【参考答案】A【全解全析】去分母得:1–2(x –1)=–3,即1–2x +2=–3,故选A . 14.【参考答案】D=2331=××18438=+x 3348=34⋅⋅+⋅⋅=k k 2232321116163⎩=+⎪⎨⎪=⎧y k x k xy k 23343834+-a b b (5)(5)-=ab a 252+-a b b (5)(5)21∥MN AB ∠BMC ,∠ABC MN BM =105843【全解全析】如图,连接AD .∵OD 是直径,∴∠OAD =90°,∵∠AOB +∠AOD =90°,∠AOD +∠ADO =90°,∴∠AOB =∠ADO ,∴sin ∠AOB =sin ∠ADO =.故选D .15.【参考答案】D【全解全析】∵平分平分,∴∠MBA =∠MBC ,∠BMN =∠CMN ,∵,∴∠MBA =∠MBC =∠BMN =∠CMN =∠A ,∴∠ABC =2∠A ,MN =NB ,又∵∠C =90°,∴∠A =∠CMN =30°,∴MN =2CN =2,∴BC =CN +BN =CN +MN =3,∴AB =2BC =6.故选D . 16.【参考答案】B【全解全析】作DE ⊥AB 于E ,由基本作图可知,AP 平分∠CA B .∵AP 平分∠CAB ,∠C =90°,DE ⊥AB ,∴DE =DC =4,∴△ABD 的面积=×AB ×DE =30.故选B .17.【参考答案】【全解全析】a (b 2–25)=a (b +5)(b –5).故答案为:.18.【参考答案】AF【全解全析】∵AF ⊥BC 于F ,∴AF 是△ABC 的高线,故答案为:AF . 19.【参考答案】y =x +, 【全解全析】把M (–2,0)代入y =kx +b ,可得b =2k ,∴y =kx +2k ,由消去y 得到x 2+2x –3=0,解得x =–3或1,∴B (–3,–k ),A (1,3k ),∵△ABO 的面积为,∴,解得k ,∴直线l 的解析式为y .可求得点N 的坐标为(0,),则S △ABD .34=+x 3348 4故答案为:y ,. 20.【参考答案】(1)x <1.(2)②.【全解全析】(1)∵点A 在点B 的左侧,(4分) ∴1<–2x +3,解得x <1. (2)②.(8分) ∵x <1,∴–x >–1,–x +2>1,数轴上表示–x +2的点在点A 的右侧. ∵–2x +3–(–x +2)=–x +1>0,∴–2x +3>–x +2, 数轴上表示–x +2的点在点B 的左侧,即数轴上表示–x +2的点落在线段AB 上,故选②.21.【参考答案】(1)120°.(2)这个多边形的边数可以是6,这个外角的度数为30°.【全解全析】(1)设这个外角的度数是x °, 则(5–2)×180–(180–x )+x =600, 解得x =120.故这个外角的度数是120°.(4分) (2)存在.设边数为n ,这个外角的度数是x °,则(n –2)×180–(180–x )+x =600,整理得x =570–90n ,∵0<x <180,即0<570–90n <180,并且n 为正整数,∴n =5或n =6. 故这个多边形的边数可以是6,这个外角的度数为30°.(9分) 22.【参考答案】(1)(–2)n .(2)b =a –1.(3)x +y +z =–1.【全解全析】(1)由题意知,第①行第n 个数为(–2)n ,故答案为:(–2)n.(3分)(2)b =a –1;(6分) 第②行第m 个数a =(–2)m –1,第③行第m 个数b =(–2)m –1–1,第③行的数是第②行的数与1的差,即b =a –1;(3)第①行数的第2019个数字为(–2)2019,即x =(–2)2019, 第②行数的第2019个数字为(–2)2018,即y =(–2)2018,第③行数的第2019个数字为(–2)2018–1,即z =(–2)2018–1,200245所以x +y +z =(–2)2019+(–2)2018+(–2)2018–1=–22019+22018+22018–1=–22019+22019–1=–1.(9分)23.【参考答案】(1)200.(2)43.2°.(3)见全解全析.(4)6万人.【全解全析】(1)本次接受调查的市民共有:50÷25%=200(人),故答案为:200.(2分) (2)扇形统计图中,扇形B 的圆心角度数=360°×=43.2°;故答案为:43.2°.(4分) (3)C 组人数=200×40%=80(人),A 组人数=200–24–80–50–16=30(人). 条形统计图如图所示:(8分)(4)15×40%=6(万人). 答:估计乘公交车上班的人数为6万人.(9分)24.【参考答案】(1)3;x ≥5.(2)x 的值为–4或3.(3)①画图见全解全析;②–2.【全解全析】(1)max{1,2,3}中3为最大数,故max{1,2,3}=3, ∵max{3,4,2x –6}=2x –6,∴2x –6≥4,解得x ≥5, 故答案为:3;x ≥5.(2分) (2)∵max{2,x +2,–3x –7}=5,∴①x +2=5,解得x =3,验证得–3×3–7=–16<5,故成立, ②–3x –7=5,解得x =–4,验证得–4+2=–2<2<5,故成立, 故max{2,x +2,–3x –7}=5时,x 的值为–4或3.(6分) (3)①图象如图所示:2123232323r 66r 2AB AO BE OM 21236②由图象可以知,max{–x –3,x –1,3x –3}的最小值为直线y =–x –3与y =x –1的交点处的y 值,解得y =–2, 即最小值为–2,故答案为:–2.(10分) 25.【参考答案】(1)见全解全析.(2).(3)BG =1. 【全解全析】(1)连接OM ,如图,∵BM 是∠ABC 的平分线,∴∠OBM =∠CBM , ∵OB =OM ,∴∠OBM =∠OMB , ∴∠CBM =∠OMB ,∴OM ∥BC ,∵AB =AC ,AE 是∠BAC 的平分线,∴AE ⊥BC , ∴OM ⊥AE ,∴AE 为⊙O 的切线;(4分)(2)设⊙O 的半径为r ,∵AB =AC =6,AE 是∠BAC 的平分线,∴BE =CE =BC =2, ∵OM ∥BE ,∴△AOM ∽△ABE ,∴=,即=,解得r =, 即⊙O 的半径为;(8分)(3)作OH ⊥BE 于H ,如图,∵OM ⊥EM ,ME ⊥BE ,∴四边形OHEM 为矩形, ∴HE =OM =,∴BH =BE -HE =2-=,202892028921551516515165151651516515151512028951217∵OH ⊥BG ,∴BH =HG =,∴BG =2BH =1.(10分) 26.【参考答案】(1)y =–(x –3)2+5(0<x <8).(2)在离水池中心7米以内.(3)扩建改造后喷水池水柱的最大高度为米.【全解全析】(1)设水柱所在抛物线(第一象限部分)的函数表达式为y =a (x –3)2+5(a ≠0), 将(8,0)代入y =a (x –3)2+5,得:25a +5=0,解得a =–, ∴水柱所在抛物线(第一象限部分)的函数表达式为y =–(x –3)2+5(0<x <8).(4分) (2)当y =1.8时,有–(x –3)2+5=1.8, 解得x 1=–1,x 2=7,∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.(8分) (3)当x =0时,y =–(x –3)2+5=. 设改造后水柱所在抛物线(第一象限部分)的函数表达式为y =–x 2+bx +, ∵该函数图象过点(16,0), ∴0=–×162+16b +,解得b =3, ∴改造后水柱所在抛物线(第一象限部分)的函数表达式为y =–x 2+3x +=–(x –)2+. ∴扩建改造后喷水池水柱的最大高度为米.(11分)。

2019年中考数学原创押题密卷(福建卷)(考试版)

2019年中考数学原创押题密卷(福建卷)(考试版)

数学试题 第1页(共6页) 数学试题 第2页(共6页)绝密★启用前2019年福建中考押题密卷数 学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.–2019绝对值的倒数是 A .12019B .–12019C .2019D .–20192.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为 A .5×107B .5×10–7C .0.5×10–6D.5×10–63.一个几何体的三视图如图所示,则这个几何体是A .B .C .D .4.下列等式中,一定成立的是 A .3a +2a 2=5a 3B .44a a a ⋅=C .632a a a ÷=D .32611()39x x -=5.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球4只,黑球3只,将袋中的球搅匀,随机从袋中取出1只球,则取出黑球的概率是A .12B .13C .14D .166.直线a ∥b ,直角三角形如图放置,若∠1+∠A =65°,则∠2的度数为A .15°B .20°C .25°D .30°7.如图,已知一次函数y =ax +b 和反比例函数y =k x 的图象相交于A (–2,y 1)、B (1,y 2)两点,则不等式ax +b –kx<0的解集为A .x <–2B .x <–2或0<x <1C .0<x <1D .–2<x <0或x >18.如图,AB 为⊙O 的直径,CD 是⊙O 的弦,∠ADC =26°,则∠CAB 的度数为A .26°B .74°C .64°D .54°9.如图,在Rt △ABC 中,∠B =90°,BC =3,AB =4,点D ,E 分别是AB ,AC 的中点,CF 平分Rt △ABC 的一个外角∠ACM ,交DE 的延长线于点F ,则DF 的长为数学试题 第3页(共6页) 数学试题 第4页(共6页)A .4B .5C .5.5D .6A .–10B .–12C .–16D .–18第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)11.计算:011(π2019)()2---=__________.12在实数范围内有意义,则x 的取值范围是__________.13.已知一组数据是3,4,7,a ,中位数为4,则a =__________. 14.如图,AC 、AD 是正五边形的对角线,则∠CAD 的度数是__________.15.若关于x 的一元二次方程x 2–3x +2+m =0无实数根,则m 的取值范围是__________.16.等腰直角△ABO 在平面直角坐标系中如图所示,点O 为坐标原点,直角顶点A 的坐标为(2,4),点B 在反比例函数y=kx(x >0)的图象上,则k 的值为__________.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)解方程组:52312x y x y +=⎧⎨+=⎩.19.(本小题满分8分)某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个,已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?20.(本小题满分8分)在△ABC 中,AB =AC ,∠ABC =70°.(1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法); (2)在(1)的条件下,求∠BDC 的度数.21.(本小题满分8分)如图,四边形ABCD 是平行四边形,BE 、DF 分别是∠ABC 、∠ADC 的平分线,且与对角线AC 分别相交于点E 、F .求证:AE =CF .22.(本小题满分10分)如图,⊙O 是△ABC 的外接圆,AB =AC =10,BC =12,P 是BC 上的一个动点,过点P 作BC 的平行线交AB 的延长线于点D .(1)当点P 在什么位置时,DP 是⊙O 的切线?请说明理由; (2)当DP 为⊙O 的切线时,求线段DP 的长.数学试题 第5页(共6页) 数学试题 第6页(共6页)23.(本小题满分10分)蔬菜基地为选出适应市场需求的西红柿秧苗,在条件基本相同的情况下,将甲、乙两个品种的西红柿秧苗各500株种植在同一个大棚.对市场最为关注的产量进行了抽样调查,随机从甲、乙两个品种的西红柿秧苗中各收集了50株秧苗上的挂果数(西红柿的个数),并对数据(个数)进行整理、描述和分析,下面给出了部分信息.a .甲品种挂果数频数分布直方图(数据分成6组:25≤x <35,35≤x <45,45≤x <55,55≤x <65,65≤x <75,75≤x <85).b .甲品种挂果数在45≤x <55这一组的是:45,45,46,47,47,49,49,49,49,50,50,51,51,54.c .甲、乙品种挂果数的平均数、中位数、众数如下:根据以上信息,回答下列问题: (1)表中m =__________;(2)试估计甲品种挂果数超过49个的西红柿秧苗的数量;(3)根据所给信息可以推断出哪种品种的西红柿秧苗更适应市场需求,请说明理由(至少从两个不同的角度说明推断的合理性).24.(本小题满分12分)等腰直角三角板的一个锐角顶点与正方形ABCD 的顶点A 重合,两边分别交直线BC 、CD 于M 、N .(1)如图1,作AE ⊥AN 交线段CB 的延长线于E ,求证:△ABE ≌△ADN ; (2)如图2,若M 、N 分别在边CB 、DC 所在的直线上时. ①求证:BM +MN =DN ;②作直线BD 交直线AM 、AN 于P 、Q 两点,如图3,若MN =10,CM =8,求AP 的长.25.(本小题满分14分)如图1,抛物线y =ax 2+bx +2与x 轴交于A ,B 两点,与y 轴交于点C ,AB =4,矩形OBDC 的边CD =1,延长DC 交抛物线于点E . (1)求抛物线的解析式;(2)如图2,点P 是直线EO 上方抛物线上的一个动点,过点P 作y 轴的平行线交直线EO 于点G ,作PH ⊥EO ,垂足为H .设PH 的长为l ,点P 的横坐标为m ,求l 与m 的函数关系式(不必写出m的取值范围),并求出l 的最大值;(3)如果点N 是抛物线对称轴上的一点,抛物线上是否存在点M ,使得以M ,A ,C ,N 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.。

2019年全国各地中考数学压轴题汇编:选择、填空(一)(山东专版)(解析卷)

2019年全国各地中考数学压轴题汇编:选择、填空(一)(山东专版)(解析卷)

2019年全国各地中考数学压轴题汇编(山东专版)选择、填空(一)参考答案与试题解析一.选择题(共12小题)1.(2019•青岛)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°﹣17.5°,∴AB=BE,∴AF=EF,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°﹣∠ABC﹣∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°﹣50°=45°,故选:C.2.(2019•淄博)如图,在△ABC中,AC=2,BC=4,D为BC边上的一点,且∠CAD=∠B.若△ADC的面积为a,则△ABD的面积为()A.2a B.a C.3a D.a解:∵∠CAD=∠B,∠ACD=∠BCA,∴△ACD∽△BCA,∴=()2,即=,解得,△BCA的面积为4a,∴△ABD的面积为:4a﹣a=3a,故选:C.3.(2019•青岛)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y=bx+a 在同一平面直角坐标系中的图象可能是()A.B.C.D.解:∵当x=0时,y=ax2﹣2x=0,即抛物线y=ax2﹣2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2﹣2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误,C正确.故选:C.4.(2019•枣庄)如图,将△ABC沿BC边上的中线AD平移到△A′B′C′的位置.已知△ABC的面积为16,阴影部分三角形的面积9.若AA′=1,则A′D等于()A.2B.3C.4D.解:∵S△ABC=16、S△A′EF=9,且AD为BC边的中线,∴S△A′DE=S△A′EF=,S△ABD=S△ABC=8,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则()2=,即()2=,解得A′D=3或A′D=﹣(舍),故选:B.5.(2019•潍坊)如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.解:由题意当0≤x≤3时,y=3,当3<x<5时,y=×3×(5﹣x)=﹣x+.故选:D.6.(2019•潍坊)如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=,DF=5,则BC的长为()A.8B.10C.12D.16解:连接BD,如图,∵AB为直径,∴∠ADB=∠ACB=90°,∵∠AD=CD,∴∠DAC=∠DCA,而∠DCA=∠ABD,∴∠DAC=∠ABD,∵DE⊥AB,∴∠ABD+∠BDE=90°,而∠ADE+∠BDE=90°,∴∠ABD=∠ADE,∴∠ADE=∠DAC,∴FD=F A=5,在Rt△AEF中,∵sin∠CAB==,∴EF=3,∴AE==4,DE=5+3=8,∵∠ADE=∠DBE,∠AED=∠BED,∴△ADE∽△DBE,∴DE:BE=AE:DE,即8:BE=4:8,∴BE=16,∴AB=4+16=20,在Rt△ABC中,∵sin∠CAB==,∴BC=20×=12.故选:C.7.(2019•枣庄)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=1,则k的值为()A.1B.C.D.2解:∵等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,AB=1,∴∠BAC=∠BAO=45°,∴OA=OB=,AC=,∴点C的坐标为(,),∵点C在函数y=(x>0)的图象上,∴k==1,故选:A.8.(2019•济宁)如图,点A的坐标是(﹣2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A′B′C′.若反比例函数y=的图象恰好经过A′B的中点D,则k的值是()A.9B.12C.15D.18解:作A′H⊥y轴于H.∵∠AOB=∠A′HB=∠ABA′=90°,∴∠ABO+∠A′BH=90°,∠ABO+∠BAO=90°,∴∠BAO=∠A′BH,∵BA=BA′,∴△AOB≌△BHA′(AAS),∴OA=BH,OB=A′H,∵点A的坐标是(﹣2,0),点B的坐标是(0,6),∴OA=2,OB=6,∴BH=OA=2,A′H=OB=6,∴OH=4,∴A′(6,4),∵BD=A′D,∴D(3,5),∵反比例函数y=的图象经过点D,∴k=15.故选:C.9.(2019•潍坊)抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是()A.2≤t<11B.t≥2C.6<t<11D.2≤t<6解:∵y=x2+bx+3的对称轴为直线x=1,∴b=﹣2,∴y=x2﹣2x+3,∴一元二次方程x2+bx+3﹣t=0的实数根可以看做y=x2﹣2x+3与函数y=t的有交点,∵方程在﹣1<x<4的范围内有实数根,当x=﹣1时,y=6;当x=4时,y=11;函数y=x2﹣2x+3在x=1时有最小值2;∴2≤t<11;故选:A.10.(2019•德州)在下列函数图象上任取不同两点P1(x1,y1)、P2(x2,y2),一定能使<0成立的是()A.y=3x﹣1(x<0)B.y=﹣x2+2x﹣1(x>0)C.y=﹣(x>0)D.y=x2﹣4x+1(x<0)解:A、∵k=3>0∴y随x的增大而增大,即当x1>x2时,必有y1>y2∴当x<0时,>0,故A选项不符合;B、∵对称轴为直线x=1,∴当0<x<1时y随x的增大而增大,当x>1时y随x的增大而减小,∴当0<x<1时:当x1>x2时,必有y1>y2此时>0,故B选项不符合;C、当x>0时,y随x的增大而增大,即当x1>x2时,必有y1>y2此时>0,故C选项不符合;D、∵对称轴为直线x=2,∴当x<0时y随x的增大而减小,即当x1>x2时,必有y1<y2此时<0,故D选项符合;故选:D.11.(2019•济宁)已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=.如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……依此类推,那么a1+a2+…+a100的值是()A.﹣7.5B.7.5C.5.5D.﹣5.5解:∵a1=﹣2,∴a2==,a3==,a4==﹣2,……∴这个数列以﹣2,,依次循环,且﹣2++=﹣,∵100÷3=33…1,∴a1+a2+…+a100=33×(﹣)﹣2=﹣=﹣7.5,故选:A.12.(2019•德州)如图,正方形ABCD,点F在边AB上,且AF:FB=1:2,CE⊥DF,垂足为M,且交AD于点E,AC与DF交于点N,延长CB至G,使BG=BC,连接GM.有如下结论:①DE=AF;②AN=AB;③∠ADF=∠GMF;④S△ANF:S四边形CNFB=1:8.上述结论中,所有正确结论的序号是()A.①②B.①③C.①②③D.②③④解:∵四边形ABCD是正方形,∴AD=AB=CD=BC,∠CDE=∠DAF=90°,∵CE⊥DF,∴∠DCE+∠CDF=∠ADF+∠CDF=90°,∴∠ADF=∠DCE,在△ADF与△DCE中,,∴△ADF≌△DCE(ASA),∴DE=AF;故①正确;∵AB∥CD,∴=,∵AF:FB=1:2,∴AF:AB=AF:CD=1:3,∴=,∴=,∵AC=AB,∴=,∴AN=AB;故②正确;作GH⊥CE于H,设AF=DE=a,BF=2a,则AB=CD=BC=3a,EC=a,由△CMD∽△CDE,可得CM=a,由△GHC∽△CDE,可得CH=a,∴CH=MH=CM,∵GH⊥CM,∴GM=GC,∴∠GMH=∠GCH,∵∠FMG+∠GMH=90°,∠DCE+∠GCM=90°,∴∠FEG=∠DCE,∵∠ADF=∠DCE,∴∠ADF=∠GMF;故③正确,设△ANF的面积为m,∵AF∥CD,∴==,△AFN∽△CDN,∴△ADN的面积为3m,△DCN的面积为9m,∴△ADC的面积=△ABC的面积=12m,∴S△ANF:S四边形CNFB=1:11,故④错误,故选:C.二.填空题(共13小题)13.(2019•青岛)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是54°.解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠F AD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.14.(2019•枣庄)用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图中,∠BAC=36度.解:∵∠ABC==108°,△ABC是等腰三角形,∴∠BAC=∠BCA=36度.15.(2019•青岛)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走16个小立方块.解:若新几何体与原正方体的表面积相等,最多可以取走16个小正方体,只需留11个,分别是正中心的3个和四角上各2个,如图所示:故答案为:1616.(2019•潍坊)如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△P AB的周长最小时,S△P AB=.解:,解得,或,∴点A的坐标为(1,2),点B的坐标为(4,5),∴AB==3,作点A关于y轴的对称点A′,连接A′B与y轴的交于P,则此时△P AB的周长最小,点A′的坐标为(﹣1,2),点B的坐标为(4,5),设直线A′B的函数解析式为y=kx+b,,得,∴直线A′B的函数解析式为y=x+,当x=0时,y=,即点P的坐标为(0,),将x=0代入直线y=x+1中,得y=1,∵直线y=x+1与y轴的夹角是45°,∴点P到直线AB的距离是:(﹣1)×sin45°==,∴△P AB的面积是:=,故答案为:.17.(2019•枣庄)把两个同样大小含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点A,且另外三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=﹣.解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==,∴CD=BF+DF﹣BC=+﹣2=﹣,故答案为:﹣.18.(2019•济宁)如图,抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,则不等式ax2+mx+c>n的解集是x<﹣3或x>1.解:∵抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,∴﹣m+n=p,3m+n=q,∴抛物线y=ax2+c与直线y=﹣mx+n交于P(1,p),Q(﹣3,q)两点,观察函数图象可知:当x<﹣3或x>1时,直线y=﹣mx+n在抛物线y=ax2+bx+c的下方,∴不等式ax2+mx+c>n的解集为x<﹣3或x>1.故答案为:x<﹣3或x>1.19.(2019•潍坊)如图,在矩形ABCD中,AD=2.将∠A向内翻折,点A落在BC上,记为A′,折痕为DE.若将∠B沿EA′向内翻折,点B恰好落在DE上,记为B′,则AB=.解:∵四边形ABCD为矩形,∴∠ADC=∠C=∠B=90°,AB=DC,由翻折知,△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,∴∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,∴∠AED=∠A'ED=∠A'EB=×180°=60°,∴∠ADE=90°﹣∠AED=30°,∠A'DE=90°﹣∠A'EB=30°,∴∠ADE=∠A'DE=∠A'DC=30°,又∵∠C=∠A'B'D=90°,DA'=DA',∴△DB'A'≌△DCA'(AAS),∴DC=DB',在Rt△AED中,∠ADE=30°,AD=2,∴AE==,设AB=DC=x,则BE=B'E=x﹣∵AE2+AD2=DE2,∴()2+22=(x+x﹣)2,解得,x1=(负值舍去),x2=,故答案为:.20.(2019•青岛)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为6﹣cm.解:设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根据折叠的性质可知AG=AB=4,所以GE=﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(﹣4)2+x2=(4﹣x)2+22,解得x=﹣2.则FC=4﹣x=6﹣.故答案为6﹣.21.(2019•德州)如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,=,CE=1,AB=6,则弦AF的长度为.解:连接OA、OB,OB交AF于G,如图,∵AB⊥CD,∴AE=BE=AB=3,设⊙O的半径为r,则OE=r﹣1,OA=r,在Rt△OAE中,32+(r﹣1)2=r2,解得r=5,∵=,∴OB⊥AF,AG=FG,在Rt△OAG中,AG2+OG2=52,①在Rt△ABG中,AG2+(5﹣OG)2=62,②解由①②组成的方程组得到AG=,∴AF=2AG=.故答案为.22.(2019•枣庄)观察下列各式:=1+=1+(1﹣),=1+=1+(﹣),=1+=1+(﹣),…请利用你发现的规律,计算:+++…+,其结果为2018.解:+++…+=1+(1﹣)+1+(﹣)+…+1+(﹣)=2018+1﹣+﹣+﹣+…+﹣=2018,故答案为:2018.23.(2019•潍坊)如图所示,在平面直角坐标系xoy中,一组同心圆的圆心为坐标原点O,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,l0,l1,l2,l3,…都与x轴垂直,相邻两直线的间距为l,其中l0与y轴重合若半径为2的圆与l1在第一象限内交于点P1,半径为3的圆与l2在第一象限内交于点P2,…,半径为n+1的圆与l n在第一象限内交于点P n,则点P n的坐标为(n,).(n为正整数)解:连接OP1,OP2,OP3,l1、l2、l3与x轴分别交于A1、A2、A3,如图所示:在Rt△OA1P1中,OA1=1,OP1=2,∴A1P1===,24.(2019•德州)如图,点A1、A3、A5…在反比例函数y=(x>0)的图象上,点A2、A4、A6……在反比例函数y=(x>0)的图象上,∠OA1A2=∠A1A2A3=∠A2A3A4=…=∠α=60°,且OA1=2,则A n(n为正整数)的纵坐标为(﹣1)n+1().(用含n的式子表示)解:过A1作A1D1⊥x轴于D1,∵OA1=2,∠OA1A2=∠α=60°,∴△OA1E是等边三角形,∴A1(1,),∴k=,∴y=和y=﹣,过A2作A2D2⊥x轴于D2,∵∠A2EF=∠A1A2A3=60°,∴△A2EF是等边三角形,设A2(x,﹣),则A2D2=,Rt△EA2D2中,∠EA2D2=30°,∴ED2=,∵OD2=2+=x,解得:x1=1﹣(舍),x2=1+,∴EF====2(﹣1)=2﹣2,A2D2===,即A2的纵坐标为﹣;过A3作A3D3⊥x轴于D3,同理得:△A3FG是等边三角形,设A3(x,),则A3D3=,Rt△F A3D3中,∠F A3D3=30°,∴FD3=,∵OD3=2+2﹣2+=x,解得:x1=(舍),x2=+;∴GF===2(﹣)=2﹣2,A3D3===(﹣),即A3的纵坐标为(﹣);…∴A n(n为正整数)的纵坐标为:(﹣1)n+1();故答案为:(﹣1)n+1();25.(2019•淄博)如图,在以A为直角顶点的等腰直角三角形纸片ABC中,将B角折起,使点B落在AC边上的点D(不与点A,C重合)处,折痕是EF.如图1,当CD=AC时,tanα1=;如图2,当CD=AC时,tanα2=;如图3,当CD=AC时,tanα3=;……依此类推,当CD=AC(n为正整数)时,tanαn=.解:观察可知,正切值的分子是3,5,7,9,…,2n+1,分母与勾股数有关系,分别是勾股数3,4,5;5,12,13;7,24,25;9,40,41;…,2n+1,,中的中间一个.∴tanαn ==.故答案为:.。

2019-中考数学押题卷及答案

2019-中考数学押题卷及答案

猜押终究扫扫刊——数学5.1 —特别题型猜押题型一解析图形和函数图象,判断结论正确性1. 如图①,在矩形ABCD中 , AC、BD交于点O,点P在边AD上运动 ,PM ⊥AC于点M,PN BD 于点 N .设PM﹦x,PN y ,且 y 与x满足一次函数关系,其图象如图②所示,其中 a ﹦6.以下判断中,不正确的选项是()A.Rt △ABD中斜边BD上的高为6B. 无论点P在AD上哪处,PM与PN的和向来保持不变C.当x﹦3 时,OP垂直均分ADD.若AD﹦10,则矩形ABCD 的面积为60第1题图题型二结论正误判断2.如图,将矩形 ABCD沿直线EF折叠,使点 C与点 A重合,折痕交 AD于点 E、交 BC于点 F,连接AF、 CE.① AF=CD′;②△CEF 是等腰三角形;③四边形AFCE为菱形;④设AE=a, ED=b, DC=c,则 a、b、c 三者之间的数量关系式为a2=b2+c2,其中正确的结论是.(将所有正确结论的序号都填在横线上)2019-2020年中考数学押题卷及答案题型三中位线及勾股定理的相关计算3.如图,在△ ABC中, BC=AC=4,∠ACB=90°,点M是边 AC的中点,点P是边 AB上的动点,则 PM +PC的最小值为.第3题图题型四二次函数的性质应用4.如图,抛物线表示的是某企业年利润y(万元)与新招员工数 x(人)的函数关系,当新招员工 200 人时,企业的年利润达到最大值900 万元 .( 1)求y与x的函数关系式;( 2)为了响应国家号召,增加更多的就业机遇,又要保证企业的年利润达800万元,那么该企业应招新员工多少人?(3)若该企业原有员工 400 人,那么应招新员工多少人时才能令人均创立的年利润与原来的相同?第4题图题型五一次函数、反比率函数、二次函数结合的实质应用题5. 某工艺品厂生产一种汽车装饰品,每件生产成本为20 元,销售价格在30 元至 80 元之间(含 30 元和 80 元),销售过程中的管理、仓储、运输等各种花销(不含生产成本)总计50 万元 . 其销售量y (万个)与销售价格(元/ 个)的函数关系以以下图所示.(1)当 30≤x≤ 60 时,求y与x的函数关系式;(2)求出该厂生产销售这种产品的纯利润w(万元)与销售价格x(元/个)的函数关系式;(3)销售价格应定为多少元时,获得利润最大,最大利润是多少?第5题图题型六解直角三角形的实质应用6.某地下车库出口处“两段式栏杆” 如图①所示,点 A是栏杆转动的支点,点 E 是栏杆两段的连接点 . 当车辆经过时,栏杆AEF升起所的地址如图②所示,其表示图如图③所示,其中 AB⊥ BC,EF∥ BC,∠ EAB=143°, AB= AE 米,求当车辆经过时,栏杆 EF段距离地面的高度(即直线EF上任意一点到直线BC的距离).(结果精确到米,栏杆宽度忽略不计 .参照数据: sin37 °≈ 0.60 , cos37 °≈ 0.80 , tan37 °≈ 0.75 )第6题图题型七几何图形的证明与计算题1.涉及三角形相似的证明及性质7.如图,已知四边形 ABCD是圆内接四边形,点 E 在线段 CB的延长线上,且∠ EAB=∠ CAD.(1)当BC⊥CD时,求证:∠EAC= 90°;(2)求证:ABAC=ADAE.第7题图题型八着手操作题8. 如图,把一个边长为 6 的正方形经过三次对折后沿图④中平行于MN的虚线剪下,获得图⑤,它张开后获得的图形的面积为32,则AN的长为.第8题图创新题猜押命题点一新定义问题1. 设二次函数y1、y2的图象的极点分别为( a,b) 、(c,d),当a=c, b=2d,且张口方向相同时,则称 y1是 y2的“反倍顶二次函数”.(1)请写出二次函数y=x2+x+1 的一个“反倍顶二次函数”;(2)已知关于x 的二次函数y1 =x2+和二次函数2=2, 函数y1+ 2正是y1nx y nx +x yy2的“反倍顶二次函数”,求n.名校内部模拟试题命题点一一次函数、反比率函数、二次函数结合的实质应用题1.( 淮北五校联考模拟) 某水果店试营销一种新进水果,进价为20元/件,试营销期为销售价 y (元/件)与销售天数x (天)满足当1≤x≤ 9 时,错误!未找到引用源。

湖南省2019年中考数学押题卷(含解析)

湖南省2019年中考数学押题卷(含解析)

2019年湖南省中考数学押题卷一.选择题(每小题3分,满分36分)1.(3分)的倒数是()A.5 B.C.D.﹣52.(3分)俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm的小洞,则0.000000039用科学记数法可表示为()A.3.9×10﹣8B.﹣3.9×10﹣8C.0.39×10﹣7D.39×10﹣93.(3分)下列计算正确的是()A.(a+b)2=a2+b2B.(﹣2a2)2=﹣4a4C.a5÷a3=a2D.a4+a7=a114.(3分)如图所示的几何体,它的左视图是()A.B.C.D.5.(3分)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.116.(3分)如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=65°,则∠2的度数为()A.20°B.25°C.30°D.35°7.(3分)某地质学家预测:在未来的20年内,F市发生地震的概率是.以下叙述正确的是()A.从现在起经过13至14年F市将会发生一次地震B.可以确定F市在未来20年内将会发生一次地震C.未来20年内,F市发生地震的可能性比没有发生地震的可能性大D.我们不能判断未来会发生什么事,因此没有人可以确定何时会有地震发生8.(3分)某商店库存清仓,将最后两件羽绒服特价出售,甲款羽绒服卖出1200元,盈利20%,乙款羽绒服同样卖1200元,但亏损20%,该商店在这两笔交易中()A.盈利100元B.亏损125元C.不赔不赚D.亏损100元9.(3分)在函数y=中,自变量x的取值范围是()A.x≥1 B.x≤1且x≠0 C.x≥0且x≠1 D.x≠0且x≠1 10.(3分)如图,这是某市政道路的交通指示牌.BD的距离为3m,从D点测得指示牌顶端A点和底端C点的仰角分别是60°和45°,则指示牌的高度,即AC的长度是()A.3B.3C.3﹣3D.3﹣3 11.(3分)二次函数y=ax2+bx+c的图象如图所示,则反比例函数y=与一次函数y=ax+b 在同一平面直角坐标系中的大致图象为()A.B.C.D.12.(3分)如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:①4a﹣2b+c<0;②2a﹣b<0;③a<0;④b2+8a>4ac,其中正确的有()A.1个B.2个C.3个D.4个二.填空题(每小题3分,满分18分)13.(3分)﹣的系数是,次数是.14.(3分)如图钢架中,焊上等长的7根钢条来加固钢架,若AA1=A1A2=A2A3=…=A7A8=A8A,则∠A的度数是.15.(3分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,若BC=6,AC=8,则tan∠ACD的值为.16.(3分)已知一组数据3,4,1,a,2,a的平均数为2,则这组数据的中位数是.17.(3分)已知关于x的方程x2+x﹣m=0有实数解,则m的取值范围是.18.(3分)如图,AC是⊙O的直径,弦BD⊥AO,垂足为点E,连接BC,过点O作OF⊥BC,垂足为F,若BD=8cm,AE=2cm,则OF的长度是cm.三.解答题19.(6分)计算:(﹣1)2018+(﹣)﹣2﹣|2﹣|+4sin60°;20.(6分)在计算的值时,小亮的解题过程如下:解:原式==2……①=2……②=(2﹣1)……③=……④(1)老师认为小亮的解法有错,请你指出:小亮是从第步开始出错的;(2)请你给出正确的解题过程.21.(8分)为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:(1)本次调查的学生人数是人;(2)图2中α是度,并将图1条形统计图补充完整;(3)请估算该校九年级学生自主学习时间不少于1.5小时有人;(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率.22.(8分)如图,四边形ABCD是正方形,M为BC上一点,连接AM,延长AD至点E,使得AE=AM,过点E作EF⊥AM,垂足为F,求证:AB=EF.23.(9分)某学校准备购买A、B两种型号篮球,询问了甲、乙两间学校了解这两款篮球的价格,下表是甲、乙两间学校购买A、B两种型号篮球的情况:(1)求A、B两种型号的篮球的销售单价;(2)若该学校准备用不多于1000元的金额购买这两种型号的篮球共20个,且A种型号的篮球数量小于B种型号的篮球,问A种型号的篮球采购多少个?24.(9分)如图,CD是⊙O的直径,AB是⊙O的一条弦,=,AO的延长线交⊙O于点F、交DB的延长线于点P,连接PC且恰好PC∥AB,连接DF交AB于点G,延长DF交CP于点E,连接BF.(1)求证:PC是⊙O的切线;(2)求证:CE=PE;(3)当BF=2时,求tan∠APD的值.25.(10分)如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan ∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求以C、E、F为顶点三角形与△COD相似时点P的坐标.26.(10分)如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.2019年湖南省中考数学押题卷参考答案与试题解析一.选择题(每小题3分,满分36分)1.(3分)的倒数是()A.5 B.C.D.﹣5【分析】根据倒数的概念可得出结果.【解答】解:的倒数是﹣5,故选:D.【点评】本题考查了倒数的概念.2.(3分)俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm的小洞,则0.000000039用科学记数法可表示为()A.3.9×10﹣8B.﹣3.9×10﹣8C.0.39×10﹣7D.39×10﹣9【解答】解:0.000000039=3.9×10﹣8.故选:A.3.(3分)下列计算正确的是()A.(a+b)2=a2+b2B.(﹣2a2)2=﹣4a4C.a5÷a3=a2D.a4+a7=a11【分析】根据完全平方公式、幂的乘方与积的乘方、同底数幂的除法运算法则逐一计算可得.【解答】解:A、(a+b)2=a2+2ab+b2,此选项错误;B、(﹣2a2)2=4a4,此选项计算错误;C、a5÷a3=a2,此选项计算正确;D、a4,a7不是同类项,此选项计算错误;故选:C.【点评】本题主要考查幂的运算,解题的关键是掌握完全平方公式、幂的乘方与积的乘方、同底数幂的除法运算法则及同类项概念等知识点.4.(3分)如图所示的几何体,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.(3分)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.11【分析】根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故选:A.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.6.(3分)如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=65°,则∠2的度数为()A.20°B.25°C.30°D.35°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠3=∠1+∠B,再根据两直线平行,同旁内角互补列式计算即可得解.【解答】解:由三角形的外角性质可得,∠3=∠1+∠B=65°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣65°﹣90°=25°.故选:B.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.7.(3分)某地质学家预测:在未来的20年内,F市发生地震的概率是.以下叙述正确的是()A.从现在起经过13至14年F市将会发生一次地震B.可以确定F市在未来20年内将会发生一次地震C.未来20年内,F市发生地震的可能性比没有发生地震的可能性大D.我们不能判断未来会发生什么事,因此没有人可以确定何时会有地震发生【分析】根据概率的意义,可知发生地震的概率是,说明发生地震的可能性大于不发生地政的可能性,从而可以解答本题.【解答】解:∵某地质学家预测:在未来的20年内,F市发生地震的概率是,∴未来20年内,F市发生地震的可能性比没有发生地震的可能性大,故选:C.【点评】本题考查概率的意义,解题的关键是明确概率的意义,理论联系实际.8.(3分)某商店库存清仓,将最后两件羽绒服特价出售,甲款羽绒服卖出1200元,盈利20%,乙款羽绒服同样卖1200元,但亏损20%,该商店在这两笔交易中()A.盈利100元B.亏损125元C.不赔不赚D.亏损100元【分析】根据两件羽绒服买进的价格,利用买价+利润=卖价,列方程求解即可.【解答】解:设款羽绒服的买价是x元,根据题意得:(1+20%)x=1200,解得x=1000.设乙款羽绒服的买价是y元,根据题意得:(1﹣20%)y=1200,解得y=1500.1000+1500>1200+1200,即这两笔交易亏损了100元.故选:D.【点评】此题主要考查了一元一次方程的应用,关键是读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.9.(3分)在函数y=中,自变量x的取值范围是()A.x≥1 B.x≤1且x≠0 C.x≥0且x≠1 D.x≠0且x≠1 【分析】根据分式和二次根式有意义的条件进行计算即可.【解答】解:由x≥0且x﹣1≠0得出x≥0且x≠1,x的取值范围是x≥0且x≠1,故选:C.【点评】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.10.(3分)如图,这是某市政道路的交通指示牌.BD的距离为3m,从D点测得指示牌顶端A点和底端C点的仰角分别是60°和45°,则指示牌的高度,即AC的长度是()A.3B.3C.3﹣3D.3﹣3【分析】直接利用等腰直角三角形的性质结合锐角三角函数关系得出答案.【解答】解:由题意可得:∠CDB=∠DCB=45°,故BD=BC=3m,设AC=x,则tan60°==,解得:x=3﹣3,故选:D.【点评】此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键.11.(3分)二次函数y=ax2+bx+c的图象如图所示,则反比例函数y=与一次函数y=ax+b 在同一平面直角坐标系中的大致图象为()A.B.C.D.【分析】直接利用二次函数图象得出a,b,c的符号,进而得出答案.【解答】解:由二次函数图形可得:开口向上,则a>0,对称轴在x轴的右侧,则﹣>0,故b<0,图象与y轴交在正半轴上,故c>0;则反比例函数y=图象分布在第一、三象限,一次函数y=ax+b图象经过第一、三象限,且图象与y轴交在负半轴上,故选:D.【点评】此题主要考查了二次函数以及反比例函数、一次函数的图象,正确把握图象分布是解题关键.12.(3分)如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:①4a﹣2b+c<0;②2a﹣b<0;③a<0;④b2+8a>4ac,其中正确的有()A.1个B.2个C.3个D.4个【分析】①将x=﹣2代入y=ax2+bx+c,可以结合图象得出x=﹣2时,y<0;②由y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),a﹣b+c=2,与y轴交于(0,1)点,c=1,从而得出a﹣b=1,二次函数的开口向下,a<0,∴2a﹣b<0;③根据抛物线的开口方向判定a<0;④利用③的解析式得出,b2+8a>4ac.【解答】解:二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),与y轴交于(0,2)点,且与x轴交点的横坐标分别为x1、x2,其中﹣2<x1<﹣1,0<x2<1,下列结论①4a﹣2b+c<0;当x=﹣2时,y=ax2+bx+c,y=4a﹣2b+c,∵﹣2<x1<﹣1,∴y<0,故①正确;②2a﹣b<0;∵二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),∴a﹣b+c=2,与y轴交于(0,1)点,c=1,∴a﹣b=1,二次函数的开口向下,a<0,又﹣1<﹣<0,∴2a﹣b<0,故②正确;③因为抛物线的开口方向向下,所以a<0,故③正确;④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即>2,由于a<0,所以4ac﹣b2<8a,即b2+8a>4ac,故④正确,故选:D.【点评】此题主要考查了抛物线与x轴的交点坐标性质,以及利用函数图象得出函数与坐标轴的近似值,进而得出函数解析式,这种题型是中考中新题型.二.填空题(每小题3分,满分18分)13.(3分)﹣的系数是﹣,次数是 3 .【分析】根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数可得答案.【解答】解:﹣的系数是:﹣,次数是:3.故答案为:﹣;3.【点评】此题主要考查了单项式,关键是掌握单项式相关定义.14.(3分)如图钢架中,焊上等长的7根钢条来加固钢架,若AA1=A1A2=A2A3=…=A7A8=A8A,则∠A的度数是20°.【分析】设∠A=x,根据等边对等角的性质以及三角形的一个外角等于与它不相邻的两个内角的和求出∠AA4A5,∠AA5A4,再根据三角形的内角和定理列式进行计算即可得解.【解答】解:设∠A=x,∵AA1=A1A2=A2A3=…=A7A8=A8A,∴∠A=∠AA2A1=∠AA7A8=x,∴∠A2A1A3=∠A2A3PA1=2x,∴∠A3A2A4=∠A2A4A3=3x,…,∠A4PA3A5=∠A4A5A3=4x,∴∠AA4A5=4x,∠AA5A4=4x,在△AA4A5中,∠A+∠AA4A5+∠AA5A4=180°,即x+4x+4x=20°,解得x=20°,即∠A=20°.故答案为:20°.【点评】本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,规律探寻题,难度较大.15.(3分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,若BC=6,AC=8,则tan∠ACD的值为.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AD=CD,再根据等边对等角可得∠A=∠ACD,然后利用锐角的正切值等于对边比邻边列式计算即可得解.【解答】解:∵∠ACB=90°,CD是AB边上的中线,∴AD=CD,∴∠A=∠ACD,∴tan∠ACD=tan∠A===.故答案为:.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,锐角三角函数的定义,熟记性质并求出∠A=∠ACD是解题的关键.16.(3分)已知一组数据3,4,1,a,2,a的平均数为2,则这组数据的中位数是 1.5 .【分析】根据平均数的定义先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【解答】解:由题意知3+4+1+a+2+a=2×6,解得:a=1,则这组数据为1,1,1,2,3,4,所以这组数据的中位数是=1.5,故答案为:1.5.【点评】本题考查了平均数和中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.17.(3分)已知关于x的方程x2+x﹣m=0有实数解,则m的取值范围是m≥﹣.【分析】方程有解时△≥0,把a、b、c的值代入计算即可.【解答】解:依题意得:△=12﹣4×1×(﹣m)≥0.解得m≥﹣.故答案是:m≥﹣.【点评】本题考查了根的判别式,解题的关键是注意:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.18.(3分)如图,AC是⊙O的直径,弦BD⊥AO,垂足为点E,连接BC,过点O作OF⊥BC,垂足为F,若BD=8cm,AE=2cm,则OF的长度是cm.【分析】根据垂径定理求出BE,根据相交弦定理求出EC,根据勾股定理求出BC,根据垂径定理、勾股定理计算,得到答案.【解答】解:∵BD⊥AO,∴BE=ED=BD=4,由相交弦定理得,EA•EC=EB•ED,即2×EC=4×4,解得,EC=8,∴AC=10,由勾股定理得,BC==4,∵OF⊥BC,∴CF=BC=2,∴OF==(cm),故答案为:.【点评】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分弦是解题的关键.三.解答题19.(6分)计算:(﹣1)2018+(﹣)﹣2﹣|2﹣|+4sin60°;【分析】本题涉及乘方、负指数幂、二次根式化简、绝对值和特殊角的三角函数5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1+4﹣(2﹣2)+4×,=1+4﹣2+2+2,=7.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(6分)在计算的值时,小亮的解题过程如下:解:原式==2……①=2……②=(2﹣1)……③=……④(1)老师认为小亮的解法有错,请你指出:小亮是从第③步开始出错的;(2)请你给出正确的解题过程.【分析】根据二次根式的运算法则即可求出答案.【解答】解:(1)③(2)原式=2﹣=6﹣2=4【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.21.(8分)为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:(1)本次调查的学生人数是40 人;(2)图2中α是54 度,并将图1条形统计图补充完整;(3)请估算该校九年级学生自主学习时间不少于1.5小时有330 人;(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率.【分析】(1)由自主学习的时间是1小时的有12人,占30%,即可求得本次调查的学生人数;(2)由×360°=54°,40×35%=14;即可求得答案;(3)首先求得这40名学生自主学习时间不少于1.5小时的百分比,然后可求得该校九年级学生自主学习时间不少于1.5小时的人数;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选中小亮A的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵自主学习的时间是1小时的有12人,占30%,∴12÷30%=40,故答案为:40;…(2分)(2)×360°=54°,故答案为:54;40×35%=14;补充图形如图:故答案为:54;(3)600×=330;…(2分)故答案为:330;(4)画树状图得:∵共有12种等可能的结果,选中小亮A的有6种,∴P(A)=.…(2分)【点评】本题考查的是用列表法或画树状图法求概率与扇形统计图、条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.22.(8分)如图,四边形ABCD是正方形,M为BC上一点,连接AM,延长AD至点E,使得AE=AM,过点E作EF⊥AM,垂足为F,求证:AB=EF.【分析】根据AAS证明△ABM≌△EFA,可得结论.【解答】证明:∵四边形ABCD为正方形,∴∠B=90°,AD∥BC,(2分)∴∠EAF=∠BMA,∵EF⊥AM,∴∠AFE=90°=∠B,(4分)在△ABM和△EFA中,∵,∴△ABM≌△EFA(AAS),(5分)∴AB=EF.(6分)【点评】本题考查了正方形的性质、三角形全等的性质和判定,熟练掌握三角形全等的判定是关键.23.(9分)某学校准备购买A、B两种型号篮球,询问了甲、乙两间学校了解这两款篮球的价格,下表是甲、乙两间学校购买A、B两种型号篮球的情况:(1)求A、B两种型号的篮球的销售单价;(2)若该学校准备用不多于1000元的金额购买这两种型号的篮球共20个,且A种型号的篮球数量小于B种型号的篮球,问A种型号的篮球采购多少个?【分析】(1)设A种型号的篮球的销售单价为x元/个,B种型号的篮球的销售单价为y 元/个,根据总价=单价×数量结合甲、乙两校购买篮球所花费用及购买数量,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购买m个A种型号的篮球,则购买(20﹣m)个B种型号的篮球,根据A种型号的篮球数量小于B种型号的篮球及购买总费用不多于1000元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可求出结论.【解答】解:(1)设A种型号的篮球的销售单价为x元/个,B种型号的篮球的销售单价为y元/个,根据题意得:,解得:.答:A种型号的篮球的销售单价为26元/个,B种型号的篮球的销售单价为68元/个.(2)设购买m个A种型号的篮球,则购买(20﹣m)个B种型号的篮球,根据题意得:,解得:≤m<10.又∵m为整数,∴m=9.答:A种型号的篮球采购9个.【点评】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.24.(9分)如图,CD是⊙O的直径,AB是⊙O的一条弦,=,AO的延长线交⊙O于点F、交DB的延长线于点P,连接PC且恰好PC∥AB,连接DF交AB于点G,延长DF交CP于点E,连接BF.(1)求证:PC是⊙O的切线;(2)求证:CE=PE;(3)当BF=2时,求tan∠APD的值.【分析】(1)根据垂径定理证明CD⊥AB,由PC∥AB,可得PC⊥CD,可得结论;(2)证明△FEP∽△PED,得,则PE2=EF•ED,同理得:△ECF∽△EDC,则EC2=EF•ED,可得CE=PE;(3)根据平行线分线段成比例定理得:,,则,可得GH=BG,证明△DHG≌△FBG(ASA),得DH=BF=2,作辅助线,根据等腰三角形三线合一得:,分别由勾股定理计算各线段的长,最后由三角函数定义可得结论.【解答】(1)证明:∵CD是⊙O的直径,∴CD⊥AB,又∵PC∥AB,∴PC⊥CD,∴PC为⊙O的切线;……(3分)(2)∵PC∥AB,∴∠EPF=∠PAB,∠FDB=∠PAB,∴∠EPF=∠FDB,∵∠PEF=∠DEP,∴△FEP∽△PED,∴,∴PE2=EF•ED,连接CF,同理得:△ECF∽△EDC,∴,即EC2=EF•ED,∴CE2=PE2,∴CE=PE;……(7分)(3)∵PC∥AB,∴,,∴,由(2)知:CE=PE,∴GH=BG,∴∠HGD=∠BGF,∠DHG=∠FBG=90°,∴△DHG≌△FBG(ASA),∴DH=BF=2,又AO=OF,AH=HB,∴OH=BF=1,∴OD=3,CD=6,连接OB,过点O作OM⊥DB,则OB=OD=3,∴,∴,,∴,又PC∥AB,∴,∴,∴,∴MP=5,在Rt△POM中,tan∠APD===……(10分)【点评】本题考查了切线的判断和性质,三角形全等的判定和性质,相似三角形的判断和性质,平行线分线段成比例定理,三角函数等,第三问有难度,作出辅助线构建直角三角形,根据平行线分线段成比例定理和勾股定理求各边的长是解题的关键.25.(10分)如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan ∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求以C、E、F为顶点三角形与△COD相似时点P的坐标.【分析】(1)根据正切函数,可得OB,根据旋转的性质,可得△DOC≌△AOB,根据待定系数法,可得函数解析式;(2)①根据相似三角形的判定,可得答案,②根据相似三角形的性质,可得PM与ME的关系,根据解方程,可得t的值,根据自变量与函数值的对应关系,可得答案.【解答】解:(1)在Rt△AOB中,OA=1,tan∠BAO==3,∴OB=3OA=3∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,∴△DOC≌△AOB,∴OC=OB=3,OD=OA=1.∴A,B,C的坐标分别为(1,0),(0,3),(﹣3,0),代入解析式为,解得,抛物线的解析式为y=﹣x2﹣2x+3;(2)∵抛物线的解析式为y=﹣x2﹣2x+3,∴对称轴为l=﹣=﹣1,∴E点坐标为(﹣1,0),如图,①当∠CEF=90°时,△CEF∽△COD,此时点P在对称轴上,即点P为抛物线的顶点,P(﹣1,4);②当∠CFE=90°时,△CFE∽△COD,过点P作PM⊥x轴于M点,△EFC∽△EMP,∴===∴MP=3ME,∵点P的横坐标为t,∴P(t,﹣t2﹣2t+3),∵P在第二象限,∴PM=﹣t2﹣2t+3,ME=﹣1﹣t,∴﹣t2﹣2t+3=3(﹣1﹣t),解得t1=﹣2,t2=3,(与P在二象限,横坐标小于0矛盾,舍去),当t=﹣2时,y=﹣(﹣2)2﹣2×(﹣2)+3=3∴P(﹣2,3),∴当△CEF与△COD相似时,P点的坐标为(﹣1,4)或(﹣2,3).【点评】本题考查了二次函数综合题,解(1)的关键是利用旋转的性质得出OC,OD的长,又利用了待定系数法;解(2)的关键是利用相似三角形的性质得出MP=3ME.26.(10分)如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.【分析】(1)已知点A坐标可确定直线AB的解析式,进一步能求出点B的坐标.点A 是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B的坐标,依据待定系数法可解.(2)首先由抛物线的解析式求出点C的坐标,在△POB和△POC中,已知的条件是公共边OP,若OB与OC不相等,那么这两个三角形不能构成全等三角形;若OB等于OC,那么还要满足的条件为:∠POC=∠POB,各自去掉一个直角后容易发现,点P正好在第二象限的角平分线上,联立直线y=﹣x与抛物线的解析式,直接求交点坐标即可,同时还要注意点P在第二象限的限定条件.(3)分别以A、B、Q为直角顶点,分类进行讨论.找出相关的相似三角形,依据对应线段成比例进行求解即可.【解答】解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,∴y=2x﹣6,令y=0,解得:x=3,∴B的坐标是(3,0).∵A为顶点,∴设抛物线的解析为y=a(x﹣1)2﹣4,把B(3,0)代入得:4a﹣4=0,解得a=1,∴y=(x﹣1)2﹣4=x2﹣2x﹣3.(2)存在.∵OB=OC=3,OP=OP,∴当∠POB=∠POC时,△POB≌△POC,此时PO平分第二象限,即PO的解析式为y=﹣x.设P(m,﹣m),则﹣m=m2﹣2m﹣3,解得m=(m=>0,舍),∴P(,).(3)①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,∴=,即=,∴DQ1=,∴OQ1=,即Q1(0,);②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,∴=,即=,∴OQ2=,即Q2(0,);③如图,当∠AQ3B=90°时,作AE⊥y轴于E,则△BOQ3∽△Q3EA,∴=,即=,∴OQ32﹣4OQ3+3=0,∴OQ3=1或3,即Q3(0,﹣1),Q4(0,﹣3).综上,Q点坐标为(0,)或(0,)或(0,﹣1)或(0,﹣3).【点评】本题主要考查了利用待定系数法求函数解析式的方法、直角三角形的判定、全等三角形与相似三角形应用等重点知识.(3)题较为复杂,需要考虑的情况也较多,因此要分类进行讨论.。

北京市2019年中考数学押题卷1(含解析)

北京市2019年中考数学押题卷1(含解析)

北京市中考数学押题卷1学校姓名准考据号1.本试卷共 8 页,共三道大题, 28道小题.满分 100 分,考试时间 120 分钟.考在试卷和答题卡上正确填写学校名称、姓名和准考据号.2.生3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,选须知择题、作图题用2B 铅笔作答,其余试题用黑色笔迹署名笔作答.4.考试结束,将本试卷和答题卡一并交回.评卷人得分一、选择题 ( 本题共 16分,每题2分)下边各题均有四个选项,此中只有一个是切合题意的..1.以下几何体中,其面既有平面又有曲面的有()A. 1 个B. 2个C.3个D.4 个【分析】依据立体图形的特点,可得答案.【解答】解:球只有1个曲面;圆锥既有曲面又有平面;正方体只有平面;圆柱既有平面又有曲面;应选: B.【说明】本题考察了认识立体图形,熟记立体图形的特点是解题重点.2.已知实数 a, b在数轴上的地点以下图,以下结论中正确的选项是()A.>B. |a | < |b|C.>0D.﹣a>ba b ab【分析】依据数轴能够判断a、b 的正负,从而能够判断各个选项中的结论能否正确,从而能够解答本题.【解答】解:由数轴可得,﹣ 2<a<﹣ 1< 0<b< 1,∴ a<b,应选项 A错误,| a| >| b| ,应选项B错误,ab<0,应选项 C 错误,﹣a>b,应选项 D 正确,应选: D.【说明】本题考察实数与数轴、绝对值,解答本题的重点是明确题意,利用数形联合的思想解答.3.二元一次方程组的解是()A.B.C.D.【分析】依据方程组的解法解答判断即可.【解答】解:解方程组,可得:,应选: B.【说明】本题主要考察二元一次方程组的解,知道二元一次方程组的解是两个方程的公共解是解题的重点,别的,本题还能够逐项解方程组.4. 2018 年我国在人工智能领域获得明显成就,自主研发的人工智能“绝艺”获取全世界最前沿的人工智能赛事冠军,这受益于所成立的大数据中心的规模和数据储存量,它们决定着人工智能深度学习的质量和速度,此中的一个大数据中心能储存 58000000000 本书本.将58000000000 用科学记数法表示应为()A.58×10 9B.5.8 ×10 10C.5.8 ×10 11D.0.58 ×10 11【分析】科学记数法的表示形式为a×10n的形式,此中1≤|a| < 10,n为整数.确立n的值时,要看把原数变为a时,小数点挪动了多少位,n的绝对值与小数点挪动的位数同样.当原数绝对值> 1 时,n是正数;当原数的绝对值< 1 时,n是负数.580 0000 0000 5.8 ×10 10.应选: B.【说明】本题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,此中1≤|a| < 10,n为整数,表示时重点要正确确立a的值以及n的值.5.一个正多边形的每一个外角都等于45°,则这个多边形的边数为()A. 4B. 6C. 8D. 10【分析】依据多边形的外角和是360 度即可求得外角的个数,即多边形的边数.【解答】解:多边形的边数为:360÷45=8.应选:C.【说明】本题主要考察了多边形的外角和定理,理解多边形外角和中外角的个数与正多边形的边数之间的关系,是解题重点.6.化简的结果是()A.B.C.a﹣b D.b﹣a【分析】先将分母分解因式,再约分即可.【解答】解:原式==.应选: B.【说明】本题考察了分式的化简,正确将分母分解因式是解题的重点.7.如图,排球运动员站在点 O处练习发球,将球从 O点正上方2 m的 A处发出,把球当作点,其运转的高度y( m)与运转的水平距离x( m)知足关系式y= a( x﹣ k)2+h.已知球与D点的水平距离为6 m时,达到最高 2.6 m,球网与D点的水平距离为9 m.高度为 2.43 m,球场的界限距O 点的水平距离为18 m,则以下判断正确的选项是()A.球不会过网B.球会过球网但不会出界C.球会过球网并会出界D.没法确立【分析】利用球与 O点的水平距离为6m时,达到最高 2.6 m,可得k=6,h= 2.6 ,球从O点正上方 2m的A处发出,将点(0,2)代入分析式求出函数分析式;利用当x=9时,y=﹣( x﹣6)2+2.6=2.45,当 y=0时,﹣( x﹣6)2+2.6=0,分别得出即可.【解答】解:( 1)∵球与O点的水平距离为 6m时,达到最高 2.6 m,∴抛物线为y=a( x﹣6)2+2.6过点,∵抛物线 y= a( x﹣6)2+2.6过点(0,2),∴2=a( 0﹣ 6 )2+2.6 ,解得: a=﹣,故 y与x的关系式为: y=﹣( x﹣6)2+2.6,当x=9时, y=﹣(x﹣6)2+2.6=2.45>2.43,因此球能过球网;当 y=0时,﹣(x﹣6)2+2.6=0,解得: x1=6+2> 18,x2=6﹣2(舍去)故会出界.应选: C.【说明】本题主要考察了二次函数的应用题,依据题意求出函数分析式是解题重点.8.第六届北京农业嘉年光在昌平区兴寿镇草莓博览园举办,某校数学兴趣小组的同学依据数学知识将草莓博览园的旅行线路进行了精简.如图,分别以正东、正北方向为 x轴、 y 轴成立平面直角坐标系,假如表示国际特点农产品馆的坐标为(﹣ 5, 0),表示科技生活馆的点的坐标为( 6, 2),则表示多彩农业馆所在的点的坐标为()A.(3, 5)B.(5,﹣ 4)C.(﹣ 2, 5)D.(﹣ 3,3)【分析】依据国际特点农产品馆的坐标为(﹣5, 0),科技生活馆的点的坐标为(6, 2)成立平面直角坐标系,据此可得.【解答】解:∵国际特点农产品馆的坐标为(﹣5,0),科技生活馆的点的坐标为(6,2),∴可成立以下图的平面直角坐标系:由坐标系可知表示多彩农业馆所在的点的坐标为(﹣2, 5),应选: C.【说明】本题主要考察了坐标确立地点,正确利用已知点坐标得出原点地点是解题重点.二、填空题( 本题共16分,每题2分)9.以下图的网格是正方形网格,∠AOB∠ COD.(填“>“,“=”或“<“)【分析】连结 CD,则 CD⊥OD,过 B 作 BE⊥ OA 于 E,在Rt△ OBE与Rt△ OCD中,分别求∠AOB、∠ COD的正切,依据锐角的正切值跟着角度的增大而增大作判断即可.【解答】解:连结 CD,则 CD⊥ OD,过 B 作 BE⊥ OA 于 E,在Rt△OBE中, tan ∠AOB=2,=== 1,在Rt△OCD中, tan ∠COD=∵锐角的正切值跟着角度的增大而增大,∴∠ AOB>∠ COD,故答案为:>.【说明】本题考察了锐角三角函数的增减性,建立直角三角形求角的三角函数值进行判断,娴熟掌握锐角三角函数的增减性是重点.10. a b都是实数,b+﹣ 2,则ab的值为.若,=【分析】直接利用二次根式存心义的条件得出 a 的值,从而利用负指数幂的性质得出答案.【解答】解:∵ b=+﹣ 2,∴1﹣ 2a= 0,解得: a=,则=﹣2,b故 a b=()﹣2=4.故答案为: 4.【说明】本题主要考察了二次根式存心义的条件以及负指数幂的性质,正确得出 a 的值是解题重点.11.我们已经学习了一些定理,比如:①直角三角形两条直角边的平方和等于斜边的平方;②全等三角形的对应角相等;③线段垂直均分线上的点到线段两头的距离相等;④等腰三角形的两个底角相等上述定理中存在逆定理的是(只填序号)【分析】依据勾股定理的逆定理、线段的垂直均分线的判断、等腰三角形的判断即可判断;【解答】解:①直角三角形两条直角边的平方和等于斜边的平方;有逆定理;②全等三角形的对应角相等;没有逆定理;③线段垂直均分线上的点到线段两头的距离相等;有逆定理;④等腰三角形的两个底角相等;有逆定理;故答案为①③④【说明】本题考察勾股定理以及逆定理、线段的垂直均分线的性质和判断、等腰三角形的性质和判断等知识,解题的重点是娴熟掌握基本知识,属于中考常考题型.12.如图,点A、B、C、D、E在⊙ O上,且的度数为50°,则∠B+∠D的度数为.【分析】连结 AB、DE,先求得∠ ABE=∠ ADE=25°,依据圆内接四边形的性质得出∠ABE+∠ EBC+∠ADC=180°,即可求得∠B+∠ D=155°.【解答】解:连结AB、 DE,则∠ ABE=∠ ADE,∵为50°,∴∠ ABE=∠ ADE=25°,∵点A、 B、 C、D 在⊙ O 上,∴四边形ABCD是圆内接四边形,∴∠ ABC+∠ ADC=180°,∴∠ ABE+∠ EBC+∠ ADC=180°,∴∠ B+∠D=180°﹣∠ ABE=180°﹣25°=155°.故答案为:155°【说明】本题考察了圆周角定理和圆内接四边形的性质,作出协助线建立内接四边形是解题的重点.13.如图,在矩形 ABCD中, E是边 AB的中点,连结 DE 交对角线 AC于点 F.若 AB=8, AD=6,则CF的长为.【分析】在 Rt△ABC中,利用勾股定理可求出AC的长,由 AB∥CD可得出∠ DCF=∠EAF,∠ CDF=∠ AEF,从而可得出△ AEF∽△ CDF,利用相像三角形的性质联合CD= AB=2AE,即可得出CF= 2AF,再联合AC=AF+CF=10,即可得出CF=AC=,本题得解.【解答】解:在Rt△ABC中,AB= 8,BC=AD= 6,∠B=90°,∴ AC==10.∵AB∥CD,∴∠ DCF=∠ EAF,∠ CDF=∠ AEF,∴△ AEF∽△ CDF,∴=.又∵ E 是边AB 的中点,∴CD=AB=2AE,∴= 2,∴CF=2AF.∵AC=AF+CD=10,∴ CF= AC=.故答案为:.【说明】本题考察了相像三角形的判断与性质、勾股定理以及矩形的性质,利用相像三角形的性质联合AC= AF+CF,找出 CF=AC是解题的重点.14. 以下图,有一电路连着三个开关,每个开封闭合的可能性均为,若不考虑元件的故障要素,则电灯点亮的可能性为.【分析】用列举法列举出可能出现的状况,在依据概率公式求解即可.【解答】解:因为每个开封闭合的可能性均为,则共有8种状况;1、K1关、K2关、K3开;2、K1关、K2关、K3关;3、K1关、K2开、K3开;4、K1关、K2开、K3关;5、K1开、K2开、关K3;6、K1开、K2关、K3关;7、K1开、K2开、K3开;8、K1开、K2开、K3关.只有 5、 7、8电灯可点亮,可能性为.【说明】本题考察的是可能性大小的判断,用到的知识点为:可能性等于所讨状况数与总状况数之比.15.开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则以下:购物每满 100元,返购物券 50元,此购物券在本商场通用,且用购物券购置商品不再返券.小明只购置了单价分别为 60元、 80元和 120元的书包、T恤、运动鞋,在使用购物券参加购置的状况下,他的实质花销为元.【分析】分四种状况议论:①先付 60元, 80元,获取 50 元优惠券,再去买120 元的运动鞋;②先付 60元, 120元,获取 50 元的优惠券,再去买80 元的恤;T③先付 120 元,获取 50 元的优惠券,再去付60元, 80元的书包和T 恤;④先付 120 元, 80 元,获取 100 元的优惠券,再去付 60元的书包;分别计算出实质花销即可.【解答】解:①先付 60 元, 80元,获取 50元优惠券,再去买 120 元的运动鞋;实质花销为: 60+80﹣50+120 =210 元;②先付 60元, 120 元,获取 50元的优惠券,再去买 80 元的T恤;实质花销为: 60+120﹣50+80= 210 元;③先付 120元,获取50元的优惠券,再去付60元,80元的书包和T恤;实质花销为:120﹣ 50+60+80= 210 元;④先付 120元,80元,获取100元的优惠券,再去付60元的书包;实质花销为:120+80=200 元;综上可得:他的实质花销为210 元或 200 元.【说明】本题旨在学生养成认真读题的习惯.16. 在平面直角坐标系中,对于点P( x,y),若点 Q的坐标为( ax+y,x+ay),此中 a为常数,则称点 Q是点 P的“ a级关系点”,比如,点 P(1,4)的3级关系点”为 Q(3×1+4,1+3×4)即Q( 7,13),若点B的“ 2级关系点” 是B('3 ,3),则点B的坐标为;已知点 M( m﹣1,2m)的“﹣3级关系点” M′位于 y轴上,则 M′的坐标为.【分析】由点 B的“2级关系点”是B'(3,3)得出,解之求得x、y的值即可得;由点 M( m﹣1,2m)的“﹣3级关系点” M′的坐标为(﹣ m+3,﹣5m﹣1),且点M′在 y 轴上知﹣ m+3=0,据此求得m 的值,再进一步求解可得.【解答】解:∵点 B的“2级关系点”是 B'(3,3),则点 B的坐标为(1,1),∵点 M( m﹣1,2m)的“﹣3级关系点” M′的坐标为(﹣ m+3,﹣5m﹣1),且点 M′在y 轴上,∴﹣ m+3=0,解得m=3,则﹣ 5m﹣ 1=﹣ 16,∴点 M′坐标为(0,﹣16),故答案为:( 1, 1),( 0,﹣ 16).【说明】本题主要考察点的坐标,解题的重点是理解题并掌握“ a 级关系点”的定义,并娴熟运用.三、解答题 ( 本题共 68 分,第 17-22 题,每题 5 分,第 23-26 题,每题 6 分,第 27 、 28题,每题7分)解答应写出文字说明、验算步骤或证明过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年中考考试模拟试卷 数 学姓名 班级 考号(全卷三个大题,共27个题;满分150分,考试用时120分钟)注意事项:1.本卷为试题卷,考生必须在答题卷上解题作答,答案书写在答题卷相应位置上,在试题卷、草稿纸上作答无效.2.考试结束后,请将试题卷和答题卷一并交回.一、选择题:(本大题15个小题,每小题3分,共45分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中. 1.3的倒数是( )A .-3B .3C .13D .13-2.计算232(3)x x ⋅-的结果是( )A .56x - B .56x C .62x - D .62x 3.⊙O 的半径为4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是( ) A .相交 B .相切 C .相离 D .无法确定 4.使分式24x x -有意义的x 的取值范围是( )A .x =2B .x ≠2C .x =-2D .x ≠-2 5.不等式组2030x x ->-<⎧⎨⎩的解集是( )A .x>2B .x<3C .2<x<3D .无解6.如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD =40°,则∠DCF 等于( ) A .80° B .50° C .40° D .20°7.如图,是有几个相同的小正方体搭成的几何体的三种视图, 则搭成这个几何体的小正方体的个数是( )A .3B .4C .5D .6 8.观察市统计局公布的“十五”时期某市农村居民人均收入每年比上一年增长率的统计图,下列说法正确的是( )A .2003年农村居民人均收入低于2002年B .农村居民人均收入比上年增长率低于9%的有2年C .农村居民人均收入最多时2004年D .农村居民人均收入每年比上一年的增长率有大有小,但农村居民人均收入在持续增加9.免交农业税,大大提高了农民的生产积极性,镇政府引导农民对生产的耨中土特产进行加工后,分为都销售了1200千克,那么本次销售中,这三种包装的土特产获得利润最大是( ) A .甲 B .乙 C .丙 D .不能确定10.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为x 来确定点P (x ,y ),那么它们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( ) A .118B .112C .19D .1611.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32o, 那么∠2的度数是A.32oB.58oC.68oD.60o12.小明要给刚结识的朋友小林打电话,他只记住了电话号码的前5位的顺序,后3位是3,6,8三个数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨通电话的概率是A .121 B .61C .41D .31 13.2012年3月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是A.32,31B.31,32C.31,31D.32,35 14.若反比例函数ky x=的图象经过点(3)m m ,,其中0m ≠,则此反比例函数的图象在 A .第一、三象限B .第一、二象限C .第二、四象限D .第三、四象限15.如图,已知⊙O 是以数轴的原点O 为圆心,半径为1的圆,45AOB ∠=︒,点P 在数轴上运动,若过点P 且与OA 平行的直二、填空题:(本大题5个小题,每小题5分,共25分)在每小题中,请将答案直接填在题后的横线上. 16.分解因式:x 2-4=____________.17.如图,已知直线12l l ∥,∠1=40°,那么∠2=____________度.18.圆柱的底面周长为2π,高为1,则圆柱的侧面展开图的面积为____________. 19.废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量).某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,P AOB第8题且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水用科学计数法表示为____________立方米.20.如图,已知函数y =ax+b 和y =kx 的图象交于点P, 则根据图象可得,关于y ax b y kx=+=⎧⎨⎩的二元一次方程组的解是____________.三、解答题:(本大题7个小题,共80分)下列各题解答时必须给出必要的演算过程或推理步骤. 21.(8分)计算:12tan 60(51)3--︒+-+-;22. (8分)先化简,再求值:2244242x x x x x x +++÷---,其中1x =. 23.(12分)在暑期社会实践活动中,小明所在小组的同学与一家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A 、B 、C 三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示.若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A 型玩具有____________套,B 型玩具有____________套,C 型玩具有____________套.(2)若每人组装A 型玩具16套与组装C 型玩具12套所画的时间相同,那么a 的值为____________,每人每小时能组装C 型玩具____________套.24.(10分)期中考试后,九年级(1)班准备购买一批笔记本在家长会上奖励优秀学生,在购买时发现,每本笔记本可以打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本. (1)求打折前每本笔记本的售价是多少元?(2)由于考虑学生的需求不同,老师决定购买笔记本和钢笔共90件,钢笔每支原售价为6元,两种物品都打九折,若购买总金额不低于360元,且不超过365元,问有哪几种购买方案? (3):那种方案更省钱?25.(12分)如图,在梯形ABCD 中,AB ∥DC ,∠BCD =90°,且AB =1,BC =2,tan ∠ADC =2. ⑴求证:DC =BC ;论;⑶在⑵的条件下,当BE :CE =1:2,∠BEC =135°时,求sin ∠BFE 的值.26.(14分)已知,如图,BC 是以线段AB 为直径的O ⊙的切线,AC 交O ⊙于点D ,过点D 作弦DE AB ⊥,垂足为点F ,连接BD BE 、.. (1)仔细观察图形并写出四个不同的正确结论:①________,②________ ,③________,④____________(不添加其它字母和辅助线,任选1个结论进行证明); (2)A ∠=30°,CD=233,求O ⊙的半径r .27.(16分)已知:m 、n 是方程2650x x -+=的两个实数根,且m<n ,抛物线2y x bx c =-++的图像经过点A(m ,0)、B(0,n). (1)求这个抛物线的解析式;(2)设(1)中抛物线与x 轴的另一交点为C ,抛物线的顶点为D ,试求出点C 、D 的坐标和△BCD 的面积;(3)P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标.DO FBE(第27题图)2018年中考考试模拟试卷 数 学(5)答题卡姓名 班级 考号(全卷三个大题,共27个题;满分150分,考试用时120分钟)一、选择题(本大题共15小题,每小题只有一个正确选项,每小题3分,满分45分)、 1.[A][B][C][D] 2.[A][B][C][D] 3.[A][B][C][D] 4.[A][B][C][D] 5.[A][B][C][D] 6.[A][B][C][D] 7.[A][B][C][D] 8[A][B][C][D] 9.[A][B][C][D] 10.[A][B][C][D] 11.[A][B][C][D] 12.[A][B][C][D] 13[A][B][C][D] 14.[A][B][C][D] 15.[A][B][C][D]二、填空题(本大题共5小题,每小题5分,满分25分)16. .17. 度.18. .19. .20. . 三、解答题(本大题共7个题,满分80分)21.(8分)计算:12tan 601)--︒++;22. (8分)先化简,再求值: 2244242x x x x x x +++÷---,其中1x =.23.(12分)在暑期社会实践活动中,小明所在小组的同学与一家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A、B、C三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示.若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A型玩具有____________套,B型玩具有____________套,C型玩具有____________套.(2)若每人组装A型玩具16套与组装C型玩具12套所画的时间相同,那么a的值为____________,每人每小时能组装C型玩具____________套.24.(10分)期中考试后,九年级(1)班准备购买一批笔记本在家长会上奖励优秀学生,在购买时发现,每本笔记本可以打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本.(1)求打折前每本笔记本的售价是多少元?(2)由于考虑学生的需求不同,老师决定购买笔记本和钢笔共90件,钢笔每支原售价为6元,两种物品都打九折,若购买总金额不低于360元,且不超过365元,问有哪几种购买方案?(3):那种方案更省钱?25.(12分)如图,在梯形ABCD 中,AB ∥DC ,∠BCD =90°,且AB =1,BC =2,tan ∠ADC =2. ⑴求证:DC =BC ;⑵E 是梯形内的一点,F 是梯形外的一点,且∠EDC =∠FBC ,DE =BF ,试判断△ECF 的形状,并证明你的结论;⑶在⑵的条件下,当BE :CE =1:2,∠BEC =135°时,求sin ∠BFE 的值.26.(14分)已知,如图,BC 是以线段AB 为直径的O ⊙的切线,AC 交O ⊙于点D ,过点D 作弦DE AB ⊥,垂足为点F ,连接BD BE 、.. (1)仔细观察图形并写出四个不同的正确结论:①________,②________ ,③________,④____________(不添加其它字母和辅助线,任选1个结论进行证明); (2)A ∠=30°,CD =233,求O ⊙的半径r . DO FBE(第27题图)27.(16分)已知:m 、n 是方程2650x x -+=的两个实数根,且m<n ,抛物线2y x bx c =-++的图像经过点A(m ,0)、B(0,n). (1)求这个抛物线的解析式;(2)设(1)中抛物线与x 轴的另一交点为C ,抛物线的顶点为D ,试求出点C 、D 的坐标和△BCD 的面积;(3)P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标.2018中考模拟试卷数学(5)参考答案一、选择题:(每小题3分,共45分)1—5 C A A B C 6—10 D B D C B 11—15 B B C A C 二、填空题:(每小题5分,共25分)16.(x+2)(x -2) 17.40 18.2π或6.28均可 19.4310⨯ 20.42x y =-=-⎧⎨⎩三、解答题:(共80分) 21.32; 22.23.(每空2分)(1)132,48,60;(2)4,6. 24.25.(1)过A 作DC 的垂线AM 交DC 于M , 则AM =BC =2.(1分) 又tan ∠ADC =2,所以212DM ==.(2分)因为MC =AB =1,所以DC =DM+MC =2,即DC =BC .(3分) (2)等腰直角三角形.(4分)证明:因为DE =DF ,∠EDC =∠FBC ,DC =BC . 所以,△DEC ≌△BFC (5分)所以,CE =CF ,∠ECD =∠BCF . 所以,∠ECF =∠BCF+∠BCE =∠ECD+∠BCE =∠BCD =90° 即△ECF 是等腰直角三角形.(6分)(3)设BE =k ,则CE =CF =2k,所以EF =.(7分)因为∠BEC =135°,又∠CEF =45°,所以∠BEF =90°.(8分)所以3BF k ==(9分) 所以1sin 33BFE k k ∠==.(10分) 26.(1)BC AB AD BD ⊥⊥,,DF FE BD BE ==,,BDF BEF △≌△, BDF △∽BAD △,BDF BEF ∠=∠,A E DE BC ∠=∠,∥等(每写出一个正确结论得1分,满分4分.)(2)解:AB Q 是O ⊙的直径90ADB ∴∠=° ········ 5分 又30E ∠=Q ° 30A ∴∠=° ················ 6分12BD AB r ∴== ··················· 7分(第22题图)90CBA ∴∠=° ····················· 8分 60C ∴∠=︒在Rt BCD △中,3CD =tan 602BD rDC ∴==° ····························9分 2r ∴= 10分27.(1)解方程2650x x -+=,得125,1x x ==(1分)由m<n ,有m =1,n =5 所以点A 、B 的坐标分别为A (1,0),B (0,5).(2分) 将A (1,0),B (0,5)的坐标分别代入2y x bx c =-++.得105b c c -++==⎧⎨⎩解这个方程组,得45b c =-=⎧⎨⎩所以,抛物线的解析式为245y x x =--+(3分)(2)由245y x x =--+,令y =0,得2450x x --+= 解这个方程,得125,1x x =-=所以C 点的坐标为(-5,0).由顶点坐标公式计算,得点D (-2,9).(4分) 过D 作x 轴的垂线交x 轴于M . 则1279(52)22DMC S ∆=⨯⨯-=12(95)142MDBO S =⨯⨯+=梯形,1255522BOC S ∆=⨯⨯=(5分)所以,2725141522BCD DMC BOC MDBO S S S S ∆∆∆=+-=+-=梯形.(6分)(3)设P 点的坐标为(a ,0)因为线段BC 过B 、C 两点,所以BC 所在的值线方程为y =x+5. 那么,PH 与直线BC 的交点坐标为E(a ,a+5),(7分)PH 与抛物线245y x x =--+的交点坐标为2(,45)H a a a --+.(8分)由题意,得①32EH EP =,即23(45)(5)(5)2a a a a --+-+=+解这个方程,得32a =-或5a =-(舍去)(9分)②23EH EP =,即22(45)(5)(5)3a a a a --+-+=+解这个方程,得23a =-或5a =-(舍去)P 点的坐标为3(,0)2-或2(,0)3-.(10分)。

相关文档
最新文档