最优控制动态求解
最优控制-第七章-动态规划法

当∆t很小时,有
t t
t
Lx, u, t d t Lx, u, t t
J x, t min
*
min
uU
uU
tf
t0
Lx, u, t d t Φ xt f
tf t t
t t
t
Lx, u, t d t
Lx, u, t d t Φ xt f
P1 11
7
P2 4 2
P3 4 4
12 A 4 8 Q1
4 3 2 2 Q3 B
5 Q2
第一段:P1、Q1的前站是始发站A。显见从
A到B的最优值为12,故得最优路线为AQ1P2Q3B。
综上可见,动态规划法的特点是: 1) 与穷举算法相比,可使计算量大大减少。如
上述最优路线问题,用动态规划法只须做10次
J x, t min Lx, u, t t J xt t , t t
* * uU
(8)
* J x , t J x, t * * J x x, t t J x, t t (12) x t x * T
A城出发到B城的行车时间最短。
P1 3 A 4 Q1 1
7
P2
2
P3 4
4
6 8 2 Q2
3 3 3
2 Q3 4
2
B
现将A到B分成四段,每一段都要作一最优决 策,使总过程时间为最短。所以这是一个多段最 优决策问题。 由图2可知,所有可能的行车路线共有8条。 如果将各条路线所需的时间都一一计算出来,并 作一比较,便可求得最优路线是AQ1P2Q3B,历时 12。这种一一计算的方法称为穷举算法。这种方 法计算量大,如本例就要做3×23=24次加法和7次 比较。如果决策一个n段过程,则共需(n-1)2n-1次 加法和(2n-1-1)次比较。可见随着段数的增多,计 算量将急剧增加。
最优控制问题介绍

最优控制问题介绍最优控制问题是现代控制理论的核心内容之一,它研究的主要问题是如何在满足一定约束条件下,使得某一性能指标达到最优。
这类问题广泛存在于各个领域,如航天工程、经济管理、生态系统等。
通过对最优控制问题的研究,我们可以更加科学、合理地进行决策,实现资源的优化配置,提高系统的运行效率。
一、最优控制问题的基本概念最优控制问题通常可以描述为一个动态系统的优化问题。
在这个问题中,我们需要找到一个控制策略,使得系统从初始状态出发,在给定的时间内,通过控制输入,使得系统的某一性能指标达到最优。
这个性能指标可以是时间最短、能量消耗最小、误差最小等。
为了解决这个问题,我们首先需要建立系统的数学模型。
这个模型应该能够准确地描述系统的动态行为,包括状态方程、输出方程以及约束条件等。
然后,我们需要定义一个性能指标函数,这个函数描述了我们希望优化的目标。
最后,我们通过求解一个优化问题,找到使得性能指标函数达到最优的控制策略。
二、最优控制问题的分类根据系统的动态特性和性能指标函数的不同,最优控制问题可以分为多种类型。
其中,最常见的包括线性二次型最优控制问题、最小时间控制问题、最小能量控制问题等。
1. 线性二次型最优控制问题:这类问题中,系统的动态特性是线性的,性能指标函数是状态变量和控制输入的二次型函数。
这类问题在实际应用中非常广泛,因为许多实际系统都可以近似为线性系统,而二次型性能指标函数可以方便地描述许多实际优化目标。
2. 最小时间控制问题:在这类问题中,我们的目标是使得系统从初始状态到达目标状态的时间最短。
这类问题通常出现在对时间要求非常严格的场合,如火箭发射、紧急制动等。
3. 最小能量控制问题:这类问题的目标是使得系统在完成指定任务的过程中消耗的能量最小。
这类问题在能源有限的系统中尤为重要,如无人机、电动汽车等。
三、最优控制问题的求解方法求解最优控制问题的方法主要有两种:解析法和数值法。
1. 解析法:解析法是通过求解系统的动态方程和性能指标函数的极值条件,得到最优控制策略的解析表达式。
离散控制系统中的最优控制方法

离散控制系统中的最优控制方法离散控制系统是一种在时间和状态上都是离散的控制系统,相对于连续控制系统来说,其最优控制方法也有所不同。
本文将介绍离散控制系统中的最优控制方法,主要包括动态规划、最优化算法和强化学习。
一、动态规划动态规划是一种基于状态转移的最优化方法,在离散控制系统中有着广泛的应用。
其基本思想是将原问题分解为若干子问题,并通过求解子问题的最优解来得到原问题的最优解。
在离散控制系统中,我们可以将状态和控制变量转化为状态转移方程,然后利用动态规划递推求解,得到最优的控制策略。
二、最优化算法最优化算法是一种通过迭代优化来求解最优控制问题的方法,常见的有梯度下降法、牛顿法等。
在离散控制系统中,我们可以将控制问题转化为一个优化问题,并使用最优化算法来求解最优的控制策略。
例如,在离散时间马尔可夫决策过程中,我们可以利用值迭代或策略迭代等最优化算法来求解最优策略。
三、强化学习强化学习是一种通过试错学习来求解最优控制问题的方法,其核心思想是智能体通过与环境的交互来学习最优的行为策略。
在离散控制系统中,我们可以将控制问题抽象为一个马尔可夫决策过程,并使用强化学习算法如Q-learning、SARSA等来求解最优策略。
强化学习在离散控制系统中具有较好的应用效果,在复杂的离散控制系统中能够找到近似最优的控制策略。
综上所述,离散控制系统中的最优控制方法包括动态规划、最优化算法和强化学习。
这些方法在不同的离散控制系统中有着广泛的应用,能够求解出最优的控制策略。
在实际应用中,我们需要根据具体的控制问题选择合适的方法,并结合系统的特点和需求进行调整和优化。
离散控制系统中的最优控制方法在提高系统性能和效率方面具有重要意义,对于实际工程应用具有较大的价值。
经济学中的数学分析方法——12 最优控制与动态最优化

动态最优化的问题, 在自然科学和社会科学的很多领域中有着十分广泛的应用。 在经济 学中, 尤其在博弈论和宏观经济学中有着大量的应用。 研究动态最优化的数学工具有好几种, 如变分法、动态规划和最优控制理论等。我们在第十章中简要地介绍过动态规划,但是没有 介绍它的最优化原理。在本章我们来介绍变分法、动态规划的最优化原理和最优控制,重点 是最优控制理论。最优控制理论是数学上一个独立的学科,包含的内容很丰富。在本章我们 只 能 简要 地最 优控 制理 论的 框架 和主 要 的 结论 : Bellman 最 优 化原 理, 庞 得 里亚 金 (Pontryagin) 极大值原理及其在宏观经济学中的应用。
故整个时段的总成本为:
J (u) = ∫ L( t , x ( t ), u( t ))dt
t0
T
(12.9)
于是问题就归结为:求生产速率 u(t),使其满足约束条件(12.6) , (12.7) ,且库存量 x(t)满 足( 12.8) ,并使作为“性能指标”的总成本 J( u)为最小。 最优控制问题的一般提法 通过以上两个实例,可以看出最优控制问题有许多共同点。归纳起来,它们都具有如下 四个要素: (1) 受控对象的数学模型。 受控对象,即状态变量,都是由所谓状态方程描述的动态系统。一般可表为一个微分方 程:
t0 T
最优控制问题是要求一个容许控制 u( t ) ∈ U, t ∈ [ t0 , T ] ,使系统由初始状态 x0 出 发,在某一时刻 T > t 0,达到目标集 S,并使性能 J(u) 达到最小(或最大)值。
PDF 文件使用 "pdfFactory Pro" 试用版本创建
x∈[ x1 , x2 ]
最优控制基本原理

最优控制基本原理
最优控制基本原理是控制理论中的一个重要分支,它主要研究如何设计最优控制器以实现系统的最优性能。
最优控制的基本原理包括动态规划、变分法和最优化理论等。
动态规划是一种通过将问题分解成子问题并递归地解决这些子问题来求解最优控制问题的方法。
它通过构建最优化问题的状态转移方程和边界条件来寻找最优控制策略。
变分法则是一种数学方法,它通过将最优控制问题转化为弱形式的变分问题来寻找最优控制策略。
变分法运用泛函分析中的概念和方法,可以得到对动力学过程进行最优控制的必要条件。
最优化理论是一种通过最小化或最大化目标函数来寻找最优控制策略的方法,它主要应用于连续系统和非线性系统的最优控制问题中。
最优化理论的方法包括拉格朗日乘数法、Kuhn-Tucker条件和梯度下降法等。
最优控制基本原理在实际应用中有着广泛的应用,例如控制机器人、导弹、航天器和工业过程等。
通过研究最优控制基本原理,可以提高控制系统的性能,提高工业过程的效率,优化资源利用等。
- 1 -。
最优控制问题的动态规划法

最优控制问题的动态规划法动态规划法是一种常用的最优控制问题求解方法。
它通过将问题分解为子问题,并保存子问题的最优解,最终得到整体问题的最优解。
本文将介绍最优控制问题的动态规划法及其应用。
一、概述最优控制问题是指在给定控制目标和约束条件下,通过选择一组最优控制策略来实现最优控制目标。
动态规划法通过将问题分解为若干个阶段,并定义状态和决策变量,来描述问题的动态过程。
并且,动态规划法在求解过程中通过存储子问题的最优解,避免了重复计算,提高了计算效率。
二、最优控制问题的数学模型最优控制问题通常可以表示为一个关于状态和控制的动态系统。
假设系统的状态为$x(t)$,控制输入为$u(t)$,动态系统可以表示为:$$\dot{x}(t) = f(x(t), u(t))$$其中,$\dot{x}(t)$表示状态$x(t)$的变化率,$f$为状态方程。
此外,系统还有一个终止时间$T$,以及初始状态$x(0)$。
最优控制问题的目标是找到一个控制策略$u(t)$,使得系统在给定时间$T$内,从初始状态$x(0)$演化到最终状态$x(T)$,同时使得性能指标$J(x,u)$最小化。
性能指标通常表示为一个积分的形式:$$J(x,u) = \int_0^T L(x(t), u(t)) dt + \Phi(x(T))$$其中,$L$表示运动代价函数,$\Phi$表示终端代价函数。
三、最优控制问题的动态规划求解最优控制问题的动态规划求解包括两个主要步骤:状态方程的离散化和动态规划递推。
1. 状态方程的离散化将状态方程离散化可以得到状态转移方程。
一般来说,可以使用数值方法(如欧拉方法、龙格-库塔方法)对状态方程进行离散化。
通过选择适当的时间步长,可以平衡计算精度和计算效率。
2. 动态规划递推动态规划递推是最优控制问题的关键步骤。
假设状态函数$V(t,x)$表示从时刻$t$起,状态为$x$时的最优性能指标。
动态规划递推过程通常可以描述为以下几个步骤:(1)递推起点:确定最终时刻$T$时的值函数$V(T,x)$,通常可以根据终端代价函数$\Phi$直接得到。
最优控制问题的数值方法

最优控制问题的数值方法最优控制问题是应用数学中的一类重要问题,涉及到优化某些目标函数的控制策略。
这类问题在很多领域都有广泛的应用,如经济学、工程学、环境科学等。
为了求解最优控制问题,研究者们开发了多种数值方法,以提供高效准确的策略。
一、动态规划法动态规划法是求解最优控制问题中最常用的方法之一。
其基本思想是将问题划分为若干个阶段,在每个阶段选择最优的控制策略,以达到整体的最优目标。
动态规划法的核心是计算值函数或状态函数,通过递归的方式实现最优解的求解。
在动态规划法中,首先需要建立状态转移方程,描述状态之间的变化关系。
然后通过迭代求解,逐步更新值函数,直到收敛为止。
具体的计算方法可以根据不同的最优控制问题进行调整,以提高计算效率。
二、最优控制问题的间接方法除了动态规划法,最优控制问题还可以通过间接方法求解。
间接方法主要基于变分原理,通过构建哈密顿-雅可比-贝尔曼(HJB)方程来求解问题。
该方法将最优控制问题转化为一个偏微分方程,通过求解该方程得到最优解。
在应用最优控制问题的间接方法时,需要确定合适的控制参数,并在求解偏微分方程时进行迭代计算。
这种方法的优势在于能够处理一些非线性和约束等较为复杂的情况,但同时也带来了计算复杂度较高的问题。
三、最优控制问题的直接方法最优控制问题的直接方法是另一种常用的数值求解方法。
它直接构造控制策略的参数化形式,并通过参数调整来实现目标函数的最小化。
该方法需要事先构造一个合适的优化模型,并选择合适的优化算法进行求解。
在直接方法中,常用的优化算法有梯度下降法、共轭梯度法、牛顿法等。
通过迭代计算,优化参数逐步调整,直到达到最优解。
直接方法不需要建立状态函数或值函数,因此可以简化运算,但需要根据具体问题进行参数化建模和算法选择。
总结:在求解最优控制问题时,可以根据问题的特点选择适合的数值方法。
动态规划法适用于离散的最优控制问题,通过递归计算值函数实现最优策略的求解。
间接方法利用变分原理将问题转化为偏微分方程,并通过迭代计算获得最优解。
最优控制动态求解

tf t0
t f vdu
t0
J
tf t0
F x
d dt
(
F x
)xdt
F x
x
tf t0
(4)
J取极值的必要条件是 J 等于零。因 x 是 任意的,要使(3-2)中第一项(积分项)为 零,必有
F x
d dt
(
F x
)
0
(5)
(4)式中第二项即为结论中的式(3).
举例: 利用上面的结论求得
H (x,u, ,t) L(x,u,t) T (t) f (x,u,t) (15)
它称为哈密顿(Hamilton)函数,在最优控制中 起着重要的作用。
(1) 末端时刻固定时的最优解 对于如下最优控制问题:
x Rn , u Rm无约束且在[t0,tf]上连续, Rr , r n.在[t0,tf]
(11)
2) 末端状态受约束时的横截条件 设受约束方程为 x(tf)=c(tf) ,由(7)可知
代入(11) ,并考虑 t f 任意,得到tf自由、x(tf)受约束的横
截条件和边界条件为
(11.1)
如果t0也自由、x(t0)受约束,即沿着曲线g(t) 则应满足以下横截条件
x(t0 ) g(t0 )
J tf dt
J
tf
uT
t0
(t)u(t)dt
t0
J
tf t0
m
u j (t) dt
j 1
II. 末值型性能指标 J [x(t f ),t f ]
III. 复合型性能指标
J [x(t f ),t f ]
tf F x(t), x(t),tdt
t0
4.1 用变分法解最优控制 ➢ 4.1.1 泛函与变分 ➢ 4.1.2 欧拉方程 ➢ 4.1.3 横截条件 ➢ 4.1.4 变分法解最优控制问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xn x 0 (n ) xn, xRn
则
lim
n
J
ቤተ መጻሕፍቲ ባይዱ( xn
)
J
(x)
则线性泛函J (x)是连续的,称J[x]为线性连续泛函。
3、线性泛函:满足下面条件的泛函称为线性泛函
JX JX
J (X Y ) J (X ) J (Y )
这里 是实数,X 和 Y 是函数空间中的函数。
4、自变量函数的变分:自变量函数 X (t)的变分 X
最优控制问题的一般提法:在满足系统方 程的约束条件下,在容许控制域中确定一 个最优控制律,使得系统状态从已知初态 转移到要求的目标集,并使性能指标达到 极值。
最优控制的应用类型
I. 积分型性能指标 1. 最小时间控制; 2. 最少能量控制; 3. 最少燃料控制;
J tf F x(t), x&(t),tdt t0
及横截条件
F ( x&)ttf
x(t f
F ) ( x&)tt0
x(t0)
0
(2) (3)
证明:x(t)与 x(t) 之间有如下关系 x(t) x* (t) x(t)
x(t) x* (t) x(t)
于是泛函J 的增量J 可计算如下(以下将*号省去)
J t f t0
Fx x, x x,t Fx, x,tdt
定理 设有如下泛函极值问题:
min J tf g(x(t), x&(t),t)dt
x(t )
t0
tf t0
F
x
x
F
x&
x&
o
(
x)2, (
x&)2
dt
上式中 o[( x)2 , ( x&)2 ]是高阶项。
根据定义,泛函的变分 J 是 J 的线性
主部,即
J
tf t0
F x
x
Fxxdt
对上式第二项作分部积分,按公式
可得
t f t0
udv uv
tf t0
t f vdu
t0
J
数X (t),有一个实数值J 与之相对应,则称J 为依赖于
函数X (t)的泛函,记为
J J X (t)
粗略来说,泛函是以函数为自变量的函数。(函数的函数)
2、泛函的连续性:
若对于收敛于点x0点列xn,其中x0,xn Rn ,均有
lim
n
J
(xn
)
J
(x0
)
则称泛函J在x0处连续。对于线性泛函J[x],若
(2) (L1L2 ) L2 L1 L1 L2
b
b
(3) a L[x, x&,t]dt a L[x, x&,t]dt
(4) dx d x
dt dt
举例: 可见,计算泛函的变分如同计算函数的微分一样。
6、泛函的极值:若存在 0 ,对满足的 X X * 一切X,J (X ) J (X * ) 具有同一符号,则
4.1.2 欧拉方程
假定t0与tf 给定,且初态与末态两端固定。 (1) 无约束泛函极值的必要条件 定理 设有如下泛函极值问题:
min J tf F x(t), x&(t),tdt
x(t )
t0
(1)
已知x(t0)=x0 拉方程
x(tf)=xf
,则极值曲线
x* (t )
应满足如下欧
F d (F ) 0 x dt x
若在x= x0处J[x]可微,则J[x]的变分为
J[x0, x]
J [ x0
x]
0
,0
1
证明:
由于 又因为
是 的线性连续泛函, 是 的高阶无穷小,
J [ x0
x]
0
lim
0
J [ x0
x]
J[x0 ]
=
lim
0
1
{L[x0
,
x
]
r[x0
,
x]}
泛函变分的规则 = J[x0 , x] (1) (L1 L2 ) L1 L2
LX, XrX, X
这里,LX, X 是X 的线性泛函,rX, X 是关于 X
的 高阶无穷小,则
J LX, X
称为泛函J[x]的变分。 可知泛函变分就是泛函增量 的线性主部。
当一个泛函具有变分时,也称该泛函可微。和函 数的微分一样,泛函的变分可以利用求导的方 法来确定。
定理 设J[x]是线性赋范空间Rn上的连续泛函,
是指同属于函数类X (t)中两个函数X1(t) 、X 2 (t) 之差
X X1(t) X 2 (t)
这里, t 看作为参数。当 X (t) 为一维函数时,X 可用图4-1来表示。
图4-1 自变量函数的变分
5、泛函的变分:当自变量函数 X (t)有变分X 时, 泛函的增量为
J JX X JX
返回主目录
在动态系统最优控制问题中,性能指标是一个 泛函,性能指标最优即泛函达到极值。解决泛函极 值问题的有力工具是变分法。所以下面就来列出变 分法中的一些主要结果,大部分不加证明,但读者 可对照微分学中的结果来理解。
4.1.1 泛函与变分
先来给出下面的一些定义。
1、泛函: 如果对某一类函数X (t)中的每一个函
称 J (X ) 在 X X *处有极值(极大值或极小值)。
定理(变分预备定理):设 (t) 是时间区间[t0, t1]
上连续的n维向量函数,(t) 是任意的连续n维
向量函数,且有 (t0 ) (t1) 0 ,若
t1 T (t)(t)dt 0 t0
则必有
(t) 0,t [t0,t1]
tf t0
F x
d dt
( Fx)xdt
F x
x
tf t0
(4)
J取极值的必要条件是 J 等于零。因 x 是 任意的,要使(3-2)中第一项(积分项)为 零,必有
F d (F ) 0 x dt x
(5)
(4)式中第二项即为结论中的式(3).
举例: 利用上面的结论求得
(2) 有等式约束泛函极值的必要条件
第4章 最优控制原理与应用
最优控制的基本概念
最优控制研究的主要问题:根据已建立的被控 对象的数学模型,选择一个容许的控制率,使 得被控对象按照预定的要求运行,并使给定的 某一性能指标达到极小值(或极大值)。
从数学观点来看,最优控制研究的问题是:求 解一类带有约束条件的泛函极值问题。
最优控制问题
J tf dt
J
tf
uT
t0
(t)u(t)dt
t0
J
tf t0
m
u j (t) dt
j 1
II. 末值型性能指标 J [x(t f ),t f ]
III. 复合型性能指标
J [x(t f ),t f ]
tf F x(t), x&(t),tdt
t0
4.1 用变分法解最优控制 ➢ 4.1.1 泛函与变分 ➢ 4.1.2 欧拉方程 ➢ 4.1.3 横截条件 ➢ 4.1.4 变分法解最优控制问题