第四章蛋白酶与溶解酶..知识讲解
溶解酶使用方法和配比-概述说明以及解释

溶解酶使用方法和配比-概述说明以及解释1.引言1.1 概述概述部分的内容可以按照以下方向进行展开:概述部分旨在向读者介绍本文的主题和重要性。
本文的主题是溶解酶的使用方法和配比,这是一个在生物化学和实验室研究中非常重要的话题。
溶解酶是一种能够将蛋白质分子分解成其组成的氨基酸的酶类物质。
在许多实验和研究中,我们经常需要对蛋白质进行溶解,以便于后续的实验操作和分析。
溶解酶的使用方法是指我们在实验中如何正确地使用溶解酶来使蛋白质溶解。
这其中包括一系列操作步骤,如酶的加入方式、酶的浓度、反应的时间和温度等因素的控制。
正确的使用方法能够确保溶解酶的最佳活性和效果,从而有助于实验结果的准确性和可靠性。
而配比原则则是指在使用溶解酶时,我们应该根据目标蛋白质的性质和实验需求,选择恰当的溶解酶配比。
配比原则中考虑的因素包括蛋白质的丰度、其结构特性、实验要求等。
正确的配比能够促进蛋白质的有效溶解,避免或最小化对目标蛋白质的损伤。
本文将深入探讨溶解酶的使用方法和配比原则,并通过实验案例和研究成果,展示了不同情况下的最佳实践。
同时,我们还将对溶解酶使用方法和配比的未来发展和应用前景进行展望,以期为生物化学和实验室研究领域的科研人员提供有益的指导和参考。
通过阅读本文,读者将能够了解到溶解酶的重要性、使用方法和配比原则,并能够根据实验需求和目标蛋白质的特性选择适当的操作和配比策略,为实验结果的准确性和可重复性提供有力支持。
1.2文章结构1.2 文章结构本文将按照以下结构进行叙述:第二部分为正文部分,分为三个小节。
首先,我们将介绍溶解酶的作用,包括其在溶解过程中所起的关键作用和具体应用场景。
其次,我们将详细探讨溶解酶的使用方法,包括使用前的准备工作、酶的添加方式和操作步骤等。
最后,我们将讨论溶解酶的配比原则,即如何确定不同材料之间的配比关系,以确保最佳效果和稳定性。
第三部分为结论部分,分为三个小节。
首先,我们将总结溶解酶的使用方法,强调关键的步骤和注意事项,以便读者能够正确并高效地使用溶解酶。
酶在知识点总结

酶在知识点总结酶的结构酶是生物体内的大分子蛋白质,通常由氨基酸组成。
酶的结构是其功能的基础,其中包括活性位点,辅助因子等。
酶通常具有特定的三维结构,这种结构使其能够与底物分子结合,从而加速化学反应的发生。
酶的活性位点常常与底物结合,并在其上发生化学变化,从而产生产物。
酶的功能酶的主要功能是加速化学反应的速率,使得生物体内的代谢过程能够迅速进行。
酶还具有高度的特异性,对特定的底物具有高度的选择性。
酶还可以被调节,其活性受到环境条件和调节蛋白的控制。
酶的分类根据其功能和生物化学过程,酶可以分为若干种类。
例如,氧化还原酶主要负责氧化还原反应;水解酶负责水解反应;脱氢酶促进脱氢反应等。
此外,酶还可以根据其底物的来源进行分类,例如糖解酶、脂解酶等。
酶的作用机制酶的作用机制是其具有高度选择性的原因,也是其能够加速化学反应的关键。
酶与底物结合后,产生酶底物复合物,然后通过酶催化的过程,使得底物分子之间的键能够更容易地断开并重新组合,从而形成产物。
酶的活性调控酶的活性可以受到多种因素的调节。
例如,温度、pH值和离子浓度都能够影响酶的活性。
此外,酶的活性还可以受到调节蛋白的影响,这些蛋白质能够促进或抑制酶的活性。
酶的应用由于酶具有高度的特异性和高效的催化作用,它在生物技术领域有着广泛的应用。
例如,酶可以用于制药、食品加工、生物柴油生产等领域。
此外,酶还可以用于环境保护,例如净化废水和污染物等。
总结酶是生物体内重要的生物催化剂,可以加速化学反应的速率,促进生物体内的代谢过程。
酶具有高度的特异性和高效的催化作用,广泛应用于生物技术,为人类提供了众多的福祉。
因此,对酶的结构、功能、分类、作用机制、活性调控和应用都有着重要的研究价值。
希望本文能够帮助读者更好地理解酶在生物体内的重要作用。
第四章蛋白酶与溶解酶解析

– 木瓜蛋白酶存在于木瓜汁液中,分子量 23900,至少有3个氨基酸残基存在于酶 的活性部位,它们是Cys25(半胱)、 His159(组)和Asp158(天冬)。
– 当Cys25被氧化剂氧化或与重金属离子结 合时,酶活力被抑制,而还原剂半胱氨 酸(或亚硫酸盐)或EDTA能恢复酶的活 力。还原剂作用:从-S-S——-SH, EDTA螯合重金属离子。
– (3)对于肽链端解酶的氨肽酶,要求底物中X 是一个-H,优先选择Y不是-OH,特异性表现 在R1上。
• 5、对肽键的要求:
大多数蛋白酶不仅限于水解肽键, 尚能作用于酰胺(-NH2)、酯(COOR)、硫羟酸酯(-COSR)和异 羟污酸(力。如肽键→脂键, 即使R2满足要求也不能作为底物。
• 1、R1和R2基团的性质:
– 胰凝乳蛋白酶仅能水解R1是酪氨酸、苯 丙氨酸或色氨酸残基的侧链的肽键;胰 蛋白酶仅能水解R1是精氨酸或赖氨酸残 基的侧链的肽键。
– 胃蛋白酶和羧肽酶对R2基团具有特异性 要求,如R2是苯丙氨酸残基的侧链,那
• 2、氨基酸构型: 必须是L型的,天然蛋白质均属L
型。 • 3、底物分子大小:
5.1.2蛋白酶分类:
• 1、来源: (1)植物:菠萝、木瓜、无花果 (2)动物:胃、胰蛋白酶、凝乳酶 (胃)
(3)微生物:1398枯草杆菌、3942栖 土曲霉蛋白酶、放线菌蛋白酶
• 2、最适作用条件: (1)中性蛋白酶:pH6~8 1398枯草 杆菌、3942栖土曲霉蛋白酶 (2)碱性蛋白酶:pH9~11 2709枯草 杆菌蛋白酶
1.5 蛋白酶水解蛋白质的苦味来源:
• 水解蛋白酶的苦味和蛋白质原有的氨基
酸组成有关。特别是蛋白质中的疏水性 氨基酸是导致蛋白质经水解后产生苦肽
蛋白酶类医学知识课件

9;最适温度65℃,作用温度范围30-70℃,生成 产物:氨基酸。 菠萝蛋白酶(Bromelain)、无花果蛋白酶(Ficin): (3)微生物蛋白酶 酸性蛋白酶、中性蛋白酶、碱性蛋白酶
2、医药工业: 含木瓜蛋白酶的药物,可起到消炎、利胆、止痛、
助消化的功效,进一步研究表明亦可治疗妇科病、青 光眼、昆虫的叮咬等。
5
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系网站或本人删除。
3、纺织工业:羊毛的防缩:用木瓜蛋白酶处理过的羊毛, 其抗张度比常规方法高,毛线手感柔软,收缩性为0;还 可用于蚕的脱胶和蚕丝的精炼。
金属离子对酶活的影响: Mn2+,Ca2+,Mg2+激活酶; Cu2+,Hg2+,Al3+抑制酶活。
3
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系网站或本人删除。
木瓜蛋白酶(Papain)
木瓜蛋白酶是从木瓜果实中提炼而得的纯天然生物酶,它是 由212个氨基酸组成,分子量为21000,属于含巯基(— SH)肽链内切酶,其活性受氧化剂氧化或重金属抑制。具 有蛋白酶和酯酶的活性,有较广泛的特异性,对动植物蛋白、 多肽、酯、酰胺等有较强的酶解能力,同时还具有合成的能 力,可把蛋白质水解物再合成蛋白质类物质,这种能力可用 来改善动植物蛋白的营养价值或功能性质。
(4)羧基蛋白酶:活性中心含天门冬氨酸等酸性氨基酸。 如米曲霉、黑曲霉产生的酸性蛋白酶。
1文档仅Biblioteka 参考,不能作为科学依据,请勿模仿;如有不当之处,请联系网站或本人删除。
最新蛋白质与酶学讲义完全版_图文ppt课件

三、蛋白质的氨基酸序列与生物功能
(一)同源蛋白质的物种差异与生物进化
1.同源蛋白质
同源蛋白质是指在不同生物体中行使相同或相似功能的蛋白质。
同源蛋白质的氨基酸序列具有明显的相似性,这种相似性序列称 序列同源性(sequence homology)。
肌球蛋白(兔)
470000
核酮糖二磷酸羧化酶(菠菜) 560000
谷氨酰合成酶(E.coli)
600000
残基数目/链 21(A), 30(B) 104 124 129 153 13(α),132(β),97(γ) 141(α),146(β) 550 200 214(α), 446(β) 500
1800 (重链h), 190 (α) ,149 (α/) ,160 (β)
用两种或几种不同的断裂方法(指断裂点不同)将每条多肽链样品降解 成两套或几套重叠的肽段或称肽碎段。
(7)测定各肽段的氨基酸序列
常用的肽段测序方法是Edman降解法,此外还有酶解法和质谱法等。
(8)重建完整多肽链的一级结构
利用两套或多套肽段的氨基酸序列彼此间有交错重叠可以拼凑出原来的 完整多肽链的氨基酸序列。
(9 )确定半胱氨酸残基间形成的S—S交联桥的位置
(二)N—末端和C—末端氨基酸残基的鉴定
1.N—末端分析
(1)二硝基氟苯(DNFB或FDNB)法
多肽或蛋白质的游离末端NH2与DNFB(称Sanger试剂) 反应后, 生成DNP—多肽或DNP—蛋白质。DNP—多肽经酸水解后,只 有N—末端氨基酸为黄色DNP—氨基酸衍生物,其余的都是游 离氨基酸。
不变碱基(invariant residue):同源蛋白质的氨基酸序列中有许 多位置的氨基酸残基对所有已研究过的物种来说都是相同的。 可变碱基 (variant residue):其他位置的氨基酸残基对不同物种 有相当大的变化。
酶学-蛋白酶

蛋白酶
成员:杨超越 李星宇 舒皓钰 王睿飞 徐也甜 李锐涛
蛋白酶
蛋白酶是水解蛋白质肽链的一类酶的总称。到本
世纪初,已经报导的微生物蛋白酶估计超过900
种,生物体的生理活动和疾病的发生,如食物之
消化吸收、血液之凝固、溶血作用、炎症、血压
调节、细胞分化自溶、机体衰老、癌症转移、生
蛋白酶的应用
蛋白酶在烘焙中的应用
蛋白酶的作用机理
蛋白酶能作用于蛋白质和多肽形成多肽 和氨基酸。完好的面粉中蛋白酶活力很 低,制作面包时添加蛋白酶会使面团中 多肽和氨基酸含量增加,氨基酸是形成 香味物质的中间产物,多肽则是潜在的 滋味增强剂、氧化剂、甜味剂或苦味剂。 蛋白酶种类不同,产生的羰基化合物也 不同,若蛋白酶中不含产生异味的脂酶, 适量添加有利于改替面包的香气。
2009年 以色列 用了4500磅的原料 在特拉维夫做了世界最大的鹰嘴豆泥 昭示自己正宗
黎巴嫩人表示不服, 2010年300大厨做了两倍的量 许多人围着大盘载歌载舞
2015年以色列本来打算做一个15吨的 后来因为安全问题而作罢。。。。。。。。
赋予我们食物想象的豆类 粉身碎骨后带来了更多的惊喜
老祖先赠予人类的实惠食物 滋养了中东地区来来去去的民族 文明的兴盛和交流让其传遍地中海各个领域 融入了中东各国人民的血液 在交错分裂的历史和政治图景中 又成为了各自民族想象和身份认同的一部分
内源蛋白酶对肉类食品滋味的影响
滋味是肉制品的重要感官特性之一,公认的基本味 觉有酸、甜、苦、咸和鲜。肉类食品的滋味物质主要有 游离氨基酸、肽、核苷酸和无机盐。 蛋白质的降解是氨基酸和肽形成的重要途径之一, 不同的肽与氨基酸具有不同的呈味特性,从而使肉呈现 不同的滋味。
生物技术概论第四章酶与细胞的固定化

第四章 酶与细胞的固定化
固定化技术发展
(游离)酶应用的一些不足之处:
(1)酶的稳定性较差,易受外界(溶液) 条件影响而活性降低或失去活性;
(2)产物的分离纯化较困难; (3)酶使用后通常不能回收,即一般只是
一次性使用。
改善方法之一就是固定化技术的应用:
◆影响固定化酶最适pH值的因素主要有两个, 一个是载体的带电性质,另一个是酶催化反应 产物的性质。
5.最适反应温度:
酶固定化后可能导致其空间结构更为稳定, 因此大多数酶固定化后,其最适温度随之 提高。
6.动力学常数:Km值(米氏常数)与 Vm(最大反应速度)
Km值随载体性质变化 载体与底物带相同电荷,Km’>Km固定化酶降低了酶
(1)固定化酶: 是指固定在一定载体上并在一定
的空间范围内进行催化反应的酶。
(2)固定化细胞: 是指固定在载体上并在一定的空 间范围内进行生命活动的细胞。
(3) 固定化原生质体技术: 有利于胞内物质的分泌。
第一节 酶的固定化 第二节 微生物、植物细胞和动物细胞固定化 第三节 原生质体固定化
的亲和力。
载体与底物电荷相反,静电作用,Km'<Km
大多数天然酶固定化后其最大反应速度(Vm)与天然酶 相同或接近。
7.底物特异性: 固定化酶的底物特异性与游离 酶比较可能有些不同,其变化与底物分子量的 大小有一定关系。对于那些作用于低分子底物 的酶,固定化前后的底物特异性没有明显变化。
◆固定化酶底物特异性的改变,是由于载体的 空间位阻作用引起的。
(2)细胞经固定化后,被束缚在一定的空间范围内进行生命活 动,不容易聚集成团。
(3)固定化植物细胞发酵可以简便地在不同地培养阶段更换不 同的培养液,即首先在生长培养基中生长增殖,在达到一定的 细胞密度后,改换成发酵培养基,以利于生产各种所需的次级 代谢物。
食品酶学:内 容

内容第一章概述2第二章酶的结构与功能4第三章酶的提取、分离与纯化6第四章糖酶4第五章蛋白酶4第六章脂酶4第七章氧化酶类4第八章溶菌酶2第九章果胶酶类4第十章酶和酶制剂在食品加工中的应用4第一章概述酶是一种具有生物活性的蛋白质。
第二节酶的一般特征一、酶是蛋白质1、支持实验:酶在用热、强酸、强碱、重金属和洗涤剂处理时易失活,而蛋白质在用同样条件处理易变性。
与蛋白质一样,用强酸、强碱长时间处理生产氨基酸;蛋白质的所有典型实验,如双缩脲反应。
2、全酶蛋白质部分:脱辅基酶蛋白非蛋白质部分:辅助因子辅助因子:低分子量的有机化合物或者金属离子。
二、酶是催化剂影响反应的速度,但本身不没有成为反应的产物。
降低反应的活化能。
三、酶具有特异性蛋白酶水解肽键。
麦芽糖酶水解麦芽糖为葡萄糖。
第三节酶的分类和命名一、分类和命名习惯名称:底物的名称而确定。
如脲酶(Urease),乳酸脱氢酶(Lactate dehyogenase)。
老黄酶(Old yellow enzyme),过氧化氢酶(Catalase),木瓜蛋白酶(Payain)和胰蛋白酶(Trypsin)等。
1955年,成立了国际生物化学协会酶委员会。
该委员会对酶分为六大类:第一大类:氧化还原酶第二大类:转移酶第三大类:水解酶第四大类:裂合酶第五大类:异构酶第六大类:连接酶(合成酶)国际生物化学酶委员会的系统命名每一种酶有一个四位数的号码第一位数表示大类;第二位数表示亚类;第三位数表示次亚类;第四位数表示酶在次亚类中的编号。
如乳酸脱氢酶:1.1.1.27三糖磷酸异构酶:5.3.1.1尚有少数的酶没有系统命名,因为它所催化的反应还没有精确地确定。
缺点:1、没有考虑到酶的来源。
从不同组织和器官中提取的酶可以催化相同的反应,但他们可能含有不同的氨基酸组合;2、使用不便。
二、同功酶(同工酶)在同一个生物品种或组织中可能存在着能催化系统反应的不同的酶的形式。
它们的差异:氨基酸顺序、共价性质或三维结构等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蛋白酶水解示意图:
1.1蛋白质的特异性要求
• 1、R1和R2基团的性质:
– 胰凝乳蛋白酶仅能水解R1是酪氨酸、苯 丙氨酸或色氨酸残基的侧链的肽键;胰 蛋白酶仅能水解R1是精氨酸或赖氨酸残 基的侧链的肽键。
– 胃蛋白酶和羧肽酶对R2基团具有特异性 要求,如R2是苯丙氨酸残基的侧链,那
适合于配制肉类嫩化剂的蛋白酶必须具 有较高的耐热性。这是因为嫩化剂的作用 主要发生在当肉类被烧煮,温度逐渐升高, 而酶尚未失活之前的这个阶段。
烧煮导致肉类结缔组织中胶原蛋白质和强性 蛋白质变性,而蛋白酶较易作用于变性的 胶原蛋白质和弹性蛋白质。木瓜蛋白酶在 60~65度时使胶原蛋白质增溶的速度最快。
• 如果采取有控制的酶水解,使蛋白质的水 解反应停止在某一个阶段,使肽键具有足 够的长度将疏水性氨基酸埋藏在它的结构 内部,就能减少水解蛋白质的苦味。
1.6蛋白酶作为食品添加剂的应用:
• 1、作为肉类嫩化剂 多使用木瓜蛋白酶。从宰杀老龄的动
物得到的肉类,经烧煮后口感粗糟和坚硬。 肉类中存在一定数量的胶原蛋白质,胶原 蛋白质中的交联数目和强度随动物年龄的 增加而提高。木瓜蛋白酶作用效果从肉类 感官评定和剪切力测定中可以看出。
(3)酸性蛋白酶:pH1~3 胃蛋白酶
• 3、对底物作用方式: (1)内肽酶:产物为脲、胨、多肽、低
肽 (2)外肽酶:羧肽酶:从以羧基末端
氨肽酶:从氨基末端
• 4、根据酶活性部位: (1)丝氨酸蛋白酶 (2)巯基蛋白酶(木瓜蛋白酶) (3)金属蛋白酶 (4)酸性蛋白酶(凝乳蛋白酶)
1.3木瓜蛋白酶:
• 2、氨基酸构型: 必须是L型的,天然蛋白质均属L
型。 • 3、底物分子大小:
对于胰凝乳蛋白酶和胰蛋白酶, 底物分子大小不重要,如前述。
• 4、X和Y性质:X、Y可以是-H、-OH, 也可以继续衍生出去。
– (1)如果是肽链内切酶,在R1、R2能满足特 异性要求的前提下,肽链就能裂开,显然X和Y 必须继续衍生出去,内切酶活力才表现出最高。 X、Y可以是氨基酸残基。
• 其酶活性部位中含有巯基,属巯基蛋 白酶。
– 木瓜蛋白酶存在于木瓜汁液中,分子量 23900,至少有3个氨基酸残基存在于酶 的活性部位,它们是Cys25(半胱)、 His159(组)和Asp158(天冬)。
– 当Cys25被氧化剂氧化或与重金属离子结 合时,酶活力被抑制,而还原剂半胱氨 酸(或亚硫酸盐)或EDTA能恢复酶的活 力。还原剂作用:从-S-S——-SH, EDTA螯合重金属离子。
• 木瓜蛋白酶在pH5时,有良好稳定性, 如pH<3或>11时酶很快失活,最适pH 随底物改变。
• 木瓜蛋白酶具有较高的耐热性,酶液在pH7 和70度下加热30分钟,而使牛乳凝结的活 力仅下降20%。
• 木瓜蛋白酶对酯和酰胺类底物表现出很高 的活力。
1.4酸性蛋白酶:(重点介绍凝乳蛋白酶) • 酸性蛋白酶是指蛋白酶具有较低的最 适pH,而不是指酸性基团存在于酶的 活性部位。酶的活性部位含有一个或 更多的羧基。
• 有胃蛋白酶、凝乳酶 • 凝乳酶是存在于哺乳期小牛第四胃中的蛋
白酶,以无活性的酶原形式被分泌出来。 随着小牛的长大,由摄取母乳改变成青草 和谷物时,凝乳酶的数量下降,而胃蛋白 酶的数量增加。
• 凝乳酶从无活性酶原转变成活性酶时 经受了部分水解,分子量从36000下降 到31000,pH5时酶原主要通过自身催 化作用激活,而在pH2时,激活过程进 行得非常快。
胃蛋白酶和其它一些酸性蛋白酶对水解 键有较高识别能力。如肽键→脂键, 即使R2满足要求也不能作为底物。
5.1.2蛋白酶分类:
• 1、来源: (1)植物:菠萝、木瓜、无花果 (2)动物:胃、胰蛋白酶、凝乳酶 (胃)
(3)微生物:1398枯草杆菌、3942栖 土曲霉蛋白酶、放线菌蛋白酶
• 2、最适作用条件: (1)中性蛋白酶:pH6~8 1398枯草 杆菌、3942栖土曲霉蛋白酶 (2)碱性蛋白酶:pH9~11 2709枯草 杆菌蛋白酶
• 凝乳酶在pH5.3~6.3最稳定,在 pH3.5~4.5由于自我消化而失活。在中 性和碱性范围,无凝乳活力。
• 凝乳酶催化酪蛋白沉淀是干酪制造中 非常重要的一步。
• 原料乳杀菌——添加发酵剂、凝乳酶、 色素——凝块形成——排除乳清—— 切块、搅拌、加热
• (CaCl20.01%)——成型压榨——腌 渍——发酵成熟——上色挂蜡——成 品
• 2、绿茶饮料浑浊: 浑浊物质主要是由蛋白质(15~65%)
和多酚类化合物(10~35%),通称茶乳酪 (creamy),是绿茶饮料生产中的关键,添 加木瓜蛋白酶除去绿茶浸提液中的蛋白质, 对稳定绿茶饮料十分有利。
2 溶菌酶
• 溶菌酶(N-乙酰胞壁质聚糖水解酶, EC3.2.1.17)又称为胞壁质酶,是一 种专门作用于微生物细胞壁的水解酶。 溶菌酶是由129个氨基酸构成的单纯碱 性球蛋白,化学性质非常稳定。
1ห้องสมุดไป่ตู้5 蛋白酶水解蛋白质的苦味来源:
• 水解蛋白酶的苦味和蛋白质原有的氨基
酸组成有关。特别是蛋白质中的疏水性 氨基酸是导致蛋白质经水解后产生苦肽
的重要原因。当蛋白质处于天然状态时, 这些氨基酸埋藏在蛋白质结构的内部, 因而对蛋白质的味道不会产生明显的影 响。
• 在酶水解过程中,小肽的数量将增加, 从而暴露了这些疏水性氨基酸,当它 们同味蕾相作用时就产生了苦味。
• 在自然界中,溶菌酶普遍存在于鸟类、家 禽的蛋清和哺乳动物的眼泪、唾液、血液、 鼻涕、尿液、乳汁和组织细胞中(如肝、肾、 淋巴组织、肠道等),从木瓜、芜青、大麦、 无花果和卷心菜、萝卜等植物中也能分离 出溶菌酶,其中以蛋清含量最高。
– (2)对于肽链端解酶的羧肽酶,要求底物中Y 是一个-OH,其特异性对R2有严格要求。在X 不是-H时,可表现高活力。
– (3)对于肽链端解酶的氨肽酶,要求底物中X 是一个-H,优先选择Y不是-OH,特异性表现 在R1上。
• 5、对肽键的要求:
大多数蛋白酶不仅限于水解肽键, 尚能作用于酰胺(-NH2)、酯(COOR)、硫羟酸酯(-COSR)和异 羟污酸(-CONHOH)