流体的主要物理性质
流体主要物性 PPT

0.0731 o E
0.0631 oE
(cm2
/
s)
0E 无单位,当其>2时,用上式将恩氏粘度0E 直接转换为运动粘度
例:汽缸内壁的直径D=12cm,活塞的直径d=11.96cm,活塞长度 L=14cm,活塞往复运动的速度为1m/s,润滑油的μ =0.1Pa·s。
求作用在活塞上的粘性力。
解: T A dv
粘度
液体
气体
掌握两种粘度的单
位计量方式(P6)
o
温气度 体
4)粘度的测量方法
法1: 用粘度计直接测量得出:(绝对粘度 , )
毛细管粘度计、旋转粘度计
法2: 用恩氏粘度计测出相对粘度(恩氏粘度 0E ),
然后用经验公式转换为运动粘度.
恩氏粘度计测定
o E t1 t2
200ml被测液体从恩氏粘度计流出的时间 200ml,20度的纯水从恩氏粘度计流出的时间50s
t
1 V
V T
(oC 1)
• 注意:
• (a)严格地说,不存在完全不可压缩的流体。 • (b)一般情况下的液体都可视为不可压缩流体
(发生水击时除外)。 • (c)对于气体,当所受压强变化相对较小时,
可视为不可压缩流体。 • (d)管路中压降较大时,应作为可压缩流体。
5.流体的粘滞性
1)粘性:在外力作用下,流体微元间出现相对运动时,随
• 直线惯性力: I ma
• 离心惯性力: R m 2r
• 这三种力都与液体质量m成正比,且都作用在质点 中心上,因而称为质量力
二、表面力(近程力)(接触力)
• 表面力指作用于流体的表面上,并与受作用的流 体表面积成正比。
流体的物理性质

说 明:
Vdp dV
k越大,越易被压缩
1
流体的种类不同,其k值不同。气体压缩性大 于液体。 同一种流体的k值随温度、压强的变化而变化。
2018/11/20 8
第三节 流体的主要物理性质
二、流体的压缩性和膨胀性
3、可压缩流体和不可压缩流体 不可压缩流体: 流体密度随温度、压强变化很小的流体
反映流体粘滞性 大小的系数
ν ——运动黏度,m2/s
2018/11/20 21
第三节 流体的主要物理性质 三、流体的黏性和牛顿内摩擦定律
y
u
dy Y y a b d c
0
dudt d tg(d ) dy du 角变形率 d
dt
u+du u du
F
dy
o
x udt (u+du)dt d c d' d a b a' b'
1 dV dp V
—流体的体积压缩系数,m2/N;
dp —流体压强的增加量,Pa;
V —原有流体的体积,m3; dV —流体体积的增加量,m3。
2018/11/20
7
第三节 流体的主要物理性质
二、流体的压缩性和膨胀性
2、流体的压缩性(续) 体积模量K : 压缩系数的倒数 工程上常用体积模 量衡量流体压缩性
三、流体的黏性和牛顿内摩擦定律
1、流体的黏性 定义: 流体微团间发生相对滑移时产生切向阻力的性质
库仑实验(1784)
库仑用液体内悬吊圆盘摆动实验证实流体存在内摩擦
普通板、涂腊板和细沙板,三种圆板的衰减时间
2018/11/20 15
第三节 流体的主要物理性质
流体力学基本知识

第一章流体力学基本知识▪物质的三种形态:固体、液体和气体▪流体力学-----研究流体平衡和运动的力学规律及其应用的科学。
第一节流体的主要物理性质一. 流体的密度和容重1 . 密度:对于均质流体,单位体积的质量。
kg/m 32 . 容重:对于均质流体,单位体积的重量。
N/m 3VM =ρV G =γ3.密度与容重的关系4.密度和容重与压力、温度的关系 压力升高流体的密度和容重增加;温度升高流体的密度和容重减小。
g Vg M V G ⋅=⋅==ργ二.流体的粘滞性1. 流体粘滞性的概念流体在粘滞力的作用下,具有的抵抗流体相对运动的能力。
2.粘滞性的表示形式❑动力粘滞系数μ kg/m ·s❑运动粘滞系数ν m 2/s ρμν=3.粘滞性与温度、压力的关系❑粘滞性受温度影响大,受压力影响小。
❑液体的粘滞性随温度的升高而降低。
❑气体的粘滞性随温度的升高而增加。
三.流体的压缩性和热胀性1.流体的压缩性2.流体的热胀性3.液体的压缩性与热胀性4.气体的压缩性与热胀性理想气体状态方程:5.可压缩气体与不可压缩气体6.连续介质T RP⋅=ρ第二节流体静压强及其分布规律一.流体的静压强及其特征ⅠⅡP∆ω∆a 1.流体静压强的概念ωω∆∆=→∆P p lim 0( N/m 2 )p 称为a 点的静压强2.静压强的单位从压强的定义出发: 力/面积国际单位: N/m2 (以符号Pa表示)工程单位: kgf/m2或kgf/cm2用大气压的倍数表示:国际单位: 标准大气压1标准大气压=101325Pa=1.01325bar(巴)工程单位: 工程大气压( at )1工程大气压(at) =1kgf/cm2用液柱高度表示:mH2O mmH2O mmHg 1标准大气压=10.33mH2O=10332.3 mmH2O=760 mmHg=101325Pa1工程大气压=10mH2O=10000mmH2O=735.6 mmHg=98070Pa3.流体静压强的特征(1)流体静压强p 的方向必定沿着作用面的内法线方向;(2)任意点的流体静压强只有一个值,它不因作用面的方位改变而改变。
流体的主要物理力学性质

流体在运动过程中所受的力与加速度之间的 关系,是流体动力学的基本方程。
连续性方程
描述流体的质量守恒原理,即流体的质量流 量在流场中保持不变。
动量方程
描述流体的动量守恒原理,即流体的动量流 量在流场中保持不变。
能量方程
描述流体的能量守恒原理,即流体的能量在 流场中保持不变。
流体动力学的应用
06
流体动力学简介
基本概念
流体
流体是具有流动性的连续介质, 由大量分子组成,能够在外力作
用下发生流动。
流体动力学
流体动力学是研究流体运动规律 和行为的一门科学,主要研究流 体的速度、压力、密度等物理量
之间的关系。
流场
流场是指流体运动所占据的空间 区域,流场中的每一点都有一定
的速度和压力。
流体动力学方程
THANKS
感谢观看
流动状态的判定
雷诺数
用于判定流体流动状态的无量纲数, 由流体的流速、管径和流体动力粘度 决定。当雷诺数小于临界值时,流体 呈层流流动;当雷诺数大于临界值时, 流体呈湍流流动。
流动状态判定准则
根据实验和理论分析,得出判定流动 状态的准则,如普朗特数、尼古拉斯 数等。这些准则可以帮助我们判断不 同条件下流体的流动状态。
毛细管法
利用毛细管中的流体流动, 通过测量流体在毛细管中 的流动时间和压力差来计 算流体的粘度。
影响粘度的因素
分子间相互作用
流体的分子间相互作用会影响流体的粘度,分子 间相互作用越强,粘度越大。
温度
温度对流体的粘度有显著影响,一般来说,温度 升高会使流体的粘度降低。
压力
压力对流体的粘度影响较小,但在高压下,压力 对粘度的影响会更加明显。
流体的主要物理性质

规定,液压油产品的牌号用粘度的等级表示,即用该液压油在40℃时的
运动粘度中心值表示。
油液的牌号:40℃时的平均运动粘度,见下表:
温度:40℃,单位:×10-6m2/s
粘度等级 VG10 VG15 VG22 VG32 粘度平均值 10 15 22 32 粘度范围 9.00 ~11.0 13.5 ~16.5 19.8 ~24.2 28.8 ~35.2 机械与材料学院©2013 粘度等级 VG46 VG68 VG100 粘度平均值 46 68 100 粘度范围 41.4~50.6 64.2 ~78.4 90.0 ~110
机械与材料学院©2013
第二章 流体的主要物理性质
三、液体的粘度将随压力和温度的变化发生相应的变化。
1、流体产生粘性的主要原因 ①液体:分子内聚力; ②气体分子作热运动,流层之间分子的热交换频繁。
2、压力的影响
在高压下,液体的粘度随压力升高而增大;常压下,压力对流体的 粘性影响较小,可忽略。 3、温度的影响 ①液体:温度升高,粘度降低; ②气体:温度升高,粘度增大。
第二章 流体的主要物理性质
(3)相对粘度(恩氏粘度) 采用特定的粘度计在规定条件下测出来的液体粘度。
Et t1 / t2
式中:t1 – 油流出的时间 t2-20OC蒸馏水流出时间 φ=2. 8mm 恩氏粘度与运动粘度的换算关系 恩氏粘度计 200ml
6.31 t (7.31 Et )cst Et
机械与材料学院©2013
第二章 流体的主要物理性质
四、 液压油的选用
1、优先考虑粘性 ν=11.5 ~ 41.3 cSt 即 20、30、40号机械油 粘温特性好是指工作介质的粘度随温度变化小,粘温特性通常用粘度 指数表示。 2、按工作压力 p 高,选 µ 大; p 低,选 µ 小 3、按环境温度 T 高,选 µ 大; T 低,选 µ 小 4、按运动速度 v 高,选 µ 小; v 低,选 µ 大 5、其他 环境 (污染、抗燃) 经济(价格、使用寿命) 特殊要求(精密机床、野外工作的工程机械)
流体力学知识点总结

流体力学知识点总结一、流体的物理性质流体区别于固体的主要特征是其具有流动性,即流体在静止时不能承受切向应力。
流体的物理性质包括密度、重度、比容、压缩性和膨胀性等。
密度是指单位体积流体所具有的质量,用符号ρ表示,单位为kg/m³。
重度则是单位体积流体所受的重力,用γ表示,单位为 N/m³,且γ =ρg(g 为重力加速度)。
比容是密度的倒数,它表示单位质量流体所占有的体积。
流体的压缩性是指在温度不变的情况下,流体的体积随压强的变化而变化的性质。
通常用体积压缩系数β来表示,其定义为单位压强变化所引起的体积相对变化率。
对于液体来说,其压缩性很小,在大多数情况下可以忽略不计;而气体的压缩性则较为明显。
膨胀性是指在压强不变的情况下,流体的体积随温度的变化而变化的性质。
用体积膨胀系数α来表示,它是单位温度变化所引起的体积相对变化率。
二、流体静力学流体静力学主要研究静止流体的力学规律。
静止流体中任一点的压强具有以下特性:1、静止流体中任一点的压强大小与作用面的方向无关,只与该点在流体中的位置有关。
2、静止流体中压强的大小沿垂直方向连续变化,即从液面到液体内部,压强逐渐增大。
流体静力学基本方程为 p = p₀+γh,其中 p 为某点的压强,p₀为液面压强,h 为该点在液面下的深度。
作用在平面上的静水总压力可以通过压力图法或解析法来计算。
对于矩形平面,采用压力图法较为简便;对于不规则平面,则通常使用解析法。
三、流体动力学流体动力学研究流体的运动规律。
连续性方程是流体动力学的基本方程之一,它基于质量守恒定律。
对于不可压缩流体,在定常流动中,通过流管各截面的质量流量相等。
伯努利方程则是基于能量守恒定律得出的,它表明在理想流体的定常流动中,单位体积流体的动能、势能和压力能之和保持不变。
其表达式为:p/ρ + 1/2 v²+ gh =常数其中 p 为压强,ρ 为流体密度,v 为流速,g 为重力加速度,h 为高度。
第1章 流体力学基本知识

数学表达式:
二、流体的粘滞性 粘滞性 :流体内部质点间或层流间因相对运动 而产生内摩擦力(切力)以反抗相对运动的 性质。
牛顿内摩擦定律:
F-内摩擦力,N; S-摩擦流层的接触面面积,m2;
τ-流层单位面积上的内摩擦力(切应力),N/
m2;
du/dn-流速梯度,沿垂直流速方向单位长度 的流速增值;
hω1-2 =Σhf+Σhj
二、流动的两种型态--层流和紊流
二、流动的两种型态--层流和紊流
实验研究发现,圆管内流型由层流向湍流 的转变不仅与流速u有关,而且还与流体的 密度、粘度 以及流动管道的直径d有关。 将这些变量组合成一个数群du/,根据该 数群数值的大小可以判断流动类型。这个 数群称为雷诺数,用符号Re表示,即
从元流推广到总流,得:
由于过流断面上密度ρ为常数,以
u d u d
1 1 1 2 2 1 2
2
带入上式,得:
ρ1Q1 =ρ2 Q2 Q=ωv ρ1ω1v 1=ρ2ω2v 2
(1-11)
(1-11a)
(1-11)、 (1-11a) --质量流量的连 续性方程式。
建筑设备工程
第一章 流体力学基本知识 第1节 流体的主要物理性质 第2节 流体静压强及其分布规律 第3节 流体运动的基本知识 第4节 流动阻力和水头损失 第5节 孔口、管嘴出流及两相流体简介
本章介绍流体静力学,流体动力学,流体运动 的基本知识,流体阻力和能量损失,通过本章 的学习可以对流体力学有一个大概的了解,但 讲到的内容是很基础的。
v
2 2 2
2g
h12
流体力学知识点

流体力学知识点流体力学是研究流体(包括液体和气体)的运动规律以及流体与固体之间相互作用的学科。
它在许多领域都有着广泛的应用,如航空航天、水利工程、化工、生物医学等。
下面我们来一起了解一些流体力学的重要知识点。
一、流体的性质流体具有易流动性,即它们在微小的切应力作用下就会发生连续的变形。
流体的密度和黏度是两个重要的物理性质。
密度是指单位体积流体的质量。
对于均质流体,密度是一个常数;对于非均质流体,密度会随位置而变化。
例如,空气在不同高度的密度不同。
黏度则反映了流体内部的内摩擦力。
黏度大的流体,如蜂蜜,流动起来比较困难;而黏度小的流体,如水,流动相对容易。
二、流体静力学流体静力学主要研究静止流体的压力分布规律。
帕斯卡定律指出,在密闭容器内,施加于静止液体上的压力将以等值传递到液体各点。
这在液压系统中有着重要的应用。
另一个重要的概念是浮力。
当物体浸没在流体中时,它受到的浮力等于排开流体的重量。
这就是阿基米德原理。
例如,船舶能够漂浮在水面上,就是因为受到的浮力等于其自身的重量。
三、流体运动学流体运动学关注流体的运动方式和描述方法。
流线是用来描述流体流动的重要概念。
流线是在某一瞬时,在流场中画出的一条空间曲线,在该曲线上,流体质点的速度方向与曲线相切。
流量是指单位时间内通过某一截面的流体体积或质量。
四、流体动力学流体动力学研究流体运动与受力之间的关系。
伯努利方程是流体动力学中的一个关键方程,它表明在理想流体的稳定流动中,沿着一条流线,总水头(位置水头、压力水头和速度水头之和)保持不变。
例如,在水平管道中,流速大的地方压力小,流速小的地方压力大。
这可以解释为什么飞机机翼上方的流速快、压力低,从而产生升力。
五、黏性流体的流动实际流体都具有黏性。
在黏性流体的流动中,会产生内摩擦力,导致能量损失。
层流和湍流是两种常见的流动状态。
层流时,流体的质点作有规则的平行运动,各层之间互不干扰;而湍流时,流体的质点作不规则的随机运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节 粘度
流体的主要物理性质
流 体分 类
流体类别 理想流体
定义
0
( du )n dy
无粘性及 0 、0=0
完全不可压
实例
缩的流体的
一种假想流
体
实际流体
牛顿流体
有粘性、可 满足牛顿内摩擦定律 水、空气、汽油、煤油、
压缩的流体 0=0
、 0
n1 、
甲苯、乙醇等
0
非 牛 宾汉型塑性
ddV/V p dd/p (m2 /N )
(∵质量m不变,dm=d(v)= dv+vd=0, ∴
dV dp
d
dp
)
第三节 压缩性
流体的主要物理性质
3、体积弹性模量Ev
流体的压缩性在工程上往往用体积弹性模量来表示。
体积弹性模量Ev(Bulk Modulus of Elasticity)是体积压缩系数的倒数。
2、优点
1)排除了分子运动的复杂性。 2)物理量作为时空连续函数,则可以利用连续函数这一数学工具来研
究问题。
流体的主要物理性质
(二)流体的分类
1、根据流体受压体积缩小的性质,流体可分为:
a.可压缩流体(Compressible Flow):流体密度随压强变化不能忽略的 流体。(const)
b.不可压缩流体(Incompressible Flow):流体密度随压强变化很小, 流体的密度可视为常数的流体。 (=const)
解:油层与轴承接触面上的速度为零,与轴接触面上的速度等于轴面上
的线速度: = n d 20 0 .3 0 6 3 .7m 7直线分布,即 则轴表面上总的切向力 为:
T A (. d ) 0 L . 7 3 . 2 7 2 1 4 7 0 0 . 3 1 6 1 . 5 1 3 4 ( N 0 ) 5
非牛顿流体:不符合上述条件的均称为非牛顿流体。
弹 1
宾汉型塑性流体
性
假(伪)塑性流体
体
0
2
牛顿流体
3 膨胀性流体 流体
4
理想流体 5 du dy
0(dduy)n
1、宾汉型流体: 00,n=1,=Const 2、假(伪)塑性流体: 0=0,n<1
3、牛顿流体: 0=0,n=1,=Const 4、膨胀流体: 0=0,n>1
第三节 压缩性
流体的主要物理性质
1、为什么水通常被视为不可压缩流体?
因为水的Ev=2×109 Pa ,在压强变化不大时,水的体积变 化很小,可忽略不计,所以通常可把水视为不可压缩流体。
2、自来水水龙头突然开启或关闭时,水是 否为不可压缩流体?为什么?
为可压缩流体。因为此时引起水龙头附近处的压强变化, 且变幅较大。
标准条件下。1立方毫米流体含有3×1021个左右的分子,分子间距离是
10-7cm。 宏观:考虑宏观特性,在流动空间和时间上所采用的一切特征尺度和特征时
间都比分子距离和分子碰撞时间大的多。
1、定义 流体质点:又称流体微团,流体中宏观尺寸非常小而微观尺寸有足够大的任 意一个物理实体。
连续介质(Continuum Continuous Medium):质点连续地充满所占空间的流 体或固体。
0 0 、 Const 、 牙膏、泥浆、血浆等
n1
顿 流 流体
体 假塑性流体
0=0 、 0 、n 1 橡胶、油漆、尼龙等
膨胀性流体
0=0 、 0 、n 1 生面团、浓淀粉糊
第四节 粘度
流体的主要物理性质
本章小结
1、工程流体力学任务是研究流体的宏观机械运动,提出了流体的易流动性概念,即 流体在静止时,不能抵抗剪切变形,在任何微小切应力作用下都会发生变形或流 动。同时又引入了连续介质模型假设,把流体看成没有空隙的连续介质,则流体 中的一切物理量(如速度u和密度)都可看作时空的连续函数,可采用函数理论 作为分析工具。
End
流体的主要物理性质
第四节 粘度 一、粘度与牛顿内摩擦定律 二、牛顿流体、非牛顿流体
流体的主要物理性质
第四节 粘 度
一、粘度与牛顿内摩擦定律
粘性:流体在运动中,由于分子间的动量交换和分子间的作用力 会引起内摩擦阻力,这种性质称为流体的粘性。
1、牛顿内摩擦定律
第四节 粘度
流体的主要物理性质
Y dy
du d
dy
dt (N/m2 ,Pa)
—粘性切应力,是单位面积上的内摩擦力。 流体粘性系数μ的单位是:N.s/m2
说明:1)流体的剪应力与压强 p 无关(注意到固体摩擦力与正压力有关)。
2)流体的切应力与动力粘性系数成正比。 3)对于平衡流体du/dy=0或理想流体=0,所以不产生切应力, =0。
第二节 流体的连续介质模型
流体的主要物理性质
连续介质模型(Continuum Medium Model):把流体视为没有间隙地充满 它所占据的整个空间的一种连续介质,且其所有的物理量都是空间坐 标和时间的连续函数的一种假设模型。u=u(t,x,y,z)
选择题:按连续介质的概念,流体质点是指: A、流体的分子; B、流体内的固体颗粒; C、几何的点; D、几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。
第一节 流体的基本特征
流体的主要物理性质
• 液体和气体的区别:
1、气体易于压缩;而液体难于压缩; 2、液体有一定的体积,存在一个自由液面;气体能充满任意形状的容
器,无一定的体积,不存在自由液面。
• 液体和气体的共同点:
两者均具有易流动性,即在任何微小切应力作用下都会发生变形或流动,
故二者统称为流体。
b.理想流体:是指既无粘性(=0)又完全不可压缩(=const)的一种假想 流体,在运动时也不能抵抗剪切变形。
例如:河流中心流层流动最快,越靠近河岸流动越慢,岸边水几乎不流动, 这种现象就是由于流层间存在内摩擦力造成的
流体的主要物理性质
第二节 密度、容重、比重和比容
1、密度
密度(Density):是指单位体积流体的质量。单位:kg/m3 。
E 1ddV /V pdd/p (N/m2 )
与Ev随温度和压强而变化,但变化甚微。
说明:a.Ev越大,越不易被压缩,当Ev时,表示该流体绝对不可压缩 。
b.流体的种类不同,其和Ev值不同。 c.同一种流体的和Ev值随温度、压强的变化而变化。 d.在一定温度和中等压强下,水的体积弹性模量变化不大。
a.液体:内聚力是产生粘度的主要因素,当温度升高,分子间距离增大, 吸引力减小,因而使剪切变形速度所产生的切应力减小,所以
值减小。
b.气体:气体分子间距离大,内聚力很小,所以粘度主要是由气体分子 运动动量交换的结果所引起的。温度升高,分子运动加快,动
量交换频繁,所以 值增加。
第四节 粘度
流体的主要物理性质
切力称为剪切应力τ
牛顿提出,流体内部的剪切力τ与流体的速度梯度
du
成dy正比
=µdu/dy
速度梯度:流速在与速度垂直方向上的变化率。
流体的主要物理性质
y
h
x
y
O
R x
y ux h u0
y
ux c(R2y2)
h
ux c
x
x
流体的主要物理性质
牛顿内摩擦定律: 液体运动时,相邻液层间所产生的切应力与速度 梯度成正比。即
牛顿平板实验与内摩擦 定律
设板间的y向流速呈直线分布,即:
u(y)U Y y
y
U
Y dy
ab cd
F u+du u
y
du
则
du U
dy Y
o x
实验表明,对于大多数流体满足:
F
AU Y
A
F
引入动力粘性系数,则得牛顿内
摩擦 定律
F AU Ydduy
切应力 分布
式中:流速梯度
du dy
代表液体微团的剪切
4、液体的比重
比重(Specific Gravity):是指液体密度与标准纯水的密度之比,没 有单位,是无量纲数。
sG G
标准纯水:a.物理学上——4℃水为标准, =1000 kg / m3; b.工程上——20℃的蒸馏水为标准, =1000 kg / m3;
第二节 密度、容重、比重和比容
流体的主要物理性质
lVi m0 M V
均质流体内部各点处的密度均相等:
M V
水的密度常用值: =1000 kg/m3
第二节 密度、容重、比重和比容
流体的主要物理性质
2、重度
重度(Specific Weight):指单位体积流体的重量。单位: N/m3 。
lVi m0 VG
均质流体内部各点处的容重均相等:
=G/V =g
流体粘度的数值随流体种类不同而不同,并随压强、温度变化而变化。
1)流体种类。一般地,相同条件下,液体的粘度大于气体的粘度。
第四节 粘度
流体的主要物理性质
2)压强。对常见的流体,如水、气体等, 值随压强的变化不 大,一般可忽略不计。
3)温度。是影响粘度的主要因素。当温度升高时,液体的粘度 减小,气体的粘度增加。
水的容重常用值: =9800 N/m3
第二节 密度、容重、比重和比容
流体的主要物理性质
3、气体的比容
比容(Specific Volume):指单位气体质量所具有的体积。
=1/ ( m3/kg) 气体的比容或密度,与气体的工况或过程是密切相关的,是由状 态方程确定,完全气体状态方程 P=P/=RT R为气体常数,空气的R=287N·m/kg·k
变形速率。线性变化时,即
du dy
u y
;
图1.2牛顿平板实验