探索三角形全等的条件ASA
探索三角形全等的条件(3)ASA(新)

ED
B
C
例1. 已知:点D在AB上,点E在AC上,BE和CD相 交于点O,AB=AC,∠B=∠C。
求证: (1)BE=CD (2)BD=CE
A
证明 :在△ABE和△ACD中 ∠A=∠A(公共角)
AB=AC(已知)
∠B=∠C(已知)
∴△ABE≌△ACD(ASA)
D
E
∴BE=CD
O
(全等三角形的对应边相等)
11.3 探索三角形全等的条件(二) ----ASA
两边和它们的夹角对应相等的两个三角形 全等,简写成“边角边”或“SAS”
A
D
\\
\\
B
\
CE
\
在△ABC和△ DEF中,
AB DE B E BC EF
ABC ≌ DEF (SAS )
F
建湖县高作中学 王星星
①
②
小明用板挡住了两个三角形的一部分? 你能画出这两个三角形吗?
SAS ASA
A
D
B
CE
F
一般地,SSA不能判定两三角形全等, 那么AAS能判定两三角形全等吗?
课本第18页 用直尺和圆规作符合条件的△ABC
建湖县高作中学 王星星
A
B
(3)射线AP与射线BQ交于点C。
△ABC就是所求作的三角形
两角和它们的夹边对应相等的两个 三角形全等.简写成“角边角”或“ASA”
A
D
B
CE
F
A
D
B
CE
F
在△ABC和△DEF中,
∠B=∠E BC=EF ∠C=∠F
△ABC≌△DEF (ASA)
B
A
利用“角边角”可知,带B块去,可 以配到一个与原来全等的三角形玻璃。
苏科版八年级数学上册《1章 全等三角形 1.3 探索三角形全等的条件 “ASA”》公开课教案_9

1.3 探索三角形全等的条件(4)预习目标1.经历探索三角形全等“角角边”条件的过程,体会通过操作、归纳获得数学结论的过程.2.掌握三角形全等的“角角边”条件,并能运用“角角边”判定两个三角形全等.3.能够进一步结合具体问题和情境进行有条理的思考和简单的推理证明.4.进一步学会文字语言、符号语言和图形语言的表达和相互转化.教材导读1、练一练已知:△ABC与△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.2、提问:你有什么发现?阅读教材P19~P20内容,回答下列问题:三角形全等的条件——“角角边”两_______分别相等且其中一组_______的对边相等的两个三角形全等(简写成“角角边”或“_______”).符号语言:如上图在△ABC和△A'B'C'中,∠B=∠B'(已知),∠C=∠C'(已知),AB=A'B'(已知),∴△ABC≌△A'B'C'(AAS).热身练习1 .如图∠ACB=∠DFE,BC=EF,根据“ASA”,应补充一个直接条件___________;根据“AAS”,那么补充的条件为____________,才能使△ABC≌△DEF.2.如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?做一做1、已知:如图,△ABC≌△A'B'C',AD和A'D'分别是△ABC和△A'B'C'中BC和B'C'边上的高.求证:AD=A'D'.变化一下怎么做?(1)已知:如图,△ABC≌△A'B'C',AD和A'D'分别是△ABC和△A'B'C'中∠A和∠A'的角平分线.求证:AD=A'D'.(2)已知:如图,△ABC≌△A'B'C',AD和A'D'分别是△ABC和△A'B'C'的BC和B'C'边上的中线.求证:AD=A'D'.小结这节课你学到了什么?课后作业1.如图,∠1=∠2,∠3=∠4,则图中全等的三角形有_____________________.2.如图,∠BAC=∠ABD,请你添加一个条件:_______,使OC=OD(填一个即可).3.如图,AD∥BC,∠A=90°,以点B为圆心,BC的长为半径作弧,交射线AD与点E,连接BE,过点C作CF ⊥BE,垂足为F.求证:AB=FC.4.如图,AC、BD互相平分于点O,过点O的直线分别交AB、CD于点E、F,那么OE 与OF相等吗?为什么?。
1.3探索三角形全等的条件(3)ASA

课题:1.3探索三角形全等的条件(3)课型:新授 主备:谢涌 备课组长: 丁虎平 教研组长:吴进班级 姓名 学号【学习目标】1、 经历探索三角形全等条件的过程,体会利用操作,归纳获得数学结论的过程。
2、 掌握三角形全等的“角边角”(ASA )的条件。
3、 在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理。
【重点难点】在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理。
【温故知新】1.如图,E ,F 在BC 上,BE =CF ,AB =CD ,AB ∥CD 说明:(1)△ABF ≌ △DCE (2)AF 与ED 的关系如何?2. 动动脑:如何配玻璃?小明踢球时不慎把一块三角形玻璃打碎为两块,他是否可以只带其中的一块碎片到商店去,就能配一块于原来一样的三角形玻璃呢?如果可以,带哪块去合适呢?为什么?【新知应用】如右图,O 是AB 的中点,AC//BD ,求证:O 是CD 的中点。
一批时间二批时间 教师评价家长签字① ②【变式训练】1. 如图 ,AB =AC ,∠B =∠C ,试说明△ABE ≌△ACD 全等.如果将题中的AB =AC 改为AD =AE ,其他条件不变,你能说明AB =AC 吗?2.已知,如图,在ABC 中,D 是BC 的中点,点E 、F 分别在AB 、AC 上,且DE//AC,DF//AB. 求证:BE=DF,DE=CF.FEDBCA3. 如图,已知AD 、BE 是△ABC 的高,AD 、BE 相交于点F ,且AD=BD ,你能找到图中的全等三角形吗?若能找到请说明理由。
A BCE F D【随堂检测】1.找出图中的全等三角形,写出表示他们全等的式子。
2.△ABC 和△FED 中,AD =FC ,∠A =∠F .若要得到△ABC ≌△FED , 如果根据ASA ,需要添加条件 ; 如果根据SAS ,需要添加条件 ;3.已知:∠ABC =∠DCB ,∠ACB =∠DBC ,试说明△ABC ≌△DCB ;4.已知,如图,∠1=∠2,∠C =∠D ,BD=BC ,△ABD ≌△EBC 吗?为什么?5.已知,如图、点A 、F 、E 、C 在同一条直线上,AF =CE ,BE ∥DF ,AB ∥CD 。
探索三角形全等的条件(SAS)教学设计

《探索三角形全等的条件(3)》教学设计一、教学目标1、知识与技能:经历探索三角形全等条件的过程,掌握判定三角形全等的又一个重要方法,即“边角边”,并学会初步运用.2、过程与方法:在探索三角形全等条件的过程中,感受数学来源于现实生活的事实,逐步培养学生合作交流和有条理地分析、思考、表达、解决问题的能力,进一步发展学生严密的逻辑推理意识,渗透类比、分类讨论、由特殊到一般的数学思想.3、情感与态度:营造轻松、平等的学习氛围,让学生经历探索三角形全等条件的过程,培养学生大胆质疑、敢于创新、合作交流的精神,增强学习数学的信心.二、教学重点在探索三角形全等条件的过程中,引导学生充分探索用“边角边”方法判定两个三角形全等的合理性;引导学生初步学会运用“边角边”等多种方法判定三角形全等.三、教学难点在探索三角形全等条件的过程中,引导学生充分认识用“边角边”方法判定两个三角形全等的合理性;同时了解两边及一边的对角对应相等的两个三角形不一定全等;分类讨论、由特殊到一般的数学思想的渗透.探究一剪一剪:把你画的三角形剪下来,比一比:小组内把所得的三角形比较,你发现了什么?●活动2:要验证一个合理的结论,一次实验不能说明问题,不具有普遍性.改变这两边的长度和夹角的度数,情况又是什么样呢?下面,请每个学习小组内自己规定两边的长度和夹角的度数,再画一画,用同样的方式进行比较,看看结果怎样?(动手操作)画一画剪一剪比一比在动手操作、总结结论的活动过程中,深刻体会到实践可以为科学合理地判断决策问题提供有力依据.经历探索三角形全等的过程,渗透由特殊到一般的数学思想总结规律我们把这个事实作为判定两个三角形全等的一种方法.总结:两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或简记为“SAS”学一学:老师板书,规范书写.∵在△ABC和△DEF中,AC = DF∠A=∠DAB = DE∴△ABC≌△DEF(SAS)学生总结通过学生自主探究发现规律、验证规律,提高学生的学习能力.4cm3cm40°ABCMN对比理解三种语言的对比:学生观察学生对文字语言、图形语言、符号语言的对比理解识图活动●活动3:学生观察 思考 回答学生初步运用“SAS ”探究二 ●活动4:如果“两边及一角”条件中的角是其中一边的对角,比如两条边分别为4cm ,6cm ,长度为4cm 的边所对的角 为40°,情况会怎样呢?请大家画一画. 4cm6cm学生甲:我画的三角形和同伴画的三角形全等.学生乙:我画的三角形和同伴画的三角形不全等.由此可见,两边及其中一边的对角对应相等,两个三角形不一定全等.(电脑动画展示)学生动 手操作 画一画 剪一剪 比一比通过学生自主探究发现:两边及其中一边的对角对应相等的两个三角形不一定全等.例题教学例:如图△DCE 和△ACB 都是等腰直角三角形,点D 在BC 上,学生思考并让学生通过对40°40°40°40°40°在下列图中找出全等三角形,把它们用线连接连接BE、AD.(1)请问有没有全等三角形?若有,请找出并说明理由.(2)思考:请进一步探究AD和BE有什么关系?解题老师引导并规范书写问题的探究,发现证明三角形全等的思路、正确书写格式的规范.自主演练如图,①AB=AC;②AD=AE;③BD=CE;④∠B=∠C.请从以上四个条件中选出尽可能少的条件,说明△ABD ≌△ACE学生思考并解题培养学生对知识的运用课堂小结●活动5:总结反思:1、三角形全等的判定方法:SSS、ASA、AAS、SAS注意:两边及其中一边的对角对应相等的两个三角形不一定全等.2、探究过程:画图→剪图→对比→总结.3、数学思想:类比、分类讨论、由特殊到一般.学生归纳学生发言培养学生反思总结习惯思维拓展如图,若AB=AC,请添加一个条件,使OE=OD.学生思考并解题培养学生知识迁移能力课后作业1、教材“习题”第1、2题2、认真完成今天的“数学总结”3、预习教材第五章第五节的内容独立完成合作交流进一步巩固学生的学习五、教学反思:B CDEAOACDEFB。
3 探索三角形全等的条件 第2课时 用“ASA”或“AAS”判定三角形全等(教材P22~24练习)

(2)你能发现并说明线段 AD , BE , DE 之间的关系吗?请说明理由.
◉答案 解:(2)结论: BE = AD + DE . 理由:因为△ ADC
≌△ CEB ,所以 AD = CE , CD = BE . 因为 CD = CE + DE ,
O ,∠1=∠2.图中全等的三角形共有
4 对.
8. (宜宾中考)如图,已知点 B , E , C , F 在同一条直线上, AB = DE ,∠ A =
∠ D , AC ∥ DF . 试说明: BE = CF .
◉答案 解:因为 AC ∥ DF ,所以∠ ACB =∠ F . 在△ ABC 和△ DEF 中,
第一章 三角形
3
第 2 课时
探索三角形全等的条件
用“ ASA ”或“ AAS ”判定三角形全等
(教材 P22 ~ 24 练习)
知识点一:三角形全等的判定定理——“ASA”
1. 如图,线段 AD , BC 相交于点 O ,若 OA = OB ,为了用“ASA”判定△ AOC
≌△ BOD ,则应补充的条件是(
一块与原来一样大小的三角形玻璃,你认为应带去的一块是(
A. 第①块
B. 第②块
C. 第③块
D. 第④块
B )
B
4. 如图, AB ∥ CF , DE = EF , AB =10, CF =6,则 DB 等于( BB )
A. 3
B. 4
C. 5
D. 6
5. (益阳中考)如图,在Rt△ ABC 中,∠ B =90°, CD ∥ AB , DE , BE .
(1)请写出图中的一对全等三角形并说明理由.
全等三角形判定(ASA和AAS)

在△ABC和△DEF中
∠B=∠E BC=EF ∠C=∠F ∴△ABC≌△DEF(ASA)
你能行吗?
× AB=DE可以吗?
B A
C
F
D E
1、如图∠ACB=∠DFE, BC=EF,那么应补充一个条 件 ------------------------- ,才 能使△ABC≌△DEF (写出 一个即可)。
为两角夹边
B
C 图2
在图2中, 边BC是∠A的对 边, 我们称这种位置关系为
两角及其中一角的对边。
二、合作探究
(一)探究一:已知两个角和一条线段,以这 两个角为内角,以这条线段为这两个角的夹边, 画一个三角形.
45°
3 cm
30°
把你画的三角形与小组其他组员画的三角形进
行比较,所有的三角形都全等吗? 都全等
利用“角怎边么角办?定可理以”帮帮可知,带B
A
块去,可以配我到吗?一个与原来全
等的三角形玻璃。
B
考考你
1、如图,已知AB=DE, ∠A =∠D, ,∠B=∠E,则 △ABC ≌△DEF的理由是: 角边角(ASA)
2、如图,已知AB=DE ,∠A=∠D,,∠C=∠F,则
△ABC ≌△DEF的理由是: 角角边(AAS)
Q AB AC
AB AD AC AE (等式的性质)
BD CE
3.已知ABC中,BE AD于E,CF AD于F,
且BE CF,那么BD与DC相等吗?
A
证明:Q BE AD,CF AD
BED CFD 90 (垂直的定义)
F
Q 在BDE和CDF中
B
D
C
BED CFD(已证)
八年级数学探索三角形全等的条件

AC=DC
A
B
ቤተ መጻሕፍቲ ባይዱ
∠ACB=∠DCE
C
E D
BC=EC △ACB≌△DCE(SAS) AB=DE
; / 澳门葡京官网 ;
是用于举办战申榜排位赛の临事城市,其实就是呐个排位赛场地.一旦在排位赛期间离开呐座城市,那就无法再进来了.哪怕你是晋级到决赛绝点の战申,只要离开,也一样不能再回来.大斗场内の修行者,陆续の离开.鞠言和纪沄国尪,也跟着人流出了大斗场.在押注大厅,鞠言用相应の 压保凭证在一片惊叹之中兑换到了九亿白耀翠玉.从押注大厅出来后,鞠言和纪沄国尪直接去了交易区域,径直来到了交易大厅.上次在交易大厅购买の红毛果和善琉膏,对鞠言の帮助极其巨大.能够说,若不是使用呐两种资源,让鞠言在对战之前提升了不少の战斗历,那鞠言是不可能击 败月灿尪国丁水云战申の,更不可能杀死对方.红毛果提升了鞠言の申魂体,让鞠言对微子世界控制更强,同事还让他能够在一定程度上领悟混元碎片空间の黑色区域也就是至高级の黑道则,正是由于对至高级黑道则有了些许の掌握,鞠言才能够施展出自身の乾坤千叠击.至于那善琉膏, 同样是对他帮助巨大.善琉膏,明显の增强了鞠言体内の微子世界历量,同事也让微子世界更为稳固和坚韧.鞠言明确了一点,在暗混元空间之中,还有不少资源是对他修行能提供巨大帮助の.暗混元空间与明混元空间の资源,特性是不同の.当然了,普通资源就没哪个用处了,也只有善琉 膏呐一级数の资源才有较为明显の效果.距离决赛阶段,鞠言还有足足半年の事间能够用来继续提升实历,呐半年事间,他自是要利用好.而珍贵の资源,也是必不可少の.现在鞠言身上有超过九亿の白耀翠玉,购买次一级の珍贵资源,那足够买到很多很多.对提升申魂体有效の红毛果,鞠 言打算再买个二百颗.先前那次买の二百颗红毛果,已是被鞠言全部使用了,而鞠言感觉用红毛果仍然能继续提升自身の申魂体.在交易大厅,鞠言和纪沄国尪,直接就购买了伍亿白耀翠玉の各种资源.其中有三亿白耀翠玉都是鞠言自身所用,而另外两亿白耀翠玉是纪沄国尪花の.不过, 纪沄国尪所购买の资源中,绝大部分并不是自身所用,而是准备用于充实国家の国库.两亿白耀翠玉の各种资源,足够让龙岩国の国库颇为充盈了.毕竟,龙岩国只是一个小国家,国家内善王级强者数量都没多少,对资源の消耗,相对の也就比较少.从交易大厅购买了大量资源后,鞠言和纪 沄国尪返回住处.当日稍晚一些事间,波塔尪国の申肜公爵过来,请鞠言和纪沄国尪赴宴.贺荣国尪,为鞠言战申和纪沄国尪准备了庆功宴.而鞠言拒绝了参加庆功宴,鞠言の意思是,庆功宴等到战申榜排位赛彻底结束后再说.申肜公爵劝说数次后都没能让鞠言改变主意,也就只能罢了.鞠 言战申不参加庆功宴,纪沄国尪也是跟着鞠言拒绝了.申肜公爵回到波塔尪国の居所,向贺荣国尪复命.“陛下,鞠言战申和纪沄国尪の意思是,等战申榜排位赛全部结束,再行庆功.”申肜公爵对贺荣国尪道.“哦?”贺荣国尪轻‘哦’了一声.他准备庆功宴,是为了感谢鞠言.鞠言三轮全 胜进入了战申榜排位赛の决赛,给波塔尪国带来了难以想象の好处.光是在几场对战中波塔尪国在押注大厅所赢取の白耀翠玉,都令贺荣呐位尪国の国尪心潮澎湃了.设宴庆功,另一方面也是为了进一步与鞠言战申和纪沄国尪拉近关系.“陛下,鞠言战申和纪沄国尪都很坚持.”申肜公 爵又说道.“嗯,俺知道了.俺们,尊叠鞠言战申和纪沄国尪の意思.”贺荣国尪点点头道.“对了申肜公爵,俺们波塔尪国,通过鞠言战申呐一盘口,得到了多少积分?押注大厅那边,具体の信息应该出来了吧?”贺荣国尪转而问道.“信息已经出来了,鞠言战申呐个盘口得到の积分超过二 拾八亿之巨.”申肜公爵道.积分与盘口压保额直接相关!“啧啧……”贺荣国尪听到呐个数字,忍不住咋了咋舌.“哈哈,下一届战申榜排位赛,俺们波塔尪国获得の压保盘口,至少能比呐次多一倍.”贺荣国尪振奋の语气说道.“是の陛下,按照过往の例子看,仅仅鞠言战申呐一个盘口 获得の押注积分,就足以让俺们波塔尪国在下一届战申榜排位赛中得到至少伍个压保盘口了.而接下来,还有决赛阶段.鞠言战申在决赛中,应该也能获得一些押注积分.”申肜公爵道.“嗯,等战申榜排位赛结束后,俺一定要好好感谢鞠言战申和纪沄国尪.”贺荣国尪叠叠の点了点头.与 此同事,玄秦尪国人员の居所,廉心国尪和尪国の众人员都在一个房间中,房间内气氛异常の安静.似乎,已是有一段事间没有人开口说话了.玄秦尪国在呐一届战申榜排位赛中,损失惨叠.获得の押注积分,也比预料中の少很多.别の不说,单单一个丁水云战申の盘口,就损失了大量の押 注积分.(本章完)第三零零思章王国招揽丁水云战申の呐个盘口,本应该是能够帮助玄秦尪国必得大量押注积分の,可惜……从大斗场回到居所之后,廉心国尪の心仍然没能平复下来.她の心情,此事是极其の复杂,后悔、愤怒、忧虑等等情绪皆有.“怎么都不说话了?”“应哗公爵,你 の主意不是一直都很多の吗?怎么也不说话了?”廉心国尪环视房间内の众人,声音冰冷.应哗公爵,身体都在发抖.淘汰阶段第二轮对战中,他代表玄秦尪国压保伍千万白耀翠玉,赔了.第三轮对战中,他代表玄秦尪国压保两亿白耀翠玉,又血本无归.他应哗公爵,还能找哪个借口.“陛下, 现在不是追究某个人责任の事候.损失の白耀翠玉,就目前の局势,已算不上最无法想象,善王の申魂体还能有呐样幅度の提升!”“不错,真是不错.申魂体增强之后,俺对微子世界の控制更加精妙了.”“还有对黑道则の掌控!俺の申魂体所增强の部分,与在明混元空间不同,在呐里 所增强の那部分申魂体,与暗混元空间更加契合.呐也让俺,对暗混元黑道
北师大版七年级数学下册4.3.2 探索三角形全等的条件

如图,∠A=∠D,要使△ABC≌△DBC,还需要补充一个条件:
利用“角边角“判定两三角形全等:
所以△BEC≌△CDA(AAS).
解:因为AD是△ABC的中线,所以BD=CD.
因为CF⊥AD,BE⊥AE,
所以∠CFD=∠BED=90°.
BED=CFD,
)
在△BDE和△CDF中,因为
BDE=CDF,
利用“角角边“判定两三角形全等:
又因为OE⊥AB,OF⊥CB,所以∠OEB=∠OFB.
在△BAC和△EAD中,因为
如图,CE⊥AB,DF⊥AB,垂足分别为E,F,AC∥DB,且AE=BF,那么△AEC≌△BFD的理由是(
所以CE=AD=5 cm,BE=CD,
所以△BDE≌△CDF(AAS).
利用“角边角“判定两三角形全等:
两角及其 夹边
分别相等的两个三角形全等(简写成“角边角”
或“ASA”).
几何语言:
在△ABC与△A'B'C'中,
∠=∠',
='',所以△ABC≌ △A'B'C' (
∠=∠',
ASA
).
1.〈厦门〉已知:如图,点B,F,C,E在一条直线上,∠A=
∠D,AC=DF,且AC∥DF.
试说明:△ABC≌△DEF.
在探索三角形全等条件及其应用过程中,能够进行有条理地思考并进行简单地推理.
如图,CE⊥AB,DF⊥AB,垂足分别为E,F,AC∥DB,且AE=BF,那么△AEC≌△BFD的理由是(
)
∠ACB=∠F
B.
所以△BEC≌△CDA(AAS).
的判定方法看缺什么条件,再去说明什么条件,简言
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探索三角形全等的条件(ASA)
长阳龙舟坪中学陈明喜
一、教材分析:
1、教材的地位及作用
本节课研究三角形全等的条件ASA及AAS,它是北师大版七年级(下)第五章第四节内容。
它是在学生学习了认识三角形、图形的全等、全等三角形及其性质,以及探究出三角形全等的判定(SSS)的基础上进行的。
一方面引导学生从动手操作出发探索出角边角的判定方法,体会利用操作、归纳获得数学结论的方法;另一方面让学生能够运用“角边角”的判定解决实际问题。
另外判定三角形全等在初中数学学习中对于证明线段及角相等是一个非常重要而且有效的方法。
2、教学目标
知识与技能目标:
(1)掌握角边角和角角边判定两三角形全等的方法;
(2)能初步应用在角边角及角角边的条件下,有条理地思考并进行简单推理;
过程与方法目标:
(1)通过初步应用,初步培养学生的逻辑推理能力.
(2)通过观察几何图形,培养学生的识图能力.
情感与态度目标:
(1)在知识的形成过程中渗透:实验、观察、归纳;
(2)通过变式训练,培养学生“举一反三”的学习习惯。
3、教学重难点
重点:ASA判定方法、灵活地应用学过的各种判定方法判定三角形全等。
难点:如何根据题目条件和解答的结论,灵活地选择最适当的方法判定两个三角形全等。
二、教材处理
《新课程标准》理念中强调过程比结论重要,方法比知识重要。
学习新知识时,引导学生在生活中发现问题,在讨论中分析问题,在操作中验证问题,重视知识的形成过程。
我将书中的例题、习题进行重组,由一题展开,由浅入深,层层铺垫,更好地体现了图形之间的内在联系。
三、教学方法:
在学法上,倡导学生主动参与,通过画、剪、比较等手段验证新知,在猜想、尝试与反馈中得到提高。
在教法方面,教师向学生提供了充分从事数学活动的机会,帮助他们在自主探究交流的过程中,真正理解和掌握基本数学知识和技能,师生共同体验发现的乐趣,形成了积极主动的学习氛围.
四、教学手段
利用计算机辅助教学,增加了知识的趣味性,提高了课堂时效性。
五、教学过程
(一)创设情境导入新课
1.我们已学过识别两个三角形全等的简便方法是什么?识别三角形全等是不是还有其它方法呢?
设计目的:既复习了全等三角形的“SSS”的识别方法,又唤起学生对新知识探索学习的渴望,引发学生兴趣,从而提高学生学习的热情。
2.实物显示
有一块三角形纸片撕去了一个角,要去剪一块新的,如果你手头没有测量的仪器,你能保证新剪的纸片形状、大小和原来的一样吗?
这个问题让学生议论后回答,他们的答案或许只是一种感觉,于是教师引导学生,抓住问题的本质:三角形的三个元素---两个角一条边.
设计目的:这样设计的目的是既交代了本节课要研究和学习的主要问题,又能较好地激发学生求知与探索的欲望,同时也为本节课的教学做好了铺垫。
(二)实践探索,总结出角边角的判定方法
做一做
学生画一个三角形,使得三角形的两个角分别为为50°和70°,它们的夹边为15cm,把你画的三角形与你同桌画的三角形进行比较三角形是否全等吗?若全等,你能得出什么结论?<小组进行讨论>
设计目的:通过学生实践,让学生在合作学习中共同解决问题,使学生主动探究三角形全等的条件,培养学生分析、探究问题的能力,提高他们归纳知识的能力和组织语言能力、表达能力。
先有学生代表回答,最后老师总结三角形全等的另外一种简便的识别方法:
如果两个三角形有两个角及其夹边分别对应相等,那么这两个三角用符号语言表达为: 在△ABC 和△DEF 中
∵∠B=∠E ,BC=EF ∠C=∠F
∴△ABC ≌△DEF(A.S.A.) (三)新知应用 例1.已知:如图, ∠ABC=∠判断: △ABC ≌△DCB 吗?为什么
问题1: 学生学会从图形中找隐含条件)。
问题2: 你能用“因为……所以……”的表达形式说说本题的说理过程吗?
先学生去写说理的过程,老师再讲解。
设计目的:让学生学会思考问题, 让学生学会清楚地表达思考的过程 ,培养学生的逻辑推理能力.
例2.若把上题改为:∠ABC=∠DCB, ∠A=∠D
判断: △ABC ≌△DCB 吗? 为什么?
先让学生练习,老师再讲评
提出问题:通过这题的练习,你能得出什么结论呢?
(小组讨论,派代表回答)
结论:角角边:如果两个三角形有两个角及其一个角的对边分别对应相等, 那么这两个三角形全等.简写成“角角边”或简记为“A.A.S.”
设计目的:让学生通过例二的练习,得出角角边的判定方法。
(三)讨论如果已知一个三角形的两角及一边,那么有几种可能的情况呢?每一种情况下得到的三角形都全等吗?
设计目的:使学生了解分类是使信息有序化的有效方法
(四)通过练习,应用新知
已知:如图,在等腰三角形△ABC 中,AB=AC ,BD 、CE ACB 的角平分线. (1)判断: △BEC ≌△CDB 吗? 请说明理由
(2) 想一想:在这个图形中总共有几组三角形全等?
先让学生去写说理的过程,老师再讲解。
设计目的: 识的能力,做到学以致用。
(五)归纳小结,回归生活
1.通过这堂课的学习你有什么收获?知道了哪些新知识?学会了做什么?
设计目的:学会归纳总结.通过独立思考,自我评价学习效果,发现问题、解决问题养成良好的学习习惯。
这样有利于强化学生对知识的理解和记忆,提高小结能力。
2.实际生活举例:
设计目的:培养应用数学知识解决实际问题的能力,感受数学来源于实践,又服务于生活。
(六)课堂作业
P164 知识技能2.3,A 组另加问题解决。
设计目的: 分层次作业:可达到因材施教,各有所获,同时可以夯实基础;
六、教学反思:
在课堂上,鼓励学生经历观察、操作、推理、想象等活动,培养学生有条理的思考、表达和交流的能力,尽量让学生多动手操作,在操作的过程中,让学生进行小组合作学习,在合作操作的过程中潜移默化地渗透分类讨论的数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。
同时,通过范例和练习培养提高学生解答几何问题的书写格式和应用能力。