时域抽样与频域抽样

合集下载

时域抽样

时域抽样

n


x (t nT ) xT (t )
例:已知x(t),求x2(t)。
x(t) 1 0
x (t+2) x2(t) 1 x (t)
xT (t )
n


x (t nT )
1
t
x (t-2)
1
0
1
2
t
抽样
连续信号频谱X(jw)与理想抽样信号频谱Xs(jw)的关系
m




xa m T m T ht d
m
x m T ht m T
a
m

xa m T sin c[

T
t m T ]
*输出=原信号抽样点的值与内插函数乘积和。
抽样
3)内插函数 sin c[ (t mT )] 的特性: T
0.8 π
X ( e j )
1 T

抽样
0


w sam 2w m
wm T wm
1 T
2π 2w m
内插函数波形
在抽样点mT上,其值为1;其余抽样点上, 其值为0。这保证了各抽样点上信号值不变。
抽样
4) xa t xa m Tsin c[ t m T] 的说明 T m

(1)在抽样点上,信号值不变; (2)抽样点之间的信号则由各抽样函 数波形的延伸叠加而成。 xa (t )
信号的抽样
•连续信号频谱X(jΩ)与抽样信号频谱X (ejw )的关系 •时域抽样定理 •抗混叠滤波
•信号的重建
•连续信号的离散处理
抽样
本节主要介绍模拟信号与数字信号 之间相互转换的基本数学原理。 为了利用数字系统来处理模拟信号, 必须先将模拟信号转换成数字信号,在 数字系统中进行处理后在转换成模拟信 号。其典型框图如下:

信号与系统PPT 第五章 连续时间信号的抽样与量化

信号与系统PPT   第五章 连续时间信号的抽样与量化

pt
他抽样方式,如零阶抽样
1
保持。
O Ts
t
M1
fs0 t
f t
M2
fs0 t
1
O Ts
t
p1 t
1.零阶抽样信号的频谱
设零阶抽样信号fs0t Fs0
fs t f t t nTs
n
Fs
1 Ts
n
F
ns
此线性系统必须 具有如下的单位 冲激响应
fs (t) 保 持得到fso (t).
f (t)
F
1
0 f (t)
t
s 2m
m m
1 Fs
Ts
0
TS f (t)
t
s m
m
s
s 2m
1 Fs
Ts
0
t
s m m s
TS
采样频率不同时的频谱
5.2.2 时域抽样定理 (1)时域抽样定理
一个频带受限的信号f (t),若频谱只占据 m ~ m
的范围,则信号f t可用等间隔的抽样值来惟一地表示。
即: fs (t) f (t) p(t)
设连续信号 抽样脉冲信号 抽样后信号
f t F (m m)
pt P , fst Fs
复习
周期信号的傅里叶变换
令周期信号f(t)的周期为T1,角频率为1=2f1
f t F 2π Fn1 n1
n
其中:
F n1
1 T1
T1
2 T1
F (
s
)
S a0F ( )
S a
s
2
F (
s
)
设: 1,
Ts 2
s

抽样定理

抽样定理

抽样定理是通信理论中的一个重要定理,它是模拟信号数字化的理论基础,包括时域抽样定理和频域抽样定理。

抽样定理,也称为香农采样定律和奈奎斯特采样定律,是信息论特别是通信和信号处理中的重要基础结论。

E.T.惠特克(统计理论发表于1915年),克劳德·香农和哈里·奈奎斯特对此做出了重要贡献。

此外,V。

A. Kotelnikov也对该定理做出了重要贡献。

采样是将信号(即空间中的连续函数)转换为数字序列(即空间中的离散函数)。

采样后的离散信号通过保持器后,获得具有零阶保持器特性的阶跃信号。

如果信号受频带限制,并且采样频率高于信号最高频率的两倍,则可以从采样样本中完全重建原始连续信号。

限带信号转换的速度受到其最高频率分量的限制,也就是说,其在离散时间采样和表达信号细节的能力非常有限。

抽样定理意味着,如果信号带宽小于奈奎斯特频率(即采样频率的一半),那么这些离散采样点就可以完全代表原始信号。

高于或处于奈奎斯特频率的频率分量将导致混叠。

大多数应用都需要避免混叠,混叠的严重程度与这些混叠频率分量的相对强度有关。

采样过程中应遵循的定律也称为抽样定理和抽样定理。

抽样定理解释了采样频率和信号频谱之间的关系,这是连续信号离散化的基本基础。

抽样定理最早是由美国电信工程师H. Nyquist于1928年提出的,因此被称为Nyquist抽样定理。

1933年,苏联工程师科特尔尼科夫首次严格地通过公式表达了这一原理,因此在苏联文学中被称为科特尔尼科夫抽样定理。

1948年,信息理论的创始人C.E. Shannon 清楚地解释了这一原理,并将其正式引用为一个定理,因此在许多文献中也称为Shannon抽样定理。

抽样定理有很多表达式,但是最基本的表达式是时域抽样定理和频域抽样定理。

抽样定理广泛应用于数字遥测系统,时分遥测系统,信息处理,数字通信和采样控制理论中。

第四章 信号的频域分析 6 信号的时域抽样

第四章 信号的频域分析 6 信号的时域抽样

(aliasing)。
信号的时域抽样和频域抽样
x(t ) x[k ]
时域抽样
CTFT DTFT
周期化
~ X (e ) X [m]
j 频域抽样
IDTFT
IDFS
X ( jw )
1 T
n


X (j
2 πn
T
)
x[k ] 周期化
1 X s ( jw ) X [ j(w nws )] T n
X s ( jw )
1 T
0 wm
w
ws 2.5wm
X [ j(w w s )]
X ( jw )
...
ws wm
0
X [ j(w w s )]
ws /2 wm ws
...
w
一、 信号的时域抽样
1、信号抽样的理论分析
一、 信号的时域抽样
3、抽样定理的工程应用 许多实际工程信号不满足带限条件
h(t ) x(t )
X ( jw )
抗 混
低通滤波器
H ( jw ) 1
0
w
x1 (t )
X 1 ( jw )
1
1
wm
0
wm w
wm
0
wm
w
一、 信号的时域抽样
3、抽样定理的工程应用 混叠误差与截断误差比较
X s ( jw )
理想抽样信号的频谱分析
抽样信号xs(t)频谱与抽样间隔T关系:
X ( jw )
1
wm
1 X s ( jw ) X [ j(w nws )] T n
X s ( jw )

《数字信号处理教学课件》3.10 抽样定理

《数字信号处理教学课件》3.10 抽样定理

c2
1
1
2 1
1
0
2 1
指数形式的频谱图
F n 1
0.15
n
0.15
0.25
0.5
1.12
1
1.12
0.5
2 1
2 1
2 1 1
0
1
1
1
0
0.15
2 1
0.25
例3-10-1
BACK 例如音频信号:0~3.4KHz,
fs 2 fm
信号无失真恢复
抽样频谱 连续信号:
恢复
在满足时域抽样定理条件下使 T s s 2 F Fs H , 其中H 0 s 2 矩形函数H(w)与Fs(w)相乘。 即将f (t )的抽样f s t 施于“理想低通滤波器”H ,
可从f s t 的频谱Fs 无失真地选出f (t )的F , 再由滤波器输出端恢复f(t)。
二、频域抽样定理
根据时域和频域对称性,可推出频域抽样定理
c f (t ) f (nTs ) Sa[ c (t nTs )] n

偶函数

变 量 置 换
时分复用
n n F ( ) F Sa t ( ) m t tm n m
若信号 f (t ) 为时限信号,它集中在 tm tm 的时间范围内,若在频域中, 以不大于 1 2tm 的频率间隔对 f (t ) 的频谱 F ( ) 进行抽样,则抽样后的频谱 F1 ( )可以唯一 地表示原信号。
f (t ) d t
与平方可积条件相同,这一条件保证了每一系数Fn都 是有限值,因为

实验四时域抽样与频域抽样

实验四时域抽样与频域抽样

频域抽样实验结果分析
频域抽样实验的原理
实验过程及数据采集
实验结果展示及分析
结果与理论预期的对比
抽样定理的验证与讨论
实验结果展示:通过图表和数据 展示实验结果
实验误差分析:讨论实验误差产 生的原因和影响
添加标题
添加标题
添加标题
添加标题
抽样定理验证:分析实验结果是 否符合抽样定理
结论与讨论:总结实验结果,提 出对抽样定理的进一步理解和思 考
数据分析:对实验数据进行处理和分析,比较不同抽样方法的性能指标
结果展示:将实验结果以图表、表格等形式展示,便于观察和比较
结论总结:根据实验结果总结实验结论,分析实验中存在的问题和改进方 向
05
实验结果分析
时域抽样实验结果分析
信号恢复效果:通过时域抽样,成功恢复原始信号,无明显失真。 抽样率对恢复效果的影响:随着抽样率的提高,信号恢复效果越好。 抗噪声性能:在加入噪声的情况下,时域抽样仍能较好地恢复原始信号。 适用性分析:适用于各种类型的信号,具有较强的通用性。
频域抽样的基本概念
添加项标题
频域抽样是信号处理中的一种重要方法,通过对信号的频域进行 采样和重构,实现对信号的频域分析和处理。
添加项标题
频域抽样的基本原理是将信号的频谱进行离散化处理,通过对离 散化后的频谱进行采样和重构,得到信号的频域表示。
添加项标题
频域抽样的主要应用包括信号分析、数字信号处理、通信等领域, 是数字信号处理中的重要概念之一。
06
实验总结与思考题
实验总结
实验目的:掌握四时域抽样与频域抽样的基本原理和实现方法 实验过程:详细记录了实验步骤和数据采集、处理的过程 实验结果:对实验结果进行了详细的分析和比较,得出结论 实验反思:总结了实验中的不足和需要改进的地方,提出了改进方案和未来研究方向

时域及频域采样定理

时域及频域采样定理

时域及频域采样定理
时域采样定理(Nyquist采样定理)和频域采样定理(Shannon采样定理)是两个基本的采样定理,用于指导信号采样和重构的过程。

时域采样定理(Nyquist采样定理):时域采样定理是由哈利·尼奎斯特(Harry Nyquist)在20世纪20年代提出的。

该定理指出,要恢复一个连续时间信号,采样频率必须至少是信号最高频率的两倍。

简而言之,对于最高频率为f的信号,采样频率应该大于2f。

如果采样频率低于2f,那么在重构信号时将会产生混叠现象,导致信号失真。

频域采样定理(Shannon采样定理):频域采样定理是由克劳德·香农(Claude Shannon)在1949年提出的。

该定理表明,如果一个信号在频域上没有频率成分超过一半的采样频率,那么可以通过其离散时间域的采样来完全恢复该信号。

简而言之,对于信号的最高频率为f,采样频率应该大于2f才能完全还原原始信号。

这两个采样定理的要点是:采样频率必须满足一定条件,以避免采样过程中的信息丢失和信号失真。

如果采样频率不满足定理的要求,就会出现混叠效应,导致无法准确地恢复原始信号。

因此,在信号处理和通信系统中,遵循时域采样定理和频域采样定理是非常重要的,以保证信号采样和重构的准确性和有效性。

信号抽样与抽样定理

信号抽样与抽样定理

解:信号在时域抽样、周期化过程中频谱的变化规律:
(1)信号在时域周期化,周期为 T ,则频谱离散化,
抽样间隔为 ω0=2π/T。 (2)信号在时域抽样,抽样间隔为 TS ,则频谱周期化,
重复周期为 ωS=2π/TS 。
信号与系统
四、频域抽样与频域抽样定理
矩形单脉冲信号的频谱 F ( ) E Sa 0
1 s n

0 E
Ts


n0 Sa 2 m

( ns m0 )
信号与系统
四、频域抽样与频域抽样定理
f 0 t
E

2
E
F0 ( )

0
a
E
2
t
2

0
2
f1 t
b


F1
E 0
T
唯一地表示,抽样间隔为 s ,它必须满足条件 T
s
2tm ,其中 Ts
s 2
信号与系统
四、频域抽样与频域抽样定理
例: 大致画出图所示周期矩形信号冲激抽样后信号的频谱。
f1 (t )
E
T
0
2
T
2
t
f s (t )
E
T
0

2
T
2
t
信号与系统
四、频域抽样与频域抽样定理
2. 在什么条件下可从抽样信号 fs (t)中无失真地恢复原连
续信号 f (t) 。
信号与系统
一、信号抽样
假设原连续信号 f (t)的频谱为 F(ω),即
f (t ) F ( )
抽样脉冲 p (t) 是一个周期信号,它的频谱为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三时域抽样与频域抽样
一、实验目的
1.加深理解连续时间信号的离散化过程中的数学概念和物理概念,掌握时域抽样定理(奈奎斯特采样定理)的基本内容。

2.加深对时域取样后信号频谱变化的认识。

掌握由抽样序列重建原连续信号的基本原理与实现方法,理解其工程概念。

3.加深理解频谱离散化过程中的数学概念和物理概念,掌握频域抽样定理的基本内容。

二、实验原理
1.时域抽样。

时域抽样定理给出了连续信号抽样过程中信号不失真的约束条件:信号抽样频率f s 大于等于2倍的信号最高频率f m,即f s≥ 2f m。

时域抽样先把连续信号x(t)变成适合数字系统处理的离散信号x[k];然后根据抽样后的离散信号x[k]恢复原始连续时间信号x(t)完成信号重建。

信号时域抽样(离散化)导致信号频谱的周期化,因此需要足够的抽样频率保证各周期之间不发生混叠;否则频谱的混叠将会造成信号失真,使原始时域信号无法准确恢复。

2.频域抽样。

非周期离散信号的频谱是连续的周期谱,计算机在分析离散信号的频谱时,必须将其连续频谱离散化。

频域抽样定理给出了连续频谱抽样过程中信号不失真的约束条件:频域采样点数N 大于等于序列长度M,即N≥M。

频域抽样把非周期离散信号x(n)的连续谱X(e jω)变成适合数字系统处理的离散谱X(k);要求可由频域采样序列X(k)变换到时域后能够不失真地恢复原信号x(n)。

三、实验内容
1.已知模拟信号,分别以T s =0.01s 、0.05s 、0.1s 的采样间隔采样得到x (n )。

(1)当T=0.01s 时,采样得到x(n),所用程序为:
%产生连续信号x (t )
t=0:0.001:1;
x=sin(20*pi*t);
subplot(4,1,1)
plot(t,x,'r')
hold on
title('原信号及抽样信号')
%信号最高频率fm 为10 Hz
%按100 Hz 抽样得到序列
fs=100;
n=0:1/fs:1;
y=sin(20*pi*n);
subplot(4,1,2)
stem(n,y) 对应的图形为:
()sin(20),01a x t t t =π≤≤
(2)将上述程序的fs修改为20Hz,得到抽样序列:(3)再将fs修改为10Hz,所得图形:
为了对比,可将这三幅抽样图形和原图放在一起比较:
对抽样结果的分析:
根据奈奎斯特采样定理,抽样频率至少是信号最高频率的两倍。

对于实验样本而言,fmax=10Hz,所以fsam≥20Hz。

由上图可以清晰地看到,当fs较大时,采样的点越多,能够获取的信号的信息也就越多。

2.信号的重建
(1)对于以fs=100Hz的抽样信号的重建,程序为
fs=100;
n=0:1/fs:1;
y=sin(20*pi*n);
subplot(4,1,1);
stem(n,y)
hold on
xi=0:1/100:1;
yi=interp1(n,y,xi)
结果为:
由图可见,当fs=100Hz>>10Hz时,由抽样信号能够很好地恢复出原始信号。

(2)将程序段的fs修改为20Hz,得到结果:
由图,fs恰好等于那奎斯特抽样频率,恢复出来的信号已经失真了。

(3)将fs再修改为10Hz,结果是:
由此明显的看到恢复出来的信号已经严重失真。

四、对思考题的回答:
1.将语音信号转换为数字信号时,抽样频率一般应是多少?
答:由抽样频率公式可,一般应选取2倍左右,人的听觉范围是20Hz—2kHz,所以抽样频率一般取为44.1kHz。

2. 在时域抽样过程中,会出现哪些误差?如何克服或改善?
答:由于取样器固有噪声及时基抖动等因素的影响,,取样信号在不同程度上会被嗓声污染。

对含嗓声的取样信号进行时频变换时必然引起频谱误差,影响频谱估计的精度。

3. 在实际应用中,为何一般选取抽样频率fs =(3~5)fm?
答:一般实际信号带有噪声,且不存在理想的低通滤波器,抽样频率会比2倍大些。

4. 如何选取被分析的连续信号的长度?
答:一般周期型号选取一个周期或两个周期的信号进行分析,而非周期信号则选取占据函数大部分功的部分进行分析。

5. 增加抽样序列x[k]的长度,能否改善重建信号的质量?
答:不能,增加抽样频率才能改善质量。

6. 在分析理想采样序列特性的实验中,采样频率不同时,相应理想采样序列的傅立叶变换频谱的数字频率度量是否都相同?它们所对应的模拟频率是否相同?为什么?
答:不相同。

由Ω=Tω可见,当采样频率不同时,周期T不同,相应的数字频率Ω也不会相同。

但由于是同一信号,所以模拟频率是相同的。

相关文档
最新文档