时域采样理论与频域采样定理验证

合集下载

实验三 时域采样与频域采样

实验三 时域采样与频域采样

实验二 时域采样与频域采样一 实验内容1 时域采样定理的验证给定模拟信号0()sin()()t a x t Ae t u t α-=Ω,式中,A=444.128,α=,0/rad s Ω=选取三种采样频率,即1s F kH z =,300Hz ,200Hz ,对()a x t 进行理想采样,得到采样序列:0()()sin()()nT a x n x nT Ae nT u nT α-==Ω。

观测时间长度为64p T m s =。

分别绘出三种采样频率得到的序列的幅频特性曲线图,并进行比较。

注:为与课本中幅频特性曲线比较,将纵坐标进行了归一化。

实验结果:由实验结果发现,采样频率为1000HZ 时,时域采样后的频谱函数可以较好的表现出原模拟信号的幅频特性,且是原幅频特性的周期延拓。

当采样频率为300HZ和200HZ时,其频谱函数与原幅频特性相比,有较大的误差,且在fs/2的位置误差最大。

实验分析:理想采样信号的频谱是原模拟信号的频谱沿频率轴,每间隔采样角频率2*pi*fs重复出现一次,并叠加形成的周期函数,所以只有当采样角频率2*pi*fs大于等于原模拟信号的角频率时才不会发生混叠。

2 频域采样定理的验证给定信号:1013()271426n nx n n nothers+≤≤⎧⎪=-≤≤⎨⎪⎩,对()x n的频谱函数()jX eω在[0,2π]上分别等间隔采样16点和32点,得到16()X k和32()X k,再分别对16()X k和32()X k进行IDFT,得到16()x n和32()x n。

分别画出()jX eω、16()X k和32()X k的幅度谱,并绘图显示()x n、16()x n和32()x n的波形,进行对比和分析。

实验结论:由上图分析知,频域采样32点时,其逆变换得到的xn32能较好的还原xn,只是尾部多了几个0而已,而对于频域采样16点时,逆变换之后已经产生较大的误差,不能等效为xn。

时域采样与频域采样

时域采样与频域采样

实验二:时域采样与频域采样一、实验目的:时域采样理论与频域采样理论是数字信号处理中的重要理论。

要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。

二、实验原理与方法:1、时域采样定理的要点:1)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。

公式为:)](ˆ[)(ˆt x FT j X a a=Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T 2)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。

利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。

理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系为 ∑∞-∞=-=n a a nT t t x t x)()()(ˆδ 对上式进行傅立叶变换,得到:dt e nT t t x j X t j n a a Ω-∞∞-∞-∞=⎰∑-=Ω])()([)(ˆδdt e nT t t x t j n a Ω-∞-∞=∞∞-∑⎰-)()( δ=在上式的积分号内只有当nT t =时,才有非零值,因此∑∞-∞=Ω-=Ωn nT j aae nT xj X )()(ˆ上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(ˆ上式的右边就是序列的傅立叶变换)(ωj e X ,即T j a e X j X Ω==Ωωω)()(ˆ 上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。

2、频域采样定理的要点:a) 对信号x(n)的频谱函数X(e j ω)在[0,2π]上等间隔采样N 点,得到2()() , 0,1,2,,1j N k NX k X e k N ωπω===-L则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为:()IDFT[()][()]()N N N N i x n X k x n iN R n ∞=-∞==+∑b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。

时域采样与频域采样实验报告

时域采样与频域采样实验报告

时域采样与频域采样实验报告一、实验目的:1.理解采样定理的原理和应用;2.掌握时域采样和频域采样的方法和步骤;3.学习使用MATLAB软件进行采样信号的分析和处理。

二、实验原理:采样是指将连续时间信号转换为离散时间信号的过程。

采样过程中,时间轴被分成若干个时间间隔,每个时间间隔内只有一个采样值,即取样点,采样信号的幅度就是该时间间隔内对应连续时间信号的幅度,称为采样值。

时域采样:利用采样定理进行抽样,采样时将模拟信号保持在一个固定状态下,以等间隔时间取样,实现模拟信号的离散化。

时域采样的反变换为恢复成为原连续时间信号,称为重构。

在数字信号中,通过离散时间信号构建模拟信号。

频域采样:首先通过傅里叶变换将时域信号转换到频域,然后在频域对其进行采样,将频域采样结果再进行反傅里叶变换恢复成时域信号。

三、实验内容及步骤:1.时域采样实验①模拟信号的采样:在MATLAB软件中设计一个三角波信号和正弦波信号,并画出其时域图像。

分别设定采样频率为1.5kHz和3kHz,进行采样。

重构时域信号,并画出重构信号的时域图像。

比较原信号和重构信号,在时域和频域上进行对比和分析。

②数字信号的量化:对采集的信号进行量化处理,设量化步长分别为1、2、3。

计算量化误差和信噪比,并作图进行比较分析。

2.频域采样实验设计一个具有3kHz频率的信号,并绘制其频域图像。

设定采样率为10kHz,进行采样,同时对采样信号进行降采样处理。

恢复实验所得到的采样信号,绘制重构后的时域图像,并分析其质量。

四、实验结果与分析:1.时域采样实验:①模拟信号的采样:通过MATLAB软件设计得到的三角波和正弦波信号及其时域图像如下所示:其中,Fs1 = 1.5kHz,Fs2 = 3kHz,信号的采样频率与信号频率的比值应大于2,以保证采样后的信号不失真。

通过采样得到的信号及其重构图像如下所示:可以看出,采样和重构得到的信号与原信号的时域图像是相似的,重构后的信号和原信号之间的误差可以忽略不计。

时域采样与频域采样

时域采样与频域采样

实验二:时域采样与频域采样一、实验目的:时域采样理论与频域采样理论是数字信号处理中的重要理论。

要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。

二、实验原理与方法:1、时域采样定理的要点:1)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。

公式为:)](ˆ[)(ˆt x FT j X a a=Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T 2)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。

利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。

理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系为 ∑∞-∞=-=n a a nT t t x t x)()()(ˆδ 对上式进行傅立叶变换,得到:dt e nT t t x j X t j n a a Ω-∞∞-∞-∞=⎰∑-=Ω])()([)(ˆδdt e nT t t x t j n a Ω-∞-∞=∞∞-∑⎰-)()( δ=在上式的积分号内只有当nT t =时,才有非零值,因此∑∞-∞=Ω-=Ωn nT j aae nT xj X )()(ˆ上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(ˆ上式的右边就是序列的傅立叶变换)(ωj e X ,即T j a e X j X Ω==Ωωω)()(ˆ 上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。

2、频域采样定理的要点:a) 对信号x(n)的频谱函数X(e j ω)在[0,2π]上等间隔采样N 点,得到2()() , 0,1,2,,1j N k NX k X e k N ωπω===-则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为:()IDFT[()][()]()N N N N i x n X k x n iN R n ∞=-∞==+∑b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。

时域采样与频域采样

时域采样与频域采样

实验二:时域采样与频域采样一、实验目的:时域采样理论与频域采样理论是数字信号处理中的重要理论。

要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。

二、实验原理与方法:1、时域采样定理的要点:1)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。

公式为:)](ˆ[)(ˆt x FT j X a a=Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T 2)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。

利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。

理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系为 ∑∞-∞=-=n a a nT t t x t x)()()(ˆδ 对上式进行傅立叶变换,得到:dt e nT t t x j X t j n a a Ω-∞∞-∞-∞=⎰∑-=Ω])()([)(ˆδdt e nT t t x t j n a Ω-∞-∞=∞∞-∑⎰-)()( δ=在上式的积分号内只有当nT t =时,才有非零值,因此∑∞-∞=Ω-=Ωn nT j aae nT xj X )()(ˆ上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(ˆ上式的右边就是序列的傅立叶变换)(ωj e X ,即T j a e X j X Ω==Ωωω)()(ˆ 上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。

2、频域采样定理的要点:a) 对信号x(n)的频谱函数X(e j ω)在[0,2π]上等间隔采样N 点,得到2()() , 0,1,2,,1j N k NX k X e k N ωπω===-L则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为:()IDFT[()][()]()N N N N i x n X k x n iN R n ∞=-∞==+∑b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。

时、频域采样定理的验证

时、频域采样定理的验证

实验二时、频域采样定理的验证
实验目的
掌握时域采样定理,频域采样定理。

掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;掌握频域采样会引起时域周期化,以及频域采样定理及其对频域采样点数选择的指导作用。

实验内容
1.时域采样理论
的验证
f=1000Hz:
f=300Hz:
f=200Hz:
2.频域采样理论的验证
实验小结
通过本次实验,我巩固了信号在matlab中的运算表示方法、图形输出函数(plot、stem),同时会用软件求fft和ifft,由此验证了时域采样定理,频域采样定理。

通过观察不同平率的模拟信号采样,采样频率如果过低会导致丢失信息;通过频域采样发现它会引起时域周期化。

实验二-时域采样与频域采样及MATLAB程序

实验二-时域采样与频域采样及MATLAB程序

实验二时域采样与频域采样一实验目的1掌握时域连续信号经理想采样前后的频谱变化,加深对时域采样定理的理解2理解频率域采样定理,掌握频率域采样点数的选取原则二实验原理1时域采样定理对模拟信号“)以T进行时域等间隔采样,形成的釆样信号的频谱XJJQ)会以采样角频率2 (Q,=芋)为周期进行周期延拓,公式为:利用计算机计算上式并不容易,下面导出另外一个公式。

理想采样信号念⑴和模拟信号暫⑴之间的关系为:£(『)= %(0工郭-切n—x对上式进行傅里叶变换,得到:+30 -f-QQX a(jn)=匚[%(『)£ 刃-£ 匚心⑴d(t-nT)e-iai dtZI--«川―00在上式的积分号内只有当时,才有非零值,因此:X a(j^=^x a{nT)e-^T上式中,在数值上£(〃)= □),再将co=QT代入,得到:匕(山)=f兀何厂筲必丁= X(严)|亠勿上式说明采样信号的傅里叶变换可用相应序列的傅里叶变换得到,只要将自变量Q用代替即可。

2频域采样定理对信号x(n)的频谱函数X(e®在[0, 2刃上等间隔采样N点,得到X 伙)= X(严)“k = 0,l,2,..・,N — l则有:x N(n) = IDFT[X伙)h =[乞如iN)]恥)00即N点1DFT[X伙)]得到的序列就是原序列x(n)以N为周期进行周期延拓后的主值序列, 因此,频率域采样要使时域不发生混叠,则频域采样点数N必须大于等于时域离散信号的长度M (即N >M ),在满足频率域采样定理的条件下,心(")就是原序列.丫⑺)。

如果N>M,则g(”)比原序列x(〃)尾部多N —M个零点,反之,时域发生混叠,x N(n)与x(n)不等。

对比时域采样定理与频域采样定理,可以得到这样的结论:两个定理具有对偶性,即“时域采样,频谱周期延拓;频域釆样,时域信号周期延拓”。

在数字信号处理中,都必须服从这二个定理。

时域及频域采样定理

时域及频域采样定理

时域及频域采样定理
时域采样定理(Nyquist定理)表示:在连续时间信号的采样
过程中,为了准确地重构原始信号,采样的频率必须大于等于原始信号最高频率的两倍。

频域采样定理表示:在连续频谱信号的采样过程中,为了准确地还原原始频谱,采样的时间间隔必须小于等于原始信号的最小周期。

时域采样定理保证了信号在采样和重构过程中不存在混叠现象,即采样频率大于等于原始信号最高频率的两倍,可以完整地还原原始信号。

频域采样定理保证了在频谱分析中,通过对信号进行采样得到的频谱能准确地表示原始频谱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验4时域采样理论与频域采样定理验证一一、实验目的1时域采样理论与频域采样理论是数字信号处理中的重要理论。

要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。

二、实验原理及方法时域采样定理的要点是:(a)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s/2π=Ω)为周期进行周期延拓。

公式为:)](ˆ[)(ˆt x FT j X a a=Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T (b )采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。

利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。

理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系为: ∑∞-∞=-=n a a nT t t x t x)()()(ˆδ对上式进行傅立叶变换,得到:dt e nT t t x j X t j n a aΩ-∞∞-∞-∞=⎰∑-=Ω])()([)(ˆδdt e nT t t x t j n a Ω-∞-∞=∞∞-∑⎰-)()( δ=课程名称 实验成绩 指导教师 实 验 报 告院系 班级学号 姓名 日期在上式的积分号内只有当nT t =时,才有非零值,因此:∑∞-∞=Ω-=Ωn nT j aae nT xj X )()(ˆ上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(ˆ上式的右边就是序列的傅立叶变换)(ωj eX ,即T j a e X j X Ω==Ωωω)()(ˆ上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。

频域采样定理的要点是: a) 对信号x(n)的频谱函数X(e jω)在[0,2π]上等间隔采样N 点,得到2()(), 0,1,2,,1j N k NX k X e k N ωπω===-则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为:()IDFT[()][()]()N N N Ni x n X k x n iN Rn ∞=-∞==+∑(b)由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。

如果N>M ,()N x n 比原序列尾部多N-M 个零点;如果N<M ,z 则()N x n =IDFT[()N X k ]发生了时域混叠失真,而且()N x n 的长度N 也比x(n)的长度M 短,因此。

()N x n 与x(n)不相同。

在数字信号处理的应用中,只要涉及时域或者频域采样,都必须服从这两个采样理论的要点。

对比上面叙述的时域采样原理和频域采样原理,得到一个有用的结论,这两个采样理论具有对偶性:“时域采样频谱周期延拓,频域采样时域信号周期延拓”。

因此放在一起进行实验。

三、实验内容及步骤(1)时域采样理论的验证。

给定模拟信号,)()sin()(0t u t Ae t x ta Ω=-α式中A =444.128,α=502π,0Ω=502πrad/s ,它的幅频特性曲线如图10.2.1图10.2.1 )(t x a 的幅频特性曲线现用DFT(FFT)求该模拟信号的幅频特性,以验证时域采样理论。

安照)(t x a 的幅频特性曲线,选取三种采样频率,即s F =1k Hz ,300Hz ,200Hz 。

观测时间选ms T p 50=。

为使用DFT ,首先用下面公式产生时域离散信号,对三种采样频率,采样序列按顺序用)(1n x ,)(2n x ,)(3n x 表示。

)()sin()()(0nT u nT AenT x n x nTa Ω==-α 因为采样频率不同,得到的)(1n x ,)(2n x ,)(3n x 的长度不同, 长度(点数)用公式s p F T N ⨯=计算。

选FFT 的变换点数为M=64,序列长度不够64的尾部加零。

X (k )=FFT[x (n )] , k =0,1,2,3,-----,M -1 式中k 代表的频率为k Mk πω2=。

要求: 编写实验程序,计算)(1n x 、)(2n x 和)(3n x 的幅度特性,并绘图显示。

观察分析频谱混叠失真。

(2)频域采样理论的验证。

给定信号如下:⎪⎩⎪⎨⎧≤≤-≤≤+=其它02614271301)(n n n n n x编写程序分别对频谱函数()FT[()]j X e x n ω=在区间]2,0[π上等间隔采样32 和16点,得到)()(1632k X k X 和: 32232()(), 0,1,2,31j k X k X e k ωπω===16216()(), 0,1,2,15j k X k X e k ωπω===再分别对)()(1632k X k X 和进行32点和16点IFFT ,得到)()(1632n x n x 和:323232()IFFT[()] , 0,1,2,,31x n X k n == 161616()IFFT[()] , 0,1,2,,15x n X k n ==分别画出()j X e ω、)()(1632k X k X 和的幅度谱,并绘图显示x (n)、)()(1632n x n x 和的波形,进行对比和分析,验证总结频域采样理论。

提示:频域采样用以下方法容易变程序实现。

① 直接调用MATLAB 函数fft 计算3232()FFT[()]X k x n =就得到()j X e ω在]2,0[π的32点频率域采样② 抽取32()X k 的偶数点即可得到()j X e ω在]2,0[π的16点频率域采样16()X k ,即1632()(2) , 0,1,2,,15X k X k k ==。

○3 当然也可以按照频域采样理论,先将信号x (n)以16为周期进行周期延拓,取其主值区(16点),再对其进行16点DFT(FFT),得到的就是()j X e ω在]2,0[π的16点频率域采样16()X k 。

四、思考题如果序列x(n)的长度为M ,希望得到其频谱()j X e ω在]2,0[π上的N 点等间隔采样,当N<M 时, 如何用一次最少点数的DFT 得到该频谱采样?五、实验报告及要求(1) 运行程序,打印要求显示的图形。

(2) 分析比较实验结果,简述由实验得到的主要结论。

(3) 简要回答思考题。

(4) 附上程序清单和有关曲线。

六、程序清单和信号波形1、时域采样理论的验证程序清单:% 时域采样理论验证程序Tp=64/1000; %观察时间Tp=64微秒%产生M长采样序列x(n)% Fs=1000;T=1/Fs;Fs=1000;T=1/Fs;M=Tp*Fs;n=0:M-1;f=n*Fs/M;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xn=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xn,M);%M点FFT[xnt)]subplot(3,1,1);plot(f,abs(Xk));xlabel('f/Hz');ylabel('|x1(jf)|');title('x1(n)的幅度特性');%=============================================================== =====%Fs=300HzTp=64/1000; %观察时间Tp=64微秒%产生M长采样序列x(n)% Fs=1000;T=1/Fs;Fs=300;T=1/Fs;M=Tp*Fs;n=0:M-1;f=n*Fs/M;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xn=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xn,M);%M点FFT[xnt)]subplot(3,1,1);plot(f,abs(Xk));xlabel('f/Hz');ylabel('|x1(jf)|');title('x1(n)的幅度特性');%=============================================================== =====%Fs=200HzTp=64/1000;Fs=200;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xnt,M);yn='xa(nT)';subplot(3,2,5);tstem(xnt,yn);box on; title('(a) Fs=1000Hz');k=0:M-1;fk=k/Tp;subplot(3,2,6);plot(fk,abs(Xk));title('(a) T*FT[xa(nT)],Fs=1000Hz');xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))]);信号波形:2、频域采样理论的验证程序清单:M=27;N=32;n=0:M;%产生M长三角波序列x(n)xa=0:floor(M/2); xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,1024); %1024点FFT[x(n)], 用于近似序列x(n)的TF X32k=fft(xn,32) ;%32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20]) k=0:1023;wk=2*k/1024; %subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200]) k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域采样');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200]) n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20]) k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box ontitle('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200]) n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box ontitle('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])信号波形:思考题简答先对原序列x(n)以N 为周期进行周期延拓后取主值区序列,()[()]()N N i x n x n iN R n ∞=-∞=+∑再计算N 点DFT 则得到N 点频域采样:2()DFT[()] =(), 0,1,2,,1j N N N k NX k x n X e k N ωπω===-七、实验总结1由图可见,采样序列的频谱的确是以采样频率为周期对模拟信号频谱的周期延拓。

相关文档
最新文档