时域采样与频域分析报告
实验2 信号的时域采样与频域采样(讲稿)

实验2 时域采样与频域采样知识要点:(1)时域采样定理和频域采样定理(2)信号的采样方法连续时间信号的采样方法为T ()()s t n f t f t ==,理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,即ˆ()()j aTX j X e ωω=ΩΩ=,用DFT 近似计算连续信号频谱的方法为()T DFT[()]a X k x n =⋅。
连续谱的离散化方法为在一个周期内对连续频谱进行N 点等间隔采样,即2k k Nπω=,用DFT 计算离散信号频谱的方法为()DFT[()]X k x n =。
(3)用FFT 计算有限长采样序列的傅立叶变换(DFT )(4)连续时间信号的采样点数用公式p s N T F =⨯计算(5)频域采样时,频率分辨率为p F=1,各采样点上的频率为(1)k p f T k =。
(6)FFT 函数的基本用法FFT 函数格式为Xk= fft(xnt,M),其中M 表示FFT 的点数。
实验内容1:时域采样理论的验证(非周期连续信号)给定模拟信号0()sin()()t a x t Ae t u t α-=Ω式中444.128A =,α=,0rad s Ω=。
用DFT (FFT )求该模拟信号的幅频特性,以验证时域采样理论。
选取三种采样频率,即1kHz,300Hz 200Hz s F =,。
观测时间选64p T ms =。
采样点数用公式p s N T F =⨯计算。
设计方法:(1)初始化设置(如观测时间、采样频率、采样间隔等)。
(2)计算时域采样点数。
(3)生成时域抽样信号。
(4)用fft 函数计算频谱。
(5)计算频域采样点上的频率,绘制频谱图。
程序运行结果:(1)采样频率1000Hz s F =nx a (n T )(a) F s =1000Hz,采样点数=645001000(b) DFT[x a (nT)],F s =1000Hz f(Hz)幅度5001000(c) T*DFT[x a (nT)],F s =1000Hz f(Hz)幅度图2-1 采样频率1kHz s F =(2)采样频率300Hz s F =nx a (n T )(a) F s =300Hz,采样点数=19100200300(b) DFT[x a (nT)],F s =300Hz f(Hz)幅度100200300(c) T*DFT[x a (nT)],F s =300Hzf(Hz)幅度图2-2 采样频率300Hz s F =(3)采样频率200Hz s F =nx a (n T )(a) F s =200Hz,采样点数=1350100150200(b) DFT[x a (nT)],F s =200Hzf(Hz)幅度5010015020000.20.40.60.8(c) T*DFT[x a (nT)],F s =200Hz f(Hz)幅度图2-3 采样频率200Hz s F =实验结果分析:时域采样理论的验证程序运行结果如图2-1至2-3所示。
实验二时域采样与频域采样及MATLAB程序

实验二时域采样与频域采样及MATLAB程序时域采样与频域采样一实验目的1掌握时域连续信号经理想采样前后的频谱变化,加深对时域采样定理的理解2理解频率域采样定理,掌握频率域采样点数的选取原则二实验原理1时域采样定理对模拟信号以T进行时域等间隔采样,形成的采样信号的频谱会以采样角频率为周期进行周期延拓,公式为:利用计算机计算上式并不容易,下面导出另外一个公式。
理想采样信号和模拟信号之间的关系为:对上式进行傅里叶变换,得到:在上式的积分号内只有当时,才有非零值,因此:上式中,在数值上,再将代入,得到:上式说明采样信号的傅里叶变换可用相应序列的傅里叶变换得到,只要将自变量用代替即可。
2频域采样定理对信号的频谱函数在[0, 2]上等间隔采样N点,得到则有:即N点得到的序列就是原序列以N为周期进行周期延拓后的主值序列,因此,频率域采样要使时域不发生混叠,则频域采样点数N必须大于等于时域离散信号的长度M (即)。
在满足频率域采样定理的条件下,就是原序列。
如果,则比原序列尾部多个零点,反之,时域发生混叠,与不等。
对比时域采样定理与频域采样定理,可以得到这样的结论:两个定理具有对偶性,即“时域采样,频谱周期延拓;频域采样,时域信号周期延拓”。
在数字信号处理中,都必须服从这二个定理。
三实验内容1时域采样定理的验证给定模拟信号,式中,A二444、128,,,其幅频特性曲线如下图示:选取三种采样频率,即,300Hz, 200Hz,对进行理想釆样,得到采样序列:。
观测时间长度为。
分别绘出三种采样频率得到的序列的幅频特性曲线图,并进行比较。
2频域采样定理的验证给定信号:,对的频谱函数在[0, 2]上分别等间隔采样16点和32点,得到和,再分别对和进行IDFT,得到和。
分别画出、和的幅度谱,并绘图显示、和的波形,进行对比和分析。
四思考题如果序列的长度为M,希望得到其频谱在[0, 2]上N点等间隔采样,当时,如何用一次最少点数的DFT得到该频谱采样?五实验报告及要求1编写程序,实现上述要求,打印要求显示的图形2分析比较实验结果,简述由实验得到的主要结论3简要回答思考题4附上程序清单和有关曲线%时域采样Tp二128/1000;%观测时间128ms Fs=1000; T=l/Fs;%采样频率lKIIz M=Tp*Fs;%取样点数128 点n=0:M-l; t=n*T; A=444、128;alph=pi*50*2 0^ 5;omega=pi*50*2 0. 5;xnt=A*exp(-alph*t)、*sin(omega*t);Xk=T*fft(xnt,M);%M=128 点FFT[xnt] subplot(4,2,1);plot (n, xnt) ; xlabel (t) ; ylabel (xa(t)) ; title (原信号波形); k=0:M-l; wk=k/(Tp*Fs);%归一化处理subplot (4,2,2);plot(wk,abs(Xk));title(T*FT[xa(nT)],Fs=lKH z 幅频特性);xlabel (w/\pi) ;ylabel (幅度(III (jf)));Tp二64/1000;%观测时间64ms Fs二1000; T=l/Fs;%采样频率lKHz M=Tp*Fs;%取样点数64 点n=0:M-l;t=n*T; A=444、12&alph=pi*50*2 0^ 5;omega二pi*50*2"0、5;xnt=A*exp(-alph*t)、*sin(omega*t);Xk=T*fft(xnt,M);%M=64 点FFT[xnt] subplot (4,2,3);stem(n,xnt,); xlabel (n) ; ylabel (xa(nT)) ; title(Fs=lKllz 采样序列);k=0:M~l; wk=k/(Tp*Fs);subplot(4,2,4);plot(wk,abs(Xk));title(T*FT[xa(nT)],Fs=lKH z 幅频特性);xlabel (w/\pi) ; ylabel (幅度(III (jf)));Fs=300;T=l/Fs; M=Tp*Fs;n=0:M-l;t=n*T; A=444、128;alph=pi*50*2 0. 5;omega二pi*50*2"0、5;xnt=A*exp(-alph*t)、*sin(omega*t);Xk=T*fft(xnt,M);subplot (4,2,5); stem(n,xnt,、); xlabel(n);ylabel(x2(n)); title(Fs=300Ilz 采样序列);k=0:M-l;wk=k/(Tp*Fs); subplot (4,2,6); plot (wk, abs (Xk)) ;title (T*I?T[xa (r)T) ], Fs=300 Hz 幅频特性);xlabel(w/\pi) ; ylabel ((112 (jf)));Fs=200;T=l/Fs; M=Tp*Fs;n=0:M-l;t=n*T; A=444、128;alph=pi*50*2 0^ 5;omega二pi*50*2"0、5;xnt=A*exp(-alph*t)、*sin(omega*t);Xk=T*fft(xnt,M);subplot (4,2,7); stem(n,xnt,、); xlabel(n);ylabel(x3(n)); title(Fs=2001Iz 采样序列);k=0:M-l;wk=k/(Tp*Fs); subplot(4,2,8);plot(wk,abs(Xk));title(T*FT[xa(nT)],Fs=200 Hz 幅频特性);xlabel (w/\pi) ;ylabel ((H3 (jf))) ;%频域采样M=27;N=32;n=0:M;xn=(n>=0&n<=13)、*(n+1)+(n>=14&n<=26)、*(27-n);%产生x(n)Xk=fft(xn, 1024) ; %1024 点FFT[x(n)]X32k=fft(xn,32); %32 点FFT[x(n)]x32n=ifft(X32k); %32 点IFFT[X32(k)]得到x32(n)X16k=X32k(l:2:N);%隔点抽取X32(k)得到X16(k)xl6n=ifft (X16k,N/2) ;%16 点IFFT[X16(k)]得到xl6(n)k=0: 1023;wk=2*k/1024;%连续频谱图的横坐标取值subplot (3,2,1); plot (wk,abs(Xk));title(FT[x(n)]);xlabel('omega/'pi);ylabel( X(e j\omega)| );axis([0,1,0,200]);subplot(3,2,2);stem(n,xn,、);title(三角波序列x(n)) ; xlabel(n) ; ylabel(x(n));axis([0,32,0,20])k=0:N/2-1; %离散频谱图的横坐标取值subplot (3,2,3); stem(k, abs (X16k) ,、) ; title (16 点频域采样);xlabel(k);ylabel(|X_l_6(k)|);axis([0,8,0,200])n1=0:N/ 2-1;subplot (3,2,4);stem(nl,xl6n,. );title(16IDFT[X_1_6(k)]);x label (n) ; ylabel (x_l_6(n)) ;axis([0,32,0,20])k=0:NT ;%离散频谱图的横坐标取值subplot (3,2,5); stem(k, abs (X32k),、) ; title (32 点频域采样);xlabel(k);ylabel(|X_3_2(k)|);axis([0,16,0,200])nl=0:N1;subplot (3,2,6);stem(nl,x32n,、);title(32IDFT[X_3_2 (k)]);xlabel (n);ylabel (x_3_2(n));axis([0,32,0,20])。
连续时间信号的时域分析和频域分析

时域与频域分析的概述
时域分析
研究信号随时间变化的规律,主 要关注信号的幅度、相位、频率 等参数。
频域分析
将信号从时间域转换到频率域, 研究信号的频率成分和频率变化 规律。
02
连续时间信号的时
域分析
时域信号的定义与表示
定义
时域信号是在时间轴上取值的信号, 通常用 $x(t)$ 表示。
表示
时域信号可以用图形表示,即波形图 ,也可以用数学表达式表示。
05
实际应用案例
音频信号处理
音频信号的时域分析
波形分析:通过观察音频信号的时域波形,可 以初步了解信号的幅度、频率和相位信息。
特征提取:从音频信号中提取出各种特征,如 短时能量、短时过零率等,用于后续的分类或 识别。
音频信号的频域分析
傅里叶变换:将音频信号从时域转换 到频域,便于分析信号的频率成分。
通信系统
在通信系统中,傅里叶变 换用于信号调制和解调, 以及频谱分析和信号恢复。
时频分析方法
01
短时傅里叶变换
通过在时间上滑动窗口来分析信 号的局部特性,能够反映信号的 时频分布。
小波变换
02
03
希尔伯特-黄变换
通过小波基函数的伸缩和平移来 分析信号在不同尺度上的特性, 适用于非平稳信号的分析。
将信号分解成固有模态函数,能 够反映信号的局部特性和包络线 变化。
频域信号的运算
乘法运算
01
在频域中,两个信号的乘积对应于将它们的频域表示
相乘。
卷积运算
02 在频域中,两个信号的卷积对应于将它们的频域表示
相乘后再进行逆傅里叶变换。
滤波器设计
03
在频域中,通过对频域信号进行加权处理,可以设计
电子科技大学 DSP 实验三 采样的时域几及频域分析

电 子 科 技 大 学实 验 报 告一、实验室名称:数字信号处理实验室 二、实验项目名称:采样的时域及频域分析 三、实验原理:1、采样的概念:采样是将连续信号变化为离散信号的过程。
1. A 、理想采样:即将被采样信号与周期脉冲信号相乘B 、实际采样:将被采样信号与周期门信号相乘,当周期门信号的宽度很小,可近似为周期脉冲串。
根据傅里叶变换性质000()()()()ˆˆ()()()()()()(())FTFTa a T n n FTa a T a T a an n x t X j T j xt x t T x nT t nT X j Xj n ωδωδδδω=+∞=+∞=-∞=-∞←−→Ω←−→Ω==-←−→Ω=Ω-Ω∑∑式中T 代表采样间隔,01TΩ=由上式可知:采样后信号的频谱是原信号频谱以0Ω为周期的搬移叠加 结论:时域离散化,频域周期化;频谱周期化可能造成频谱混迭。
)(t T δ^T ^)tC 、低通采样和Nyquist 采样定理设()()a a x t X j ⇔Ω且()0,2a M M X j f πΩ=Ω>Ω=当,即为带限信号。
则当采样频率满足2/22s M M f f π≥Ω=时,可以从采样后的^()()()a assn x t x nT t nT δ∞=-∞=-∑信号无失真地恢复()ax t 。
称2Mf为奈奎斯特频率,12N M T f =为奈奎斯特间隔。
注意:实际应用中,被采信号的频谱是未知的,可以在ADC 前加一个滤波器(防混迭滤波器)。
2、低通采样中的临界采样、欠采样、过采样的时域及频域变化情况。
低通采样中的临界采样是指在低通采样时采样频率2s M f f = 低通采样中的欠采样是指在低通采样时采样频率2s M f f ≤ 低通采样中的欠采样是指在低通采样时采样频率2s M f f ≥ 设一带限信号的频谱如下:)()a G j Ω0 m-ΩΩmΩ0TT(1)临界采样(2)过采样(3)欠采样由上图可知,当为临界采样和过采样时,理论上可以无失真的恢复采样信号,但是实际在临界采样时,由于实际滤波器的性能限制,无法无失真的恢复,在欠采样时只能部分恢复原信号的频谱特性。
时域采样与频域采样实验报告

时域采样与频域采样实验报告一、实验目的:1.理解采样定理的原理和应用;2.掌握时域采样和频域采样的方法和步骤;3.学习使用MATLAB软件进行采样信号的分析和处理。
二、实验原理:采样是指将连续时间信号转换为离散时间信号的过程。
采样过程中,时间轴被分成若干个时间间隔,每个时间间隔内只有一个采样值,即取样点,采样信号的幅度就是该时间间隔内对应连续时间信号的幅度,称为采样值。
时域采样:利用采样定理进行抽样,采样时将模拟信号保持在一个固定状态下,以等间隔时间取样,实现模拟信号的离散化。
时域采样的反变换为恢复成为原连续时间信号,称为重构。
在数字信号中,通过离散时间信号构建模拟信号。
频域采样:首先通过傅里叶变换将时域信号转换到频域,然后在频域对其进行采样,将频域采样结果再进行反傅里叶变换恢复成时域信号。
三、实验内容及步骤:1.时域采样实验①模拟信号的采样:在MATLAB软件中设计一个三角波信号和正弦波信号,并画出其时域图像。
分别设定采样频率为1.5kHz和3kHz,进行采样。
重构时域信号,并画出重构信号的时域图像。
比较原信号和重构信号,在时域和频域上进行对比和分析。
②数字信号的量化:对采集的信号进行量化处理,设量化步长分别为1、2、3。
计算量化误差和信噪比,并作图进行比较分析。
2.频域采样实验设计一个具有3kHz频率的信号,并绘制其频域图像。
设定采样率为10kHz,进行采样,同时对采样信号进行降采样处理。
恢复实验所得到的采样信号,绘制重构后的时域图像,并分析其质量。
四、实验结果与分析:1.时域采样实验:①模拟信号的采样:通过MATLAB软件设计得到的三角波和正弦波信号及其时域图像如下所示:其中,Fs1 = 1.5kHz,Fs2 = 3kHz,信号的采样频率与信号频率的比值应大于2,以保证采样后的信号不失真。
通过采样得到的信号及其重构图像如下所示:可以看出,采样和重构得到的信号与原信号的时域图像是相似的,重构后的信号和原信号之间的误差可以忽略不计。
时域采样定理和频域采样定理

时域采样定理和频域采样定理
时域采样定理和频域采样定理是信号处理中的重要理论。
时域采样定理规定,要想保持信号的完整性,采样频率必须大于信号最高频率的两倍以上。
频域采样定理规定,要想保持信号的完整性,采样间隔必须小于信号最低频率的一半以下。
这两个定理可以帮助我们确定信号采样的最佳参数,以保证采样结果的准确性。
时域采样定理和频域采样定理是信号处理中的重要理论,在信号采样过程中起着至关重要的作用。
它们可以帮助我们确定信号采样的最佳参数,以保证采样结果的准确性。
正确的采样参数可以有效地提高采样效率,提高信号处理效果,为研究者带来更多的有效信息。
数字信号处理第三版用MATLAB上机实验

实验二:时域采样与频域采样一、时域采样1.用MATLAB编程如下:%1时域采样序列分析fs=1000A=444.128; a=222.144; w=222.144; ts=64*10^(-3); fs=1000;T=1/fs;n=0:ts/T-1; xn=A*exp((-a)*n/fs).*sin(w*n/fs); Xk=fft(xn);subplot(3,2,1);stem(n,xn);xlabel('n,fs=1000Hz');ylabel('xn');title('xn');subplot(3,2,2);plot(n,abs(Xk));xlabel('k,fs=1000Hz'); title('|X(k)|');%1时域采样序列分析fs=200A=444.128; a=222.144; w=222.144; ts=64*10^(-3); fs=200;T=1/fs;n=0:ts/T-1; xn=A*exp((-a)*n/fs).*sin(w*n/fs);Xk=fft(xn);subplot(3,2,3);stem(n,xn);xlabel('n,fs=200Hz'); ylabel('xn');title('xn');subplot(3,2,4);plot(n,abs(Xk));xlabel('k,fs=200Hz'); title('|X(k)|');%1时域采样序列分析fs=500A=444.128; a=222.144; w=222.144; ts=64*10^(-3); fs=500;T=1/fs;n=0:ts/T-1; xn=A*exp((-a)*n/fs).*sin(w*n/fs); Xk=fft(xn);subplot(3,2,5);stem(n,xn);xlabel('n,fs=500Hz');ylabel('xn');title('xn');subplot(3,2,6);plot(n,abs(Xk));xlabel('k,fs=500Hz'); title('|X(k)|');2.经调试结果如下图:20406080-200200n,fs=1000Hzxnxn2040608005001000k,fs=1000Hz|X (k)|51015-2000200n,fs=200Hzx nxn510150100200k,fs=200Hz |X(k)|10203040-2000200n,fs=500Hzx nxn102030400500k,fs=500Hz|X (k)|实验结果说明:对时域信号采样频率必须大于等于模拟信号频率的两倍以上,才 能使采样信号的频谱不产生混叠.fs=200Hz 时,采样信号的频谱产生了混叠,fs=500Hz 和fs=1000Hz 时,大于模拟信号频率的两倍以上,采样信号的频谱不产生混叠。
机械测试信号时域和频域特征分析

DFT与FFT
3.1.1
3.1.
3.1.3
Sx(f)与Sxy(f)是随机信号的频域描述函数。Sx(f)表示信号的功率密度沿频率轴的分布,故又称Sx(f)为功率谱密度函数。
3.2
功率谱的定义式为
若X(Ω)=DFT[x(m)],x(n)为N点序列。则
X (Ω)=DFT[x (-m)]
从而有DFT[R(M)]= DFT[x(m)] DFT[x (-m)]
机械测试信号时域和频域特征分析
1.1
机械信号是指机械系统在运行过程中各类随时间变化的动态信息,经各类测试仪器拾取并记录与存储下来的数据或者图像。机械设备是工业生产的基础,而机械信号处理与分析技术则是工业进展的一个重要基础技术。
随着各行各业的快速进展与各类各样的应用需求,信号分析与处理技术在信号处理速度、分辨能力、功能范围与特殊处理等方面将会不断进步,新的处理激素将会不断涌现。当前信号处理的进展要紧表现在:1.新技术、新方法的出现;2.实时能力的进一步提高;3.高分辨率频谱分析方法的研究三方面。
2.3
2.3.1
图2.8噪声Leabharlann -自有关.jpg如图所示:自有关函数消除了大量的噪声,周期成分变得非常明显。
原始信号的时域处理结果:
平均值:0.0184
极小值:-2.8138
极大值:2.8557
标准差:1.0103
方差:1.0207
峰峰值:5.6695
第
信号处理中,傅立叶变换把一个随机信号解析成不一致频率的正弦波,使信号的频域分析称之可能。由于计算机技术的进展,在微机上直接使用离散傅立叶变换变得非常方便,这使得频域分析称之常用的处理方法。常用的频域分析方法包含自谱、功率谱、倒谱等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二:时域采样与频域分析一、实验原理与方法1、时域采样定理:(a )对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(Ωj X )是原模拟信号频谱)(ωj X a 以采样角频率)2(T s s π=ΩΩ为周期进行周期延拓。
公式为:[]∑∞-∞=Ω-Ω==Ωn s a a a jn j X T t x FT j X )(1)()()) (b )采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。
2、频域采样定理:公式为:[])()()()(n R iN n x k X IDFT n x N i N N N ⎥⎦⎤⎢⎣⎡+==∑∞-∞=。
由公式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),才能使时域不产生混叠,则N 点[])(k X IDFT N 得到的序列()N x n 就是原序列)(n x ,即)()(n x n x N =。
二、实验内容1、时域采样理论的验证。
给定模拟信号)()sin()(0t u t Ae t x t a Ω=-α式中A =444.128,α=502π,0Ω=502πrad/s ,它的幅频特性曲线如图2.1图2.1 )(t x a 的幅频特性曲线现用DFT(FFT)求该模拟信号的幅频特性,以验证时域采样理论。
按照)(t x a 的幅频特性曲线,选取三种采样频率,即s F =1k Hz ,300Hz ,200Hz 。
观测时间选ms T p 50=。
为使用DFT ,首先用下面公式产生时域离散信号,对三种采样频率,采样序列按顺序用)(1n x ,)(2n x ,)(3n x 表示。
)()sin()()(0nT u nT Ae nT x n x nT a Ω==-α因为采样频率不同,得到的)(1n x ,)(2n x ,)(3n x 的长度不同, 长度(点数) 用公式s p F T N ⨯=计算。
选FFT 的变换点数为M=64,序列长度不够64的尾部加零。
[])()(n x FFT k X = 1,,3,2,1,0-=M k Λ式中k 代表的频率为 k Mk πω2=。
要求:编写实验程序,计算)(1n x 、)(2n x 和)(3n x 的幅度特性,并绘图显示。
观察分析频谱混叠失真。
程序见附录2.1、实验结果见图2.2。
2、频域采样理论的验证。
给定信号如下:⎪⎩⎪⎨⎧≤≤-≤≤+=其它02614271301)(n n n n n x编写程序分别对频谱函数()FT[()]j X e x n ω=在区间[]π2,0上等间隔采样32和16点,得到)()(1632k X k X 和32232()() , 0,1,2,31j k X k X e k ωπω===L16216()() , 0,1,2,15j k X k X e k ωπω===L再分别对)()(1632k X k X 和进行32点和16点IFFT ,得到)()(1632n x n x 和323232()IFFT[()] , 0,1,2,,31x n X k n ==L161616()IFFT[()] , 0,1,2,,15x n X k n ==L分别画出()j X e ω、)()(1632k X k X 和的幅度谱,并绘图显示x (n)、)()(1632n x n x 和的波形,进行对比和分析,验证总结频域采样理论。
程序见附录2.2、实验结果见图2.3提示:频域采样用以下方法容易编程实现。
(1) 直接调用MATLAB 函数fft 计算3232()FFT[()]X k x n =就得到()j X e ω在]2,0[π的32点频率域采样。
(2)抽取32()X k 的偶数点即可得到()j X e ω在]2,0[π的16点频率域采样16()X k ,即1632()(2) , 0,1,2,,15X k X k k ==L 。
(3)当然,也可以按照频域采样理论,先将信号x (n)以16为周期进行周期延拓,取其主值区(16点),再对其进行16点DFT(FFT),得到的就是()j X e ω在]2,0[π的16点频率域采样16()X k 。
三、实验结果和分析、讨论及结论1、实验结果:图2.2采样频率幅度特性曲线实验分析、讨论及结论:(1)通过图可以发现,时域采样,频域周期延拓,延拓周期为Fs。
当采样频率为1000 Hz时,频谱混叠很小:当采样频率为300 Hz时,频谱混叠很严重;当采样频率为200 Hz时,频谱混叠更加严重。
所以要满足Fs>2Fc。
(2)fft函数的调用格式:Xk=fft(xn,N)调用参数xn为被交换的时域序列向量,N是DFT变换的区间长度,当N 大于xn的长度时,fft函数自动在xn后面补零。
当N小于xn的长度时,fft 函数计算xn的前面N个元素构成的N长序列的N点DFT,忽略xn后面的元素。
2、实验结果:图2.3频谱函数采样及波形实验分析、讨论及结论:(1)此结果验证了频域采样理论和频域采样定理。
对信号)(n x 的频谱函数)(ωj e X 在[]π2,0上等间隔采样16=N 时,N 点[])(k x IDFT N 得到的序列正是原序列)(n x 以16为周期进行周期延拓后的主值区序列。
即频域采样定理证明,对)(n x N 点频域采样反映到时域内就是就是)(n x 进行以N 为周期延拓序列的主值区间。
当N=16时,由于N<M ,所以发生了时域混叠失真;当N=32时,由于N>M ,频域采样定理,所以不存在时域混叠失真。
上述条件说明,如果采样点数过少,那么进行IDFT 所得到的信号就会混叠失真,采样条件满足采样点数大于原序列点数,即N>M 。
(2)Ifft 函数用法同fft 函数。
四、思考题1、如果序列x(n)的长度为M ,希望得到其频谱()j X e ω在]2,0[π上的N 点等间隔采样,当N<M 时, 如何用一次最少点数的DFT 得到该频谱采样? 答:先对原序列x(n)以N 为周期进行周期延拓后取主值区序列,()[()]()N N i x n x n iN R n ∞=-∞=+∑再计算N 点DFT 则得到N 点频域采样:2()DFT[()] =() , 0,1,2,,1j N N N k N X k x n X e k N ωπω===-L五、总结与心得体会通过此次实验,对时域采样和频域采样的理论、定理的理解更加深入。
采样是模/数中最重要的一步,采样方法的正确与否,关系到信号处理过程的成功与否。
所以,无论是在时域还是频域,对信号采样必须仔细考虑采样的参数:采样频谱、采样周期、采样点数。
对一个域进行采样,必将引起另一个域的周期延拓,所以,我们要做,就是选取好采样的参数,避免另一个域周期延拓时发生混叠,否则,我们采样所得的数据肯定丢失一部分原信号的信息,我们便无法对原信号对原信号进行恢复和正确分析。
此次实验所遇到的问题:主要是时域非周期对应频域连续,频域周期对应着时域离散(DFT 隐含周期性),频域非周期对应时域连续。
对时域与频域的关系还没彻底弄懂,stem 和plot 绘图函数有时会用错。
有些程序里面缺少“;”,导致少了一个结果图,通过检查并修改程序,解决了问题。
总得来说,实验还是比较圆满的。
实验的心得体会见下:在此次试验中,温习了关于MATLAB软件的操作及应用,基本使用方法和它的运行环境。
又进一步地通过实验加深了对MATLAB软件的了解,体会到了MATLAB具有完备的图形处理功能,实现计算结果和编程的可视化等功能。
通过做实验的过程以及实验分析的结果,熟悉并了解了Ifft函数和fft函数的用法。
通过这次的实验。
极大地提升了自己对于程序编辑的熟练度,增加了对于书本里面知识点的应用,更深一层的加深了对MATLAB软件的使用。
这对自己以后的实验积累了丰富的经验。
六、附件:MATLAB原程序清单2.1用fft函数求模拟信号的幅频特性Tp=64/1000; %观察时间Tp=64毫秒%产生M长采样序列x(n)Fs=1000; T=1/Fs;M=Tp*Fs; n=0:M-1;A=444.128; alph=pi*50*2^0.5 ;omega=pi*50*2^0.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xnt,M); %M点FFT[(xnt)]yn='xa(nT)';subplot(3,2,1);stem(xnt); %调用自编绘图函数stem绘制序列图box on;title('(a) Fs=1000Hz');k=0:M-1;fk=k/Tp;subplot(3,2,2);stem(fk,abs(Xk));title('(a) T*FT[xa(nT)],Fs=1000Hz');xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))]);% Fs=300Hz和Fs=200Hz的程序与上面Fs=1000Hz完全相同。
Tp=64/1000; %观察时间Tp=64毫秒%产生M长采样序列x(n)Fs=300; T=1/Fs;M=Tp*Fs; n=0:M-1;A=444.128; alph=pi*50*2^0.5 ;omega=pi*50*2^0.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xnt,M); %M点FFT[xnt)]yn='xa(nT)';subplot(3,2,3);stem(xnt); %调用自编绘图函数stem绘制序列图box on;title('(b) Fs=300Hz');k=0:M-1;fk=k/Tp;subplot(3,2,4);stem(fk,abs(Xk));title('(b) T*FT[xa(nT)],Fs=300Hz'); xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))]);Tp=64/1000; %观察时间Tp=64毫秒%产生M长采样序列x(n)Fs=200; T=1/Fs;M=Tp*Fs; n=0:M-1;A=444.128; alph=pi*50*2^0.5 ;omega=pi*50*2^0.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xnt,M); %M点FFT[xnt)]yn='xa(nT)';subplot(3,2,5);stem(xnt); %调用自编绘图函数stem绘制序列图box on;title('(c) Fs=200Hz');k=0:M-1;fk=k/Tp;subplot(3,2,6);stem(fk,abs(Xk));title('(c) T*FT[xa(nT)],Fs=200Hz'); xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))]);2.2调用fft函数进行频率采样及Ifft函数绘波形图M=27;N=32;n=0:M; %产生M长三角波序列x(n)xa=0:floor(M/2); xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,1024); %1024点FFT[x(n)], 用于近似序列x(n)的TFX32k=fft(xn,32); %32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn);box ontitle('(b)三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:1023;wk=2*k/1024;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k));box ontitle('(c)16点频域采样');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200]) n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n);box ontitle('(d)16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])k=0:N-1;subplot(3,2,5);stem(k,abs(X32k));box ontitle('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200]) n1=0:N-1;subplot(3,2,6);stem(n1,x32n);box ontitle('(f)32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])。