二项式定理练习题.doc

合集下载

二项式定理 练习题 求展开式系数的常见类型

二项式定理 练习题 求展开式系数的常见类型

二项式定理1.在()103x -的展开式中,6x 的系数为 .2.10()x -的展开式中64x y 项的系数是 .3.92)21(xx -展开式中9x 的系数是 . 4.8)1(xx -展开式中5x 的系数为 。

5.843)1()2(xx x x ++-的展开式中整理后的常数项等于 . 6.在65)1()1(x x ---的展开式中,含3x 的项的系数是 .7.在x (1+x )6的展开式中,含x 3项的系数为 .8.()()811x x -+的展开式中5x 的系数是 . 9.72)2)(1(-+x x 的展开式中3x 项的系数是 。

10.54)1()1(-+x x 的展开式中,4x 的系数为 .11.在62)1(x x -+的展开式中5x 的系数为 .12.5)212(++xx 的展开式中整理后的常数项为 .13.求(x 2+3x -4)4的展开式中x 的系数.14.(x 2+x +y )5的展开式中,x 5y 2的系数为 .15.若 32()nx x -+的展开式中只有第6项的系数最大,则n= ,展开式中的常数项是 .16.已知(124x +)n 的展开式中前三项的二项式系数的和等于37,求展式中二项式系数最大的项的系数.17.在(a +b )n 的二项展开式中,若奇数项的二项式系数的和为64,则二项式系数的最大值为________.18.若2004200422102004...)21(x a x a x a a x ++++=-)(R x ∈,则展开式的系数和为________.19.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,则a 1+a 2+…+a 7的值是________.20.已知(1-2x +3x 2)7=a 0+a 1x +a 2x 2+…+a 13x 13+a 14x 14.求:(1)a 1+a 2+…+a 14; (2)a 1+a 3+a 5+…+a 13.。

高中数学二项式定理经典练习题专题训练(含答案)

高中数学二项式定理经典练习题专题训练(含答案)

高中数学二项式定理经典练习题专题训练姓名班级学号得分说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分100分。

考试时间90分钟。

2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。

考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)一.单选题(每题,3分,39分)1.已知在的展开式中,第6项为常数项,则n为()A.10B.9C.8D.72、的展开式中第三项的系数是()A.B.C.15D.3、的展开式中常数项是()A.14B.-14C.42D.-424.设a=cos2xdx,则(a-)6展开式中含x2项的系数是()A.-192B.-190C.192D.1905.在(x-1)6的二项展开式中,x3的系数是()A.-20B.20C.15D.-156.在的二项展开式中,x2的系数为()A.B.C.D.7.在(1-2x)(1+x)5的展开式中,x3的系数是()A.20B.-20C.10D.-108.在二项式()n的展开式中,各项系数之和为M,各项二项式系数之和为N,且M+N=64,则展开式中含x2项的系数为()A.-90B.90C.10D.-109、展开式中含x项的系数是()A.-28B.28C.-56D.5610.(x-1)10展开式中系数最大的项是()A.第五项和第六项B.第六项C.第五项和第七项D.第四项和第七项11.在(ax-1)6的二项展开式中,若中间项的系数是160,则实数a的值为()A.2B.C.D.-212.若(1+x)n=1+6x+15x2+20x3+15x4+6x5+x6,则n等于()A.4B.5C.6D.713.设a=,则二项式的展开式中的常数项为()A.120B.-120C.-240D.240第Ⅱ卷(非选择题)二.填空题(14-25题,每题3分,26-30题5分,共61分)14.已知(x2-)n)的展开式中第三项与第五项的系数之比为,则展开式中常数项是______.15.已知的展开式中x3的系数为,则x3的二项式系数为______,常数a的值为______.16.(x2-)5展开式中的常数项为______.17.(1+2x)3(1-x)4展开式中x2的系数为______.18、的展开式中x的系数是______.19.f(x)是(1-2x)6展开式的第五项,则f(x)=______,所有二项式系数的和为______.20、的展开式中的第四项是______.21.(x-)4的展开式中的常数项为______.22、的展开式中x2的系数为______.23.若(2x2-)n(n∈N×)展开式中含有常数项,则n的最小值是______.24.二项式(2-)6展开式中常数项是______.25.设a=(cosx-sinx)dx,则二项式(x2+)6展开式中不含x6项的系数和是______.26.(x+)9展开式中x3的系数是______.(用数字作答)27.已知(-x2+6x-9)n的展开式中所有的项的系数的和为16,则展开式中的常数项为______.28.(1-)4展开式中的系数是______.29.在的展开式中,x2的系数为______(用数字作答).30.二项式的展开式中,x3项的系数为______.参考答案一.单选题(共__小题)1.已知在的展开式中,第6项为常数项,则n为()A.10B.9C.8D.7答案:A解析:解:∵在的展开式中,第6项为••为常数项,则n=10,故选:A.2、的展开式中第三项的系数是()A.B.C.15D.答案:B解析:解:的展开式中第三项是故第三项的系数15×=故选B3、的展开式中常数项是()A.14B.-14C.42D.-42答案:A解析:解:展开式的通项为=令得r=6故常数项为2C76=14故选A4.设a=cos2xdx,则(a-)6展开式中含x2项的系数是()A.-192B.-190C.192D.190答案:A解析:解:∵,∵f(-x)=f(x)∴f(x)为偶函数,故∵=∴又∴a=cos2xdx=2∵==由二项式定理得展开式中含有x2的项为:∴展开式中x2的系数为-192故选A.5.在(x-1)6的二项展开式中,x3的系数是()A.-20B.20C.15D.-15答案:A解析:解:设(x-1)6的二项展开式的通项为T r+1,则T r+1=•x6-r(-1)r,令6-r=3得r=3,∴x3的系数是(-1)3•=-20.故选A.6.在的二项展开式中,x2的系数为()A.B.C.D.答案:B解析:解:二项式的二项展开式的通项公式为=T r+1=••=(-1)r••32r-6•.令x的系数=2,解得=r=1,故x2的系数为-1×6×=-,故选B.7.在(1-2x)(1+x)5的展开式中,x3的系数是()A.20B.-20C.10D.-10答案:D解析:解:在(1-2x)(1+x)5的展开式中,x3的系数是=1×+(-2)•=-10,故选D.8.在二项式()n的展开式中,各项系数之和为M,各项二项式系数之和为N,且M+N=64,则展开式中含x2项的系数为()A.-90B.90C.10D.-10答案:A解析:解:∵二项式()n的展开式中,令x=1得:各项系数之和M=2n,又各项二项式系数之和为N,故N=2n,又M+N=64,∴2×2n=64,∴n=5.设二项式()5的展开式的通项为T r+1,则T r+1=•35-r•(-1)r•,令-(5-r)+r=2得:r=3.∴展开式中含x2项的系数为•(-1)3•35-3=-90.故选A.9、展开式中含x项的系数是()A.-28B.28C.-56D.56答案:B解析:解:展开式的通项为令解得r=2故展开式中含x项的系数是C82=28;故选B.10.(x-1)10展开式中系数最大的项是()A.第五项和第六项B.第六项C.第五项和第七项D.第四项和第七项答案:C解析:解:由于(x-1)10展开式的通项公式为•x10-r•(-1)r,故当r=4,或r=6时,展开式中系数最大为,即第五项和第七项得系数最大,故选C.11.在(ax-1)6的二项展开式中,若中间项的系数是160,则实数a的值为()A.2B.C.D.-2答案:D解析:解:在(ax-1)6的二项展开式中,中间项是第四项,由通项公式求得中间项的系数是•a3•(-1)3=160,∴a=-2,故选D.12.若(1+x)n=1+6x+15x2+20x3+15x4+6x5+x6,则n等于()A.4B.5C.6D.7答案:C解析:解:∵(1+x)n=1+6x+15x2+20x3+15x4+6x5+x6,∴n=6.故选C.13.设a=,则二项式的展开式中的常数项为()A.120B.-120C.-240D.240答案:D解析:解:∵a==(x3-x2)=4-0=4,则二项式=的通项公式为T r+1=•(-1)r•46-r•x12-3r,令12-3r=0,求得=r=4,可得展开式中的常数项为•42=210,故选:D.二.填空题(共__小题)14.已知(x2-)n)的展开式中第三项与第五项的系数之比为,则展开式中常数项是______.答案:45解析:解:第三项的系数为C n2,第五项的系数为C n4,由第三项与第五项的系数之比为可得n=10,则T i+1=C10i(x2)10-i(-)i=(-1)i C10i=,令40-5r=0,解得r=8,故所求的常数项为(-1)8C108=45,故答案为:45.15.已知的展开式中x3的系数为,则x3的二项式系数为______,常数a的值为______.答案:841解析:解:设的展开式的通项为T r+1,则T r+1=•a9-r••x-(9-r)+r,令2r-9=3,解得r=6,∴x3的二项式系数为==84;又的展开式中x3的系数为,∴×a3×84=,∴a3=1,∴a=1.故答案为:84,1,116.(x2-)5展开式中的常数项为______.答案:40解析:解:(x2-)5展开式中的通项公式为=T r+1=•x10-2r•(-2)r•x-3r=(-2)r••x10-5r,令10-5r=0,r=2,故展开式的常数项为=4•=40,故答案为=40.17.(1+2x)3(1-x)4展开式中x2的系数为______.答案:-6解析:解:∵(1+2x)3(1-x)4展开式中x2项为C3013(2x)0•C4212(-x)2+C3112(2x)1•C4113(-x)1+C3212(2x)2•C4014(-x)0∴所求系数为C30•C42+C31•2•C41(-1)+C32•22•C4014=6-24+12=-6.故答案为:-6.18、的展开式中x的系数是______.答案:-4解析:解:∵=(1-x)4,它的展开式的通项公式为=T r+1=•(-x)r,令r=1,可得展开式中x的系数是-4,故答案为-4.19.f(x)是(1-2x)6展开式的第五项,则f(x)=______,所有二项式系数的和为______.答案:240x464解析:解:(1-2x)6展开式的第五项为•(-2x)4=240x4,∴f(x)=240x4.所有二项式系数的和为=2n=26=64,故答案为=240x4、64.20、的展开式中的第四项是______.答案:-解析:解:T4=故答案为:-21.(x-)4的展开式中的常数项为______.答案:6解析:解:的通项为=(-1)r C4r x4-2r令4-2r=0得r=2∴展开式的常数项为T3=C42=6故答案为622、的展开式中x2的系数为______.答案:7解析:解:因为的展开式的通项公式为:=,当8-2r=2,即r=3时,的展开式中x2的系数为:=7.故答案为:7.23.若(2x2-)n(n∈N×)展开式中含有常数项,则n的最小值是______.答案:5解析:解:展开式的通项T r+1=(-1)r2n-r C n r x2n-5r其中r=0,1,2,3…n令2n-5r=0得到当r=2时n最小为5故答案为524.二项式(2-)6展开式中常数项是______.答案:-160解析:解:因为=20×8×(-1)=-160.所以展开式中常数项是-160.故答案为:-160.25.设a=(cosx-sinx)dx,则二项式(x2+)6展开式中不含x6项的系数和是______.答案:161解析:解:由于a=(cosx-sinx)dx=(sinx+cosx)=-1-1=-2,∴(x2+)6=(x2-)6的通项公式为=T r+1=•(-2)r•x12-2r,令12-2r=6,求得r=3,故含x6项的系数为-×23=-160.由于所有项的系数和为(1-2)6=1,故不含x6项的系数和1+160=161,故答案为:161.26.(x+)9展开式中x3的系数是______.(用数字作答)答案:84解析:解:写出(x+)9通项,∵要求展开式中x3的系数∴令9-2r=3得r=3,∴C93=84故答案为:84.27.已知(-x2+6x-9)n的展开式中所有的项的系数的和为16,则展开式中的常数项为______.答案:81解析:解:在(-x2+6x-9)n的展开式中,令x=1,可得所有项系数的和为(-4)n=16,n=2,展开式中的常数项为:-9×(-9)=81.故答案为:81.28.(1-)4展开式中的系数是______.答案:-8解析:解:(1-)4展开式的通项公式为T r+1=•(-2)r•x-r,令-r=-1,可得r=1,故展开式中的系数是•(-2)=-8,故答案为:-8.29.在的展开式中,x2的系数为______(用数字作答).答案:-14解析:解:展开式的通项令得r=1故x2的系数为(-2)×C71=-14故答案为-1430.二项式的展开式中,x3项的系数为______.答案:20解析:解:二项式展开式的通项为T r+1=C6r•x6-r•(-)r=(-1)r•C6r•,令=3,解可得r=2,当r=2时,T3=(-1)2•C62•x3=20x3,即x3项的系数为20;故答案为20.。

二项式定理典型例题(含解答)

二项式定理典型例题(含解答)

二项式定理典型例题典型例题一例1 在二项式nx x ⎪⎭⎫ ⎝⎛+421的展开式中前三项的系数成等差数列,求展开式中所有有理项.分析:典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决.解:二项式的展开式的通项公式为:4324121C 21)(C rn r r n rr n r n r x x x T --+=⎪⎭⎫ ⎝⎛= 前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,123121-=====n n t n t t nn , 由已知:)1(8112312-+=+=n n n tt t ,∴8=n 通项公式为1431681,82,1,021C +-+==r rr rr T r x T 为有理项,故r 316-是4的倍数,∴.8,4,0=r 依次得到有理项为228889448541256121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类似地,1003)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有典型例题四例4(1)求103)1()1(x x +-展开式中5x 的系数;(2)求6)21(++xx 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式.解:(1)103)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项:用3)1(x -展开式中的常数项乘以10)1(x +展开式中的5x 项,可以得到5510C x ;用3)1(x -展开式中的一次项乘以10)1(x +展开式中的4x 项可得到54104410C 3)C )(3(x x x -=-;用3)1(x -中的2x 乘以10)1(x +展开式中的3x 可得到531033102C 3C 3x x x =⋅;用 3)1(x -中的3x 项乘以10)1(x +展开式中的2x 项可得到521022103C C 3x x x -=⋅-,合并同类项得5x 项为:5521031041051063)C C 3C C (x x -=-+-.(2)2121⎪⎪⎭⎫ ⎝⎛+=++x x x x 1251)21(⎪⎪⎭⎫ ⎝⎛+=++x x x x .由121⎪⎪⎭⎫⎝⎛+x x 展开式的通项公式r rrrrr x x T --+=⎪⎭⎫ ⎝⎛=61212121C 1)2(C ,可得展开式的常数项为924C 612=.说明:问题(2)中将非二项式通过因式分解转化为二项式解决.这时我们还可以通过合并项转化为二项式展开的问题来解决.典型例题五例5 求62)1(x x -+展开式中5x 的系数.分析:62)1(x x -+不是二项式,我们通过22)1(1x x x x -+=-+或)(12x x -+展开. 解:方法一:[]6262)1()1(x x x x -+=-+ -+++-+=44256)1(15)1(6)1(x x x x x其中含5x 的项为55145355566C 15C 6C x x x x =+-.含5x 项的系数为6.方法二:[]6262)(1)1(x x x x -+=-+其中含5x 的项为555566)4(15)3(20x x x x =+-+-.∴5x 项的系数为6.方法3:本题还可通过把62)1(x x -+看成6个21x x -+相乘,每个因式各取一项相乘可得到乘积的一项,5x 项可由下列几种可能得到.5个因式中取x ,一个取1得到556C x .3个因式中取x ,一个取2x -,两个取1得到)(C C 231336x x -⋅⋅. 1个因式中取x ,两个取2x -,三个取1得到222516)(C C x x -⋅⋅. 合并同类项为5525161336566)C C C C (C x x =+-,5x 项的系数为6.典型例题六例6 求证:(1)1212C C 2C -⋅=+++n n n n n n n ;(2))12(11C 11C 31C 21C 1210-+=++++++n n nn n n n n . 分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证明一些组合数的等式或者求一些组合数式子的值.解决这两个小题的关键是通过组合数公式将等式左边各项变化的等数固定下来,从而使用二项式系数性质nn n n n n 2C C C C 210=++++ .解:(1)11C )!()!1()!1()!()!1(!)!(!!C --=+--⋅=--=-⋅=k n kn n k n k n n k n k n k n k n k k ∴左边111101C C C ----+++=n n n n n n n =⋅=+++=-----11111012)C C C (n n n n n n n 右边.(2))!()!1(!)!(!!11C 11k n k n k n k n k k k n --=-⋅+=+11C 11)!()!1()!1(11+++=-++⋅+=k n n k n k n n . ∴左边112111C 11C 11C 11++++++++++=n n n n n n n =-+=++++=+++++)12(11)C C (C 111112111n n n n n n n 右边. 说明:本题的两个小题都是通过变换转化成二项式系数之和,再用二项式系数的性质求解.此外,有些组合数的式子可以直接作为某个二项式的展开式,但这需要逆用二项式定理才能完成,所以需仔细观察,我们可以看下面的例子:求10C 2C 2C 2C 22108107910810109+++++ 的结果.仔细观察可以发现该组合数的式与10)21(+的展开式接近,但要注意:10101099102210110010102C 2C 2C 2C C )21(⋅+⋅++⋅+⋅+=+从而可以得到:)13(21C 2C 2C 21010101099108210-=++++ . 典型例题七例7 利用二项式定理证明:98322--+n n 是64的倍数.分析:64是8的平方,问题相当于证明98322--+n n 是28的倍数,为了使问题向二项式定理贴近,变形1122)18(93++++==n n n ,将其展开后各项含有k 8,与28的倍数联系起来.解:∵98322--+n n 98)18(98911--+=--=++n n n n64)C 8C 8(112111⋅++⋅+=-+-++n n n n n 是64的倍数.说明:利用本题的方法和技巧不仅可以用来证明整除问题,而且可以用此方程求一些复杂的指数式除以一个数的余数.典型例题八例8 展开52232⎪⎭⎫ ⎝⎛-x x .分析1:用二项式定理展开式.解法1:52232⎪⎭⎫ ⎝⎛-x x 2232524150250523)2(23)2(23)2(⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=x x C x x C x x C 分析2:对较繁杂的式子,先化简再用二项式定理展开.解法2:10535232)34(232x x x x -=⎪⎭⎫ ⎝⎛-233254315530510)3()4()3()4()4([321-+-+=x C x C x C x 10742532243840513518012032xx x x x x -+-+-=. 说明:记准、记熟二项式nb a )(+的展开式,是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便.典型例题九例9 若将10)(z y x ++展开为多项式,经过合并同类项后它的项数为( ). A .11 B .33 C .55 D .66 分析:10)(z y x ++看作二项式10])[(z y x ++展开.解:我们把z y x ++看成z y x ++)(,按二项式展开,共有11“项”,即∑=-⋅+=++=++10010101010)(])[()(k k k kz y x C z y x z y x .这时,由于“和”中各项z 的指数各不相同,因此再将各个二项式ky x -+10)(展开,不同的乘积k kk z y x C ⋅+-1010)((10,,1,0 =k )展开后,都不会出现同类项. 下面,再分别考虑每一个乘积k kk z y x C ⋅+-1010)((10,,1,0 =k ).其中每一个乘积展开后的项数由ky x -+10)(决定,而且各项中x 和y 的指数都不相同,也不会出现同类项.故原式展开后的总项数为66191011=++++ ,∴应选D .典型例题十例10 若nx x ⎪⎭⎫⎝⎛-+21的展开式的常数项为20-,求n .分析:题中0≠x ,当0>x 时,把nx x ⎪⎭⎫ ⎝⎛-+21转化为nn x x x x 2121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+;当0<x 时,同理nn n x x x x 21)1(21⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛-+.然后写出通项,令含x 的幂指数为零,解出n . 解:当0>x 时nn x x x x 2121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+,其通项为rn r n r r rn r n r x C xx C T 222221)()1()1()(--+-=-=,令022=-r n ,得r n =, ∴展开式的常数项为n nnC2)1(-;当0<x 时,nn n x x x x 21)1(21⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛-+, 同理可得,展开式的常数项为n n n C 2)1(-.无论哪一种情况,常数项均为nn n C 2)1(-. 令20)1(2-=-nn n C ,以 ,3,2,1=n ,逐个代入,得3=n .典型例题十一例11 1031⎪⎭⎫ ⎝⎛+x x 的展开式的第3项小于第4项,则x 的取值范围是______________. 分析:首先运用通项公式写出展开式的第3项和第4项,再根据题设列出不等式即可. 解: 1031⎪⎭⎫ ⎝⎛+x x 有意义必须0>x ;依题意有43T T <即3373102382101)(1)(⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛x x C x x C .∴31123891012910xx ⨯⨯⨯⨯⨯<⨯⨯(∵0>x ).解得5648980<<x .∴x 的取值范围是⎭⎬⎫⎩⎨⎧<<5648980x x .∴应填:5648980<<x .典型例题十二例12 已知n xx)1(2log +的展开式中有连续三项的系数之比为321∶∶,这三项是第几项?若展开式的倒数第二项为112,求x 的值.解:设连续三项是第k 、1+k 、2+k 项(+∈N k 且1>k ),则有32111∶∶∶∶=+-k n k n k n C C C , 即321!)1)(1(!!)(!!!)1)(1(!∶∶∶∶=--+-+--k n k n k n k n k n k n .∴321)1(1)(1)1)((1∶∶∶∶=+-+--k k k n k k n k n . ∴⎪⎪⎩⎪⎪⎨⎧=-+=+-⇒⎪⎪⎩⎪⎪⎨⎧=-+=+---32)()1(21132)()1(21)1)(()(k n k k n k k n k k k k n k n k n k 14=⇒n ,5=k 所求连续三项为第5、6、7三项.又由已知,1122log 1314=xx C .即82log =x x .两边取以2为底的对数,3)(log 22=x ,3log 2±=x ,∴32=x ,或32-=x .说明:当题目中已知二项展开式的某些项或某几项之间的关系时,常利用二项式通项,根据已知条件列出某些等式或不等式进行求解.典型例题十三例13 nx )21(+的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项. 分析:根据已知条件可求出n ,再根据n 的奇偶性;确定二项式系数最大的项.解:556)2(x C T n =,667)2(x C T n =,依题意有8226655=⇒=n C C n n . ∴8)21(x +的展开式中,二项式系数最大的项为444851120)2(x x C T ==.设第1+r 项系数最大,则有65222211881188≤≤⇒⎪⎩⎪⎨⎧⋅≥⋅⋅≥⋅++--r C C C C r r r r r r r r . ∴5=r 或6=r (∵{}8,,2,1,0 ∈r ).∴系娄最大的项为:561792x T =,671792x T =.说明:(1)求二项式系数最大的项,根据二项式系数的性质,n 为奇数时中间两项的二项式系数最大,n 为偶数时,中间一项的二项式系数最大.(2)求展开式中系数最大项与求二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式,解不等式的方法求得.典型例题十四例14 设nm x x x f )1()1()(+++=(+∈N n m ,),若其展开式中关于x 的一次项的系数和为11,问n m ,为何值时,含2x 项的系数取最小值?并求这个最小值.分析:根据条件得到2x 的系数关于n 的二次表达式,然后用二次函数性质探讨最小值.解:1111=+=+m n C C n m .211)(21222222-+=-+-=+n m n n m m C C n m499)211(55112211022+-=+-=-=n n n mn .∵+∈N n , ∴5=n 或6,6=m 或5时,2x 项系数最小,最小值为25. 说明:二次函数499)211(2+-=x y 的对称轴方程为211=x ,即5.5=x ,由于5、6距5.5等距离,且对+∈N n ,5、6距5.5最近,所以499)211(2+-n 的最小值在5=n 或6=n 处取得. 典型例题十五例15 若0166777)13(a x a x a x a x ++++=- ,求(1) 721a a a +++ ;(2) 7531a a a a +++;(3) 6420a a a a +++.解:(1)令0=x ,则10-=a ,令1=x ,则128270167==++++a a a a . ①∴129721=+++a a a .(2)令1-=x ,则701234567)4(-=+-+-+-+-a a a a a a a a ②由2②①-得:8256]4128[2177531=--=+++)(a a a a (3)由2②①+得:6420a a a a +++][210123456701234567)()(a a a a a a a a a a a a a a a a +-+-+-+-++++++++=8128])4(128[217-=-+=. 说明:(1)根据问题恒等式特点来用“特殊值”法.这是一种重要方法,它适用于恒等式.(2)一般地,对于多项式nn n x a x a x a a q px x g ++++=+= 2210)()(,)(x g 的各项的系数和为)1(g :)(x g 的奇数项的系数和为)]1()1([21-+g g .)(x g 的偶数项的系数和为)]1()1([21--g g .典型例题十六例16 填空:(1) 3230-除以7的余数_____________;(2) 155555+除以8的余数是___. 分析(1):将302分解成含7的因数,然后用二项式定理展开,不含7的项就是余数.解:3230-3)2(103-=3)8(10-=3)17(10-+=37771010910911010010-++++=C C C C又∵余数不能为负数,需转化为正数。

5.6二项式定理十大典型例题配套练习

5.6二项式定理十大典型例题配套练习

Cn2r1
1 2n 2
2n1
n
④二项式系数的最大项:如果二项式的幂指数 n 是偶数时,则中间一项的二项式系数 Cn2 取得最大值。
n1 n1
如果二项式的幂指数 n 是奇数时,则中间两项的二项式系数 Cn 2 , Cn 2 同时取得最大
值。
⑤系数的最大项:求 (a bx)n 展开式中最大的项,一般采用待定系数法。设展开式中各项系数分别
③项数:共 n+1 项,是关于 a 与 b 的齐次多项式
④通项:展开式中的第 r 1项 Cnr anrbr 叫做二项式展开式的通项。用 Tr1 Cnr anrbr 表示。
3.性质:
①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即
C
k n
C
n n
k
.
②二项式系数和:令 a b 1,可得二项式系数的和为 Cn0 Cn1 Cn2 L Cnr L Cnn 2n ,
解:设 (
x2
3
1 x2
)n 展开式中各项系数依次设为 a0 , a1,an ,
令x 1 ,则有 a0 a1 an 0, ①, 令x 1,则有 a0 a1 a2 a3 (1)n an 2n , ②
将①-②得: 2(a1 a3 a5 ) 2n , a1 a3 a5 2n1,
解:假设 Tr 1 项最大,Q Tr1 C1r0 2r xr
Ar Ar
1 1
Ar Ar 2
C1r0 2r C1r0 2r
C r 1 10
C r 1 10
2r 2r
1
1 ,
解得
2(11 r 1
r) r 2(10
r
)
,化简得到

排列组合二项式定理练习题

排列组合二项式定理练习题

排列组合二项式定理练习题1.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是( ).A .24B .48C .72D .962.某校开设A 类选修课3门,B 类选修课4门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有( ).A .30种B .35种C .42种D .48种3.某外商计划在4个候选城市中投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有( ).A .16种B .36种C .42种D .60种4.2013年春节放假安排:农历除夕至正月初六放假,共7天.某单位安排7位员工值班,每人值班1天,每天安排1人.若甲不在除夕值班,乙不在正月初一值班,而且丙和甲在相邻的两天值班,则不同的安排方案共有( )A .1 440种B .1 360种C .1 282种D .1 128种5.二项式⎝ ⎛⎭⎪⎫2x -1x 6的展开式中的常数项是( ) A .20 B .-20 C .160 D .-1606.已知⎝ ⎛⎭⎪⎫x -a x 8展开式中常数项为1 120,其中实数a 是常数,则展开式中各项系数的和是( ).A .28B .38C .1或38D .1或287.设⎝ ⎛⎭⎪⎫5x -1x n的展开式的各项系数之和为M ,二项式系数之和为N ,若M -N =240,则展开式中x 的系数为( ).A .-150B .150C .300D .-3008.广州亚运会火炬传递在A ,B ,C ,D ,E ,F 六个城市之间进行,以A 为起点,F 为终点,B 与C 必须接连传递,E 必须在D 的前面传递,且每个城市只经过一次,那么火炬传递的不同路线共有__________种9.在某次中外海上联合搜救演习中,参加演习的中方有4艘船、3架飞机;外方有5艘船、2架飞机.若从中、外两组中各选出2个单位(1架飞机或1艘船都可作为1个单位,所有的船只两两不同,所有的飞机两两不同),则选出的4个单位中恰有1架飞机的不同选法共有多少种?10.已知10件不同的产品中有4件次品,现对它们一一测试,直至找到所有4件次品为止.(1)若恰在第2次测试时,才测试到第一件次品,第8次才找到最后一件次品,则共有多少种不同的测试方法?11.已知a为如图所示的程序框图中输出的结果,求二项式(a x-1x)6的展开式中含x2项的系数.。

(完整版)二项式定理(习题含答案)

(完整版)二项式定理(习题含答案)

二项式定理一、求展开式中特定项1、在30的展开式中,x 的幂指数是整数的共有( )A .4项 B .5项 C .6项 D .7项【答案】C【解析】()r r rrr r x C x x C T 6515303303011--+⋅=⎪⎪⎭⎫ ⎝⎛⋅⋅=,30......2,1,0=r ,若要是幂指数是整数,所以=r 0,6,12,18,24,30,所以共6项,故选C . 3、若2531()x x +展开式中的常数项为 .(用数字作答)【答案】10【解】由题意得,令1x =,可得展示式中各项的系数的和为32,所以232n =,解得5n =,所以2531()x x +展开式的通项为10515r r r T C x -+=,当2r =时,常数项为2510C =,4、二项式82x的展开式中的常数项为 .【答案】112【解析】由二项式通项可得,3488838122rrr r rr r x C xx C --+-=-=)()()(T (r=0,1,,8),显然当2=r 时,1123=T ,故二项式展开式中的常数项为112.5、41(23)x x--的展开式中常数项等于________.【答案】14.【解析】因为41(2)(13)x x--中4(13)x -的展开式通项为4C (3)r r x -,当第一项取2时,04C 1=,此时的展开式中常数为2;当第一项取1x-时,14C (3)12x -=-,此时的展开式中常数为12;所以原式的展开式中常数项等于14,故应填14.6、设20sin 12cos 2x a x dx π⎛⎫=-+ ⎪⎝⎭⎰,则()622x ⎛-⋅+ ⎝的展开式中常数项是 .【答案】332=-332()200sin 12cos sin cos (cos sin )202x a x dx x x dx x x πππ⎛⎫=-+=+=-+= ⎪⎝⎭⎰⎰,6(=6的展开式的通项为663166((1)2r r rr r r r r T C C x ---+==-⋅⋅,所以所求常数项为3633565566(1)22(1)2T C C --=-⋅⋅+-⋅332=-.二、求特定项系数或系数和7、8()x -的展开式中62x y 项的系数是( )A .56B .56-C .28D .28-【答案】A【解析】由通式r r r y x C )2(88--,令2=r ,则展开式中62x y 项的系数是56)2(228=-C .8、在x (1+x )6的展开式中,含x 3项的系数是 .【答案】15【解】()61x +的通项16r rr T C x +=,令2r =可得2615C =.则()61x x +中3x 的系数为15.9、在6(1)(2)x x -⋅-的展开式中含3x 的项的系数是 .【解析】6(1)(2)x x -⋅-的展开式中3x 项由336)(2x C -和226)(x -x C -⋅)(两部分组成,所以3x 的项的系数为552-2636-=-C C .10、已知dx x n 16e 1⎰=,那么nxx (3-展开式中含2x 项的系数为 .【答案】135【解析】根据题意,66e111ln |6e n dx x x=⎰==,则n x x )(3-中,由二项式定理的通项公式1r n r rr n T C a b -+=,可设含2x 项的项是616(3)r r r r T C x -+=-,可知2r =,所以系数为269135C ⨯=.11、已知()()()()10210012101111x a a x a x a x +=+-+-++-L ,则8a 等于( )A .-5B .5C .90D .180【答案】D 因为1010(1)(21)x x +=-+-,所以8a 等于8210(2)454180.C -=⨯=选D.12、在二项式1)2nx -的展开式中,只有第5项的二项式系数最大,则=n ________;展开式中的第4项=_______.【答案】8,1937x -.【解析】由二项式定理展开通项公式21()(2)33111()()22n r n r r r r r rr nn T C x x C x -++=-⋅=-,由题意得,当且仅当4n =时,rn C 取最大值,∴8n =,第4项为1193)333381()72C x x +-=-.13、如果7270127(12)x a a x a x a x -=++++ ,那么017a a a +++ 的值等于( )(A )-1 (B )-2 (C )0 (D )2【解析】令1x =,代入二项式7270127(12)x a a x a x a x -=++++ ,得70127(12)1a a a a -=++++=- ,令0x =,代入二项式7270127(12)x a a x a x a x -=++++ ,得70(10)1a -==,所以12711a a a ++++=- ,即1272a a a +++=- ,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代入二项式,可得(﹣2)7 =﹣1,15、(x﹣2)(x﹣1)5的展开式中所有项的系数和等于 【答案】0解:在(x﹣2)(x﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0,所以展开式中所有项的系数和等于0.16、在*3)()n n N ∈的展开式中,所有项的系数和为32-,则1x 的系数等于.【答案】270-【解析】当1=x 时,()322--=n,解得5=n ,那么含x1的项就是()x x C 1270313225-=-⨯⎪⎪⎭⎫ ⎝⎛⨯,所以系数是-270.17、设0(sin cos )k x x dx π=-⎰,若8822108)1(x a x a x a a kx ++++=- ,则1238a a a a +++⋅⋅⋅+= .【答案】0.【解析】由0(sin cos )(cos sin )k x x dx x x ππ=-=--⎰(cos sin )(cos 0sin 0)2ππ=-----=,令1x =得:80128(121)a a a a -⨯=++++ ,即01281a a a a ++++= 再令0x =得:80128(120)000a a a a -⨯=+⨯+⨯++⨯ ,即01a =所以12380a a a a +++⋅⋅⋅+=18、设(5x﹣)n 的展开式的各项系数和为M ,二项式系数和为N ,若M﹣N=240,则展开式中x 的系数为 .【答案】150解:由于(5x﹣)n 的展开式的各项系数和M 与变量x 无关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n =4n .再由二项式系数和为N=2n ,且M﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0.解得 2n =16,或 2n =﹣15(舍去),∴n=4.(5x﹣)n 的展开式的通项公式为 T r+1=?(5x )4﹣r ?(﹣1)r ?=(﹣1)r?54﹣r ?.令4﹣=1,解得 r=2,∴展开式中x 的系数为 (﹣1)r?54﹣r =1×6×25=150,19、设8877108)1(x a x a x a a x ++++=- ,则178a a a +++= .【答案】255【解析】178a a a +++= 87654321a a a a a a a a +-+-+-+-,所以令1-=x ,得到=82876543210a a a a a a a a a +-+-+-+-,所以2551256-20887654321=-==+-+-+-+-a a a a a a a a a 三、求参数问题20、若n的展开式中第四项为常数项,则n =( )A .4B .5C .6D .7【答案】B【解析】根据二项式展开公式有第四项为2533333342)21()(---==n nn nxC xx C T ,第四项为常数,则必有025=-n ,即5=n ,所以正确选项为B.21、二项式)()1(*N n x n ∈+的展开式中2x 的系数为15,则=n ( )A 、5 B 、 6 C 、8 D 、10【答案】B【解析】二项式)()1(*N n x n ∈+的展开式中的通项为k n kn k x C T -+⋅=1,令2=-k n ,得2-=n k ,所以2x 的系数为152)1(22=-==-n n C C n n n ,解得6=n ;故选B .22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵4r+14T =C r r r a x -,∴当43r -=,即1r =时,133324T =C 48,2ax ax x a ==∴=.23、若()()411x ax ++的展开式中2x 的系数为10,则实数a =( )A1 B .53-或1 C .2或53- D. 【答案】B.【解析】由题意得4(1)ax +的一次性与二次项系数之和为14,其二项展开通项公式14r r rr T C a x +=,∴22144101C a C a a +=⇒=或53-,故选B .24、设23(1)(1)(1)(1)n x x x x ++++++⋅⋅⋅++2012n n a a x a x a x =+++⋅⋅⋅+,当012254n a a a a +++⋅⋅⋅+=时,n 等于( )A .5B .6C .7D .8【答案】C. 【解析】令1x =,则可得2312(21)22222225418721n nn n n +-+++⋅⋅⋅+==-=⇒+=⇒=-,故选C .四、其他相关问题25、20152015除以8的余数为( )【答案】7【解析】试题分析:先将幂利用二项式表示,使其底数用8的倍数表示,利用二项式定理展开得到余数.试题解析:解:∵20152015=2015=?20162015﹣?20162014+?20162013﹣20162012+…+?2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,。

2014高二二项式定理练习题精选全文完整版

2014高二二项式定理练习题精选全文完整版

精选全文完整版二项式定理1.若(1+2)5=a +b 2(a ,b 为有理数),则a +b = ( )A .45B .55C .70D .802.在(1x + 51x 3)n 的展开式中,所有奇数项的系数之和为1 024,则中间项系数是( )A .330B .462C .682D .7923.12321666 .n n n n n n C C C C -+⋅+⋅++⋅=4.若n 展开式中偶数项系数和为256-,求n .5在二项式n 的展开式中倒数第3项的系数为45,求含有3x 的项的系数?6.求25(32)x x ++的展开式中x 的一次项的系数?7.求式子31(2)x x+-的常数项?82006(,,,_____.x x S x S -==在的二项展开式中含的奇次幂的项之和为当9.设二项式1)n x的展开式的各项系数的和为p ,所有二项式系数的和为s ,若 272p s +=,则n 等于多少?10.203)515(+的展开式中的有理项是展开式的第 项11、(2x-1)5展开式中各项系数绝对值之和是12、若)N n m ()x 1()x 1()x (f n m ∈⋅+++=展开式中,x 的系数为21,问m 、n 为何值时,x 2的系数最小?13.设(2x -1)5=a 0+a 1x +a 2x 2+…+a 5x 5,求:(1)a 0+a 1+a 2+a 3+a 4;(2)|a 0|+|a 1|+|a 2|+|a 3|+|a 4|+|a 5|;(3)a 1+a 3+a 5;(4)(a 0+a 2+a 4)2-(a 1+a 3+a 5)2.。

二项式定理经典习题(29题)

二项式定理经典习题(29题)

一.选择题(共19小题)1.(ax+y)5的展开式中x2y3项的系数等于80,则实数a=()A.2B.±2C.D.±2.的展开式中x3的系数为()A.5B.﹣5C.15D.﹣153.已知二项式(x+)n的展开式的二项式系数之和为64,则展开式中含x3项的系数是()A.1B.C.D.34.(x﹣1)5展开式中x4项系数为()A.5B.﹣5C.10D.﹣105.的展开式中常数项为()A.﹣240B.﹣160C.240D.1606.(1+x)5展开式中x2的系数为()A.﹣10B.﹣20C.20D.107.的展开式中含x5项的系数是()A.﹣112B.112C.﹣28D.288.的展开式中x3的系数为()A.﹣160B.﹣64C.64D.1609.二项式的展开式中的常数项是()A.﹣15B.15C.20D.﹣2010.若的展开式中常数项为240,则正整数n的值为()A.6B.7C.8D.911.(x﹣1)10的展开式的第6项的系数是()A.B.C.D.12.展开式中的常数项是()A.﹣160B.﹣140C.160D.14013.(x﹣2y﹣1)5的展开式中含x2y2的项的系数为()A.﹣120B.60C.﹣60D.3014.若的展开式中第4项是常数项,则n的值为()A.14B.16C.18D.2015.设n为正整数,(2x2+)n的展开式中存在常数项,则n的最小值为()A.2B.3C.4D.516.在(2x+1)4的展开式中,x2的系数为()A.6B.12C.24D.3617.在的展开式中,的系数为()A.﹣30B.﹣20C.﹣10D.3018.的展开式中,x2的系数等于()A.﹣45B.﹣10C.10D.4519.(x+2y)(x﹣y)5的展开式中x2y4的系数为()A.﹣15B.5C.﹣20D.25二.填空题(共10小题)20.已知(a+x)(1+x)6的展开式中x2的系数为21,则a=.21.展开式中所有奇数项的二项式系数和为32,则展开式中的常数项为.(用数字作答)22.(x﹣2y+1)5展开式中含x2y项的系数为.23.的展开式中项的系数为.24.的展开式中,常数项为(用数字作答).25.(x﹣1)(x+2)8的展开式中x8的系数为(用数字作答).26.在的展开式中,xy7的系数为.27.(x2﹣y)()6的展开式中,其中不含x的项为.28.在的展开式中,常数项等于.(用数字作答)29.(x2+y+3)6中x4y的系数为(用数字作答).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10.3二项式定理【考纲要求】1、能用计数原理证明二项式定理.2、会用二项式定理解决与二项展开式有关的简单问题. 【基础知识】1、二项式定理:nn n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+---ΛΛ222110)(二项式的展开式有1n +项,而不是n 项。

2、二项式通项公式:r r n r n r b a C T -+=1 (0,1,2,,r n =⋅⋅⋅) (1)它表示的是二项式的展开式的第1r +项,而不是第r 项(2)其中rn C 叫二项式展开式第1r +项的二项式系数,而二项式展开式第1r +项的系数是字母幂前的常数。

(3)注意0,1,2,,r n =⋅⋅⋅3、二项式展开式的二项式系数的性质(1)对称性:在二项展开式中,与首末两项“等距离”的两项的二项式系数相等。

即m nC =m n n C - (2)增减性和最大值:在二项式的展开式中,二项式系数先增后减,且在中间取得最大值,如果二项式的幂指数是偶数,中间一项的二项式系数最大;如果二项式的幂指数是奇数,中间两项的二项式系数相等且最大。

(3)所有二项式系数的和等于2n ,即n nn n n n n n n n C C C C C C 212210=++++++--ΛΛ奇数项的二项式系数和与偶数项的二项式系数和相等,即15314202-=+++=+++n n n n n n n C C C C C C ΛΛΛΛ4.二项展开式的系数0123,,,,n a a a a a ⋅⋅⋅的性质:对于2012()n n f x a a x a x a x =++++g g g 0123(1)n a a a a a f ++++⋅⋅⋅+=,0123(1)(1)n n a a a a a f -+-+⋅⋅⋅+-=-5、证明组合恒等式常用赋值法。

【例题精讲】例1 若,,......)21(2004200422102004R x x a x a x a a x ∈++++=-求(10a a +)+(20a a +)+……+(20040a a +)解:对于式子:,,......)21(2004200422102004R x x a x a x a a x ∈++++=- 令x=0,便得到:0a =1令x=1,得到2004210......a a a a ++++=1又原式:(10a a +)+(20a a +)+……+(20040a a +)=)......(2003)......(2004200421002004210a a a a a a a a a +++++=++++ ∴原式:(10a a +)+(20a a +)+……+(20040a a +)=2004 例2. 已知二项式n xx )2(2-,(n ∈N *)的展开式中第5项的系数与第3项的系数的 比是10:1,(1)求展开式中各项的系数和(2)求展开式中系数最大的项以及二项式系数最大的项 解:(1)∵第5项的系数与第3项的系数的比是10:1,∴110)2()2(2244=-⋅-⋅CC nn ,解得n=8 令x=1得到展开式中各项的系数和为(1-2)8=1(2) 展开式中第r 项, 第r+1项,第r+2项的系数绝对值分别为r n r C--⋅218,r r C 28⋅,1182++⋅r r C ,若第r+1项的系数绝对值最大,则必须满足:r n r C--⋅218≤r r C 28⋅ 并且1182++⋅r r C ≤r rC 28⋅,解得5≤r ≤6;所以系数最大的项为T 7=1792111x ⋅;二项式系数最大的项为T 5=112061x ⋅10.3二项式定理强化训练【基础精练】1.在二项式(x 2-1x)5的展开式中,含x 4的项的系数是 ( )A .-10B .10C .-5D .52.(2009·北京高考)若(1+2)5=a +b 2(a ,b 为有理数),则a +b = ( )A .45B .55C .70D .803.在( 1x+51x3)n的展开式中,所有奇数项的系数之和为1 024,则中间项系数是( )A .330B .462C .682D .7924.如果⎝⎛⎭⎪⎫3x 2-2x 3n的展开式中含有非零常数项,则正整数n 的最小值为 ( )A .10B .6C .5D .35.在⎝ ⎛⎭⎪⎫2x -y 25的展开式中,系数大于-1的项共有 ( )A .3项B .4项C .5项D .6项 6.二项式41(1)n x +-的展开式中,系数最大的项是 ( )A .第2n +1项B .第2n +2项C .第2n 项D .第2n +1项和第2n +2项7.若(x 2+1x3)n 展开式的各项系数之和为32,则其展开式中的常数项是________.8.( x +2x2)5的展开式中x 2的系数是________;其展开式中各项系数之和为________.(用数字作答) 9.若⎝ ⎛⎭⎪⎫2x -229的展开式的第7项为214,则x =________.10.已知(x -124x)n的展开式中,前三项系数的绝对值依次成等差数列.(1)证明:展开式中没有常数项; (2)求展开式中所有有理项.11.设(2x -1)5=a 0+a 1x +a 2x 2+…+a 5x 5,求:(1)a 0+a 1+a 2+a 3+a 4;(2)|a 0|+|a 1|+|a 2|+|a 3|+|a 4|+|a 5|; (3)a 1+a 3+a 5;(4)(a 0+a 2+a 4)2-(a 1+a 3+a 5)2.【拓展提高】1.在(3x -2y )20的展开式中,求: (1)二项式系数最大的项; (2)系数绝对值最大的项; (3)系数最大的项.【基础精练参考答案】1.B 【解析】:T k +1=C k 5x 2(5-k )(-x -1)k =(-1)k C k 5x 10-3k(k =0,1,…,5),由10-3k =4得k =2.含x 4的项为T 3,其系数为C 25=10.2.C 【解析】:由二项式定理得:(1+2)5=1+C 152+C 25(2)2+C 35(2)3+C 45(2)4+C 55·(2)5=1+52+20+202+20 +42=41+292,∴a =41,b =29,a +b =70.3.B 【解析】:∵二项式的展开式的所有项的二项式系数和为2n,而所有偶数项的二项式系数和与所有奇数项的二项式系数和相等.由题意得,2n -1=1 024,∴n =11,∴展开式共有12项,中间项为第六项、第七项,系数为C 511=C 611=462.4.C 【解析】:∵T k +1=C k n (3x 2)n -k ·⎝ ⎛⎭⎪⎫-2x 3k =(-1)k ·C k n 3n -k ·2k ·x 2n -5k , ∴由题意知2n -5k =0,即n =5k2,∵n ∈N *, k ∈N,∴n 的最小值为5.5.B 【解析】:⎝ ⎛⎭⎪⎫2x -y 25的展开式共有6项,其中3项(奇数项)的系数为正,大于-1;第六项的系数为C 5520⎝ ⎛⎭⎪⎫-125>-1,故系数大于-1的项共有4项. 6.A 【解析】:由二项展开式的通项公式T k +1=41k n C + (-x )k=(-1)k41kn C +x k,可知系数为(-1)k 41k n C +,与二项式系数只有符号之差,故先找中间项为第2n +1项和第2n +2项,又由第2n +1项系数为(-1)2n 41k n C +=41kn C +,第2n +2项系数为(-1)2n +12141n n C ++=-2141n n C ++<0,故系数最大项为第2n +1项.7.10【解析】:展开式中各项系数之和为S =C 0n +C 1n +…+C n n =2n=32,∴n =5.T k +1=5k C ()52kx - (1x3)k =5k C 1023k k x --=5kC 105k x -,∴展开式中的常数项为T 3=C 25=10.8. 10 253【解析】:∵T k +1=C k 5x 5-k ·(2x2)k =C k 5x5-3k·2k , 由5-3k =2,∴k =1,∴x 2的系数为10. 令x =1得系数和为35=243.9. -13【解析】:由T 7=C 6923x ⎝ ⎛⎭⎪⎫-226=214,∴x =-13.10.【解析】依题意,前三项系数的绝对值是1,C 1n (12),C 2n (12)2,且2C 1n ·12=1+C 2n (12)2,即n 2-9n +8=0,∴n =8(n =1舍去), ∴展开式的第k +1项为C k 8(x )8-k (-124x)k=(-12)k C k 8·x8-k 2·x -k 4=(-1)k ·C k82k ·x 16-3k 4. (1)证明:若第k +1项为常数项, 当且仅当16-3k4=0,即3k =16, ∵k ∈Z,∴这不可能,∴展开式中没有常数项. (2)若第k +1项为有理项,当且仅当16-3k4为整数, ∵0≤k ≤8,k ∈Z,∴k =0,4,8, 即展开式中的有理项共有三项,它们是:T 1=x 4,T 5=358x ,T 9=1256x -2.11.【解析】设f (x )=(2x -1)5=a 0+a 1x +a 2x 2+…+a 5x 5, 则f (1)=a 0+a 1+a 2+…+a 5=1,f (-1)=a 0-a 1+a 2-a 3+a 4-a 5=(-3)5=-243.(1)∵a 5=25=32,∴a 0+a 1+a 2+a 3+a 4=f (1)-32=-31. (2)|a 0|+|a 1|+|a 2|+…+|a 5| =-a 0+a 1-a 2+a 3-a 4+a 5 =-f (-1)=243.(3)∵f (1)-f (-1)=2(a 1+a 3+a 5), ∴a 1+a 3+a 5=2442=122. (4)(a 0+a 2+a 4)2-(a 1+a 3+a 5)2=(a 0+a 1+a 2+a 3+a 4+a 5)(a 0-a 1+a 2-a 3+a 4-a 5) =f (1)×f (-1)=-243. 【拓展提高参考答案】(3)由于系数为正的项为奇数项,故可设第2k -1项系数最大,于是2222222242424202022222222202220203232,3232k k k k k k k k k k k kC C ----------⎧⎪⎨⎪⎩g g gg g g g g ≥C ≥C 化简得221014310070.10163924k k k k ⎧-⎪⎨+-⎪⎩g ≤≥0又k 为不超过11的正整数,可得k =5,即第2×5-1=9项系数最大,T 9=C 820·312·28·x 12·y 8.。

相关文档
最新文档