排列组合与二项式定理单元练习
排列组合和二项式定理测试卷及答案(4套)(已上传)

排列组合与二项式定理(1)【基本知识】1.甲班有四个小组,每组10人,乙班有3个小组,每组15人,现要从甲、乙两班中选1人担任校团委部,不同的选法种数为 852.6人站成一排,甲、乙 、丙三人必须站在一起的排列种数为 1444.用二项式定理计算59.98,精确到1的近似值为( 99004 )5.若2)nx 的项是第8项,则展开式中含1x的项是第 9项6.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 34种7.已知8()a x x-展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是 1或288.某城市新修建的一条道路上有12盏路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有 38A 种9.设34550500150(1)(1)(1)(1)x x x x a a x a x ++++++++=+++L L ,则3a 的值是 451C10.不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁两种不能排在一起,则不同的排法种数共有____24______.11.102(2)(1)x x +-的展开式中10x 的系数为____179______.(用数字作答)若1531-++++n n n n n C C C C ΛΛ=32,则n = 612.用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第____10_____个数。
13、体育老师把9个相同的足球放入编号为1、2、3的三个箱子里,要求每个箱子放球的个数不少于其编号,则不同的放法有___10___种。
三、解答题15、已知n 展开式中偶数项的二项式系数之和为256,求x 的 系数.【解】由二项式系数的性质:二项展开式中偶数项的二项式系数之和为2n -1,得n =9,由通项92923199C (C (2)r rrrrr r r T x---+==-g g g ,令92123r r --=,得r =3,所以x 的二项式为39C =84, 而x 的系数为339C (2)84(8)672-=⨯-=-g.16、有5名男生,4名女生排成一排:(1)从中选出3人排成一排,有多少种排法?(2)若男生甲不站排头,女生乙不站在排尾,则有多少种不同的排法? (3)要求女生必须站在一起,则有多少种不同的排法? (4)若4名女生互不相邻,则有多少种不同的排法?【解】(1)39504A = (2)287280 (3)17280 (4)211217.从7个不同的红球,3 个不同的白球中取出4个球,问:(1)有多少种不同的取法?(2)其中恰有一个白球的取法有多少种? (3)其中至少有现两个白球的取法有多少种? 【解】(1)210 (2)105 (3)7018、 已知n展开式中偶数项二项式系数和比()2na b +展开式中奇数项二项式系数和小120,求:(1)n展开式中第三项的系数;(2)()2na b +展开式的中间项。
排列组合及二项式定理试题和答案

排列组合、二项式定理一、选择题:1.5人排一个5天的值日表,每天排一人值日,每人可以排多天或不排,但相邻两天不能排同一人,值日表排法的总数为 A .120B .324C .720D .12802.一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是 A .40B .74C .84D .2003.以三棱柱的六个顶点中的四个顶点为顶点的三棱锥有 A .18个B .15个C .12个D .9个4.从一架钢琴挑出的十个音键中,分别选择3个,4个,5个,…,10个键同时按下,可发出和弦,若有一个音键不同,则发出不同的和弦,则这样的不同的和弦种数是 A .512B .968C .1013D .10245.如果()n x x x +的展开式中所有奇数项的系数和等于512,则展开式的中间项是 A .6810C xB .5710C xxC .468C xD .6811C xx6.用0,3,4,5,6排成无重复字的五位数,要求偶数字相邻,奇数字也相邻,则这样的五位数的个数是 A .36B .32C .24D .207.若n 是奇数,则112217777n n n n n n n C C C ---+++⋯⋯+被9除的余数是A .0B .2C .7D .88.现有一个碱基A ,2个碱基C ,3个碱基G ,由这6个碱基组成的不同的碱基序列有 A .20个B .60个C .120个D .90个9.某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个节目插入原节目单中,那么不同的插法种数为 A .504B .210C .336D .12010.在342005(1)(1)(1)x x x ++++⋯⋯++的展开式中,x 3的系数等于 A .42005CB .42006CC .32005CD .32006C11.现有男女学生共8人,从男生中选2人,从女生中选1人,分别参加数理化三科竞赛,共有90种不同方案,则男、女生人数可能是 A .2男6女B .3男5女C .5男3女D .6男2女12.若x ∈R ,n ∈N + ,定义nx M =x (x +1)(x +2)…(x +n -1),例如55M -=(-5)(-4)(-3)(-2)(-1)=-120,则函数199()x f x xM -=的奇偶性为A .是偶函数而不是奇函数B .是奇函数而不是偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数13.由等式43243212341234(1)(1)(1)(1),x a x a x a x a x b x b x b x b ++++=++++++++定义映射12341234:(,,,)(,,,),f a a a a b b b b →则f (4,3,2,1)等于 A .(1,2,3,4)B .(0,3,4,0)C .(-1,0,2,-2)D .(0,-3,4,-1)14.已知集合A ={1,2,3},B ={4,5,6},从A 到B 的映射f (x ),B 中有且仅有2个元素有原象,则这样的映射个数为 A .8B .9C .24D .2715.有五名学生站成一排照毕业纪念照,其中甲不排在乙的左边,又不与乙相邻,而不同的站法有 A .24种B .36种C .60种D .66种16.等腰三角形的三边均为正数,它们周长不大于10,这样不同形状的三角形的种数为 A .8B .9C .10D .1117.甲、乙、丙三同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有 A .36种B .42种C .50种D .72种18.若1021022012100210139(2),()()x a a x a x a x a a a a a a -=+++⋯+++⋯+-++⋯+则 的值为 A .0B .2C .-1D .1答题卡题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 答案二、填空题:19.某电子器件的电路中,在A ,B 之间有C ,D ,E ,F 四个焊点(如图),如果焊点脱落,则可能导致电路不通.今发现A ,B 间电路不通,则焊点脱落的不同情况有 种. 20.设f (x )=x 5-5x 4+10x 3-10x 2+5x +1,则f (x )的反函数f -1(x )= .21.正整数a 1a 2…a n …a 2n -2a 2n -1称为凹数,如果a 1>a 2>…a n ,且a 2n -1>a 2n -2>…>a n ,其中a i(i =1,2,3,…)∈{0,1,2,…,9},请回答三位凹数a 1a 2a 3(a 1≠a 3)共有 个(用数字作答).22.如果a 1(x -1)4+a 2(x -1)3+a 3(x -1)2+a 4(x -1)+a 5=x 4,那么a 2-a 3+a 4 .23.一栋7层的楼房备有电梯,在一楼有甲、乙、丙三人进了电梯,则满足有且仅有一人要上7楼,且甲不在2楼下电梯的所有可能情况种数有.24.已知(x+1)6(ax-1)2的展开式中,x3的系数是56,则实数a的值为.三、解答题:25.(本小题满分12分)将7个相同的小球任意放入四个不同的盒子中,每个盒子都不空,共有多少种不同的方法?26.(本小题满分12分)已知(41x+3x2)n展开式中的倒数第三项的系数为45,求:⑴含x3的项;⑵系数最大的项.27.(本小题满分12分)求证:123114710(31)(32)2.n n n n n n C C C n C n -++++⋯++=+⋅第十一单元 排列组合、二项式定理参考答案一、选择题(每小题5分,共90分): 题号1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 答案 DBCBBDCBABBADDBCBD提示1.D 分五步:5×4×4×4×4=1280.2.B 分三步:33425154545474.C C C C C C ++= 3.C 46312.C -=4.B 分8类:3451001210012101010101010101010101010()2(11045)968.C C C C C C C C C C C +++⋯+=+++⋯+-++=-++=5.B 12512,10,n n -=∴=中间项为5555761010().T C x x C x x ==6.D 按首位数字的奇偶性分两类:2332223322()20A A A A A +-=7.C 原式=(7+1)n -1=(9-1)2-1=9k -2=9k ’+7(k 和k ’均为正整数).8.B 分三步:12365360C C C =9.A 939966504,504.A A A ==或10.B 原式=11.B 设有男生x 人,则2138390,(1)(8)30x x C C A x x x -=--=即,检验知B 正确.12.A 2222()(9)(8)(9191)(1)(4)(81).f x x x x x x x x x =--⋯-+-=--⋯- 13.D 比较等式两边x 3的系数,得4=4+b 1,则b 1=0,故排除A ,C ;再比较等式两边的常数项,有1=1+b 1+b 2+b 3+b 4,∴b 1+b 2+b 3+b 4=0.14.D 223327.C =15.B 先排甲、乙外的3人,有33A 种排法,再插入甲、乙两人,有24A 种方法,又甲排乙的左边和甲排乙的右边各占12 ,故所求不同和站法有3234136().2A A =种16.C 共有(1,1,1),(1,2,2),(1,3,3),(1,4,4),(2,2,2),(2,2,3),(2,3,3),(2,4,4),(3,3,3)(3,3,4)10种.17.B 每人值班2天的排法或减去甲值周一或乙值周六的排法,再加上甲值周一且乙值周32003320062006442006(1)[1(1)](1)(1)(1).1(1)x x x x x x C x x+-+-+++=+-+即求中的系数为六的排法,共有2212264544242().C C A C A -+=种18.D 设f (x )=(2-x )10,则(a 0+a 2+…+a 10)2-(a 1+a 3+…+a 9)2=(a 0+a 1+…+a 10)(a 0-a 1+a 2-…-a 9+a 10)=f (1)f (-1)=(2+1)10(2-1)10=1。
排列组合二项式定理概率单元测试卷 人教版

排列组合、二项式定理、概率单元测试卷一、选择题(每题5分,计60分)1.从7人中选派5人到10个不同交通岗的5个中参加交通协管工作,则不同的选派方法有( )A 、5551057A A C 种 B 、5551057P C A 种 C 、57510C C 种 D 、51057A C2.某乒乓球队共有男女队员18人,现从中选出男女队员各一人组成一对双打组合,由于男队员中有两人主攻单打项目,不参与双打组合,这样共有64种组合方式,则此队中男队员的人数有( )A 、10人B 、8人C 、6人D 、12人3.设34)1(6)1(4)1(234-+-+-+-=x x x x S ,则S 等于( )A 、x 4B 、x 4+1C 、(x-2)4D 、x 4+44.学校要选派4名爱好摄影的同学中的3名参加校外摄影小组的3期培训(每期只派1名),由于时间上的冲突,甲、乙两位同学都不能参加第1期培训,则不同的选派方式有( )A 、6种B 、8种C 、10种D 、12种5.甲、乙、丙三个同学在课余时间负责一个计算机房周一至周六的值班工作,每天1人值班,每人值班2天。
如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有( )A 、36种B 、42种C 、50种D 、72种6.现有甲、乙两骰子,从1点到6点出现的概率都是1/6,掷甲、乙两颗骰子,设分别出现的点数为a 、b 时,则满足aa b a 10|2|2<-<的概率为( )A 、181B 、121C 、91D 、617.(1-2x)7展开式中系数最大的项为( )A 、第4项B 、第5项C 、第7项D 、第8项8.在一次足球赛中,某小组共有5个球队进行双循环赛(每两队之间赛两场),已知胜一场得3分,平一场得1分,负一场得0分。
积分多的前两名可出线(积分相等则要比净胜球数或进球总数),赛完后,一个队的积分可出现的不同情况种数为( )A 、22B 、23C 、24D 、259.若n xx )13(3+)(*∈N n 展开式中含有常数项,则n 的最小值是( )A 、4B 、3C 、12D 、1010..n ∈N ,A =(7+2)2n+1,B 为A 的小数部分,则AB 的值应是( ) A.72n+1 B.22n+1 C.32n+1 D.52n+111.若一个m 、n 均为非负整数的有序数对(m ,n ),在做m+n 的加法时,各位均不进位则称(m ,n )为“简单的有序实数对”,m+n 称为有序实数对(m ,n )之值。
排列组合二项式定理定积分--专题卷---(全国通用)

排列组合、二项式定理一、排列组合1、某校选定甲、乙、丙、丁、戊共5名教师到3个边远地区支教,每地至少1人,其中甲和乙一定不去同一地区,甲和丙必须去同一地区,则不同的选派方案共有( )A .27种 B. 30种 C. 33种 D.36种2、将4名大学生分配到A,B,C 三个不同的学校实习,每个学校至少分配一人.若甲要求不到A 学校,则不同的分配方案共有( )A.36种B.30种C.24种D.20种3、某次联欢会要安排3个歌舞类节目,2个小品类节目和一个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B. 120C. 144D. 1684、从2名语文老师、2名数学老师、4名英语老师中选派5人组成一个支教小组,则语文老师、数学老师、英语老师都至少有一人的选派方法种树为 .(用数字作答)5、将编号为1,2,3,4的四个小球放入3个不同的盒子中,每个盒子里至少放1个,则恰有1个盒子有2个连号小球的所有不同放法有___________种.(用数字作答)二、二项式定理1、24(1)(1)x x x ++-展开式中2x 的系数为______ 2、若26()b ax x +的展开式中3x 项系数为20,则22a b +的最小值为( )A. 4B. 3C. 2D. 1 3、二项式61x x ⎛⎫+ ⎪⎝⎭展开式中的常数项为 4、设二项式()60a x a x ⎛⎫-≠ ⎪⎝⎭学科网的展开式中2x 的系数为A ,常数项为B ,若B=44,则a = 5、在二项式6213x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项等于________(用数字作答); 6、()()52132x x --的展开式中,含x 次数最高的项的系数是_________(用数字作答).7、已知的展开5(12)x -式中所有项的系数和为m ,则21m x dx =⎰_________.8、已知0sin a xdx π=⎰,则二项式51a x ⎛⎫- ⎪⎝⎭的展开式中3x -的系数为9、二项式66(ax+的展开式中5x 20a x x d =⎰ .三、定积分1、已知函数()f x 的部分图像如图所示,向图中的矩形区域随机投出100粒豆子,记下落入阴影区域的豆子数.通过10次这样的试验,算得落入阴影区域的豆子的平均数约为39,由此可估计1()0f x dx 的值约为( )A. 61100B. 39100B. C.10100 D.1171002、如图所示,在边长为1的正方形OABC 中任取一点M ,则点M 恰好取自阴影部分的概率为__________.参考答案:1、B2、C3、B4、445、18参考答案:1、32、C3、204、-35、12156、-647、ln28、-809、1 3【解析】61xx⎛⎫+⎪⎝⎭中的通项为61rr n rC xx-⎛⎫⎪⎝⎭,若为常数项,则3r=,366120rr n rC x Cx-⎛⎫==⎪⎝⎭.参考答案:1、D2、1 3。
排列组合二项式定理单元检测题(文科教师)

排列组合二项式定理单元检测题(文科)命题人:康华审题人:殷晓婷姓名学号一、选择题(每题5分,共50分)1.从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有( C )(A)270种(B)216种(C)186种(D)108种2.在数字“1,2,3”与符号“+,-”五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是( B )A.6 B. 12 C. 18 D. 243.从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有( B )A.300种B.240种C.144种D.96种4.编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两人的编号与座位号一致的坐法有( B )(A)10种(B)20种(C)30种(D)60种5.将9个(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分组方法的种数为(A )A.70 B.140 C.280 D.8406.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为(A )(A)33 (B) 34 (C) 35 (D)367.将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有(B )(A)30种(B)90种(C)180种(D)270种8.由数字1、2、3、4、5组成的“十位上的数字比百位、个位上的数字小,且千位上的数字比万位、百位上的数字小”没有重复数字的五位数(如:“21534”)的总个数是( A )(A)16 (B)18 (C)20 (D)229.为支持我市旅游业的发展,有6名志愿者(其中4名男生,2名女生)义务参加某项宣传活动。
他们自由分成两组完成不同的两项任务,但要求每组最多4人,2名女生不能单独成组,则不同的工作安排方式有( A )(A)48种 (B)40种 (C)68种 (D)60种10.设集合{}1,2,3,4,5I =。
一章排列组合二项式定理习题集及答案

选修2-31、1,1、2、1两个基本原理、排列一、预习检测1、书架的上层放有5本不同的数学书,中层放有6本不同的语文书,下层有4本不同的外语书,从中任取一本书的不同取法的总数是( )A .15B .1C .120D .32、下列各式中与排列数mn A 相等的是( )A .!)(!n m n - B .)()2)(1(m n n n n --- C .m n A m n n 11-+= D .111--m n n A A 3、(07全国)5位同学报名参加两个课外活动小组,每个同学限报其中的一个小组,则不同的报名方法共有 ( )A .10种B .20种C .25种D .32种4、从9,,2,1,0 这10个数字中,任取两个不同数字作为平面直角坐标系中点的坐标,能够确定不在x 轴上的点的个数是( )A .100B .90C .81D .725、从甲地到乙地每天有汽车8辆,火车3辆,飞机1班,某人从甲地到乙地出差,共有不同出行方法 种。
6、已知从A 地到B 地有3条路线,从B 地到C 地有4条路线,那么从A 地到C 地共有 条路线。
7、所有两位正整数中,各位数小于十位数的两位数共有8、若4个应届高中毕业生报考三所重点院校,每人报且仅报一所院校,则不同的报名方法有 种。
二、双基落实1、从4,3,2,1四个数字中任取两数作和(不再重复),则可得到不同的和的个数为( )A .5B .6C .12D .162、6个人站成前后两排,每排3人,则不同的站队方法有( )A .3333A AB .66AC .33332A AD .36362A A3、6名同学站成一排,其中甲必须站在乙的左边(可以不相邻)的不同排法有( )A .120B .240C .360D .7204、由4,3,2,1,0可组成不同的三位数的个数是( )A .100B .125C .64D .805、(07全国)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲乙二人不能担任文娱委员,则有 种不同选法。
排列组合与二项式定理章节测试卷
排列组合与二项式定理章节测试卷一、 选择题16项为常数项,则n =( ) A .6B .12C .15D .182.E D C B A ,,.,.,五人站成一排,若A 必须站在B 的左边的不同站法的种数是( )60:A 80:B 90:C 120:D3.用4种不同的颜色为正方体的六个面着色,要求相邻两个面颜色不相同,则不同的着色方法有( )A .24种B .48种C .72种D .96种4.如图,机器人亮亮从A 地移动到B 地,每次只移动一个单位长度,则亮亮从A 移动到B 最近的走法共有______________种A.36B.60C.59D.805.五名志愿者去四个不同的社区参加创建文明城市的公益活动,每个社区至少一人,且甲、乙不能分在同一社区,则不同的分派方法有 ( ) A .240种 B .216种 C .120种 D .72种6128 )(A )7 (B) 7- (C) 21 (D)21- 7.将18个参加青少年科技创新大赛的名额分配给3所学校, 要求每校至少有一个名额且各校分配的名额互不相等, 则不同的分配方法种数为A .96B .114C .128D .1368.一个质点从A 上出发依次沿图中线段到达B 、C 、D 、E 、F 、G 、H 、I 、J 各点,最后又回到A (如图所示),其中:AB BC ⊥,AB//CD//EF//HG//IJ ,BC//DE//FG//HI//JA 。
欲知此质点所走路程,至少需要测量n 条线段的长度,则n 的值为( )A .5B .4C .3D .29.甲、乙、丙、丁四人传球,第一次甲传给乙、丙、丁三人中的任意一人,第二次有拿球者再传给其他三人中的任意一人,这样共传了4次,则第四次仍传回到甲的方法共有 A.21种 B.24种 C.27种 D.42种 10..二项式210(x +的展开式中的常数项是( ) A 、第10项 B 、第9项 C 、第8项 D 、第7项11.已知41322+=n n A A ,则25log n 的值为( )A .1B .2C .4D .不确定 12..12名同学分别到三个企业进行社会调查,若每个企业4人,则不同的分配方案共有( )种。
高二数学排列组合二项式定理单元测试题(带答案).doc
排列、组合、二项式定理与概率测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、如图所示的是2008年北京奥运会的会徽,其中的“中国印”的外边是由四个色块构成,可以用线段在不穿越另两个色块的条件下将其中任意两个色块连接起来(如同架桥),如果用三条线段将这四个色块连接起来,不同的连接方法共有 ( )A. 8种B. 12种C. 16种D. 20种2、从6名志愿者中选出4个分别从事翻译、导游、导购、保洁四项不同的工作,其中甲乙两名志愿者不能从事翻译工作,则不同的选排方法共有( )A .96种B .180种C .240种D .280种 3、五种不同的商品在货架上排成一排,其中a 、b 两种必须排在一起,而c 、d 两种不能排在一起,则 不同的选排方法共有( )A .12种B .20种C .24种D .48种 4、编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个的编号与座位号一致的坐法是( )A . 10种 B. 20种 C. 30种 D . 60种 5、设a 、b 、m 为整数(m >0),若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余.记为a ≡b (modm )。
已知a =1+C 120+C 220·2+C 320·22+…+C 2020·219,b ≡a (mod 10),则b 的值可以是( ) A.2015 B.2011 C.2008 D.20066、在一次足球预选赛中,某小组共有5个球队进行双循环赛(每两队之间赛两场),已知胜一场得3分,平一场得1分,负一场得0分.积分多的前两名可出线(积分相等则要比净胜球数或进球总数).赛完后一个队的积分可出现的不同情况种数为( ) A .22种 B .23种 C .24种 D .25种7、令1)1(++n n x a 为的展开式中含1-n x项的系数,则数列}1{na 的前n 项和为 ( )A .2)3(+n n B .2)1(+n n C .1+n n D .12+n n8、若5522105)1(...)1()1()1(-++-+-+=+x a x a x a a x ,则0a = ( )A .32B .1C .-1D .-329、二项式23nx ⎛⎝*()n N ∈展开式中含有常数项,则n 的最小取值是 ( )A 5B 6C 7D 810、四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,则不同的取法共有( )A .150种B .147种C .144种D .141种 11、两位到北京旅游的外国游客要与2008奥运会的吉祥物福娃(5个)合影留念,要求排成一排,两位游客相邻且不排在两端,则不同的排法共有 ( ) A .1440 B .960 C .720 D .480 12、若x ∈A 则x 1∈A ,就称A 是伙伴关系集合,集合M={-1,0,31,21,1,2,3,4} 的所有非空子集中,具有伙伴关系的集合的个数为( )A .15B .16C .28D .25二、填空题(每小题4分,共16分,把答案填在题中横线上)13.四封信投入3个不同的信箱,其不同的投信方法有_________种. 14、在72)2)(1(-+x x 的展开式中x 3的系数是 .15、已知数列{n a }的通项公式为121+=-n n a ,则01n C a +12n C a +Λ+33n C a +nn n C a 1+=16、对于任意正整数,定义“n 的双阶乘n!!”如下:对于n 是偶数时,n!!=n·(n -2)·(n -4)……6×4×2;对于n 是奇数时,n!!=n·(n -2)·(n -4)……5×3×1. 现有如下四个命题:①(2005!!)·(2006!!)=2006!;②2006!!=21003·1003!;③2006!!的个位数是0;④2005!!的个位数是5.正确的命题是________.三、解答题(本大题共6小题,前5小题每小题12分,最后1小题14分,共74分.解答应写出必要的文字说明、证明过程或演算步骤.)17、某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种竞赛,要求每科均有1人参加,共有180种不同的选法.那么该小组中男、女同学各有多少人?18、设m,n∈Z+,m、n≥1,f(x)=(1+x)m+(1+x)n的展开式中,x的系数为19.(1)求f(x)展开式中x2的系数的最值;(2)对于使f(x)中x2的系数取最小值时的m、n的值,求x7的系数.19、7位同学站成一排.问:(1)甲、乙两同学必须相邻的排法共有多少种?(2)甲、乙和丙三个同学都相邻的排法共有多少种?(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?(4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起的排法有多少种?20、已知()2nxx的展开式中前三项的系数成等差数列.(Ⅰ)求n的值;(Ⅱ)求展开式中系数最大的项.21、由0,1,2,3,4,5这六个数字。
最新排列组合二项式定理单元测试题(带答案)
最新排列组合二项式定理单元测试题(带答案)精品文档排列、组合、二项式定理与概率测试题(理)一、选择题1、2008年北京奥运会的会徽中,“中国印”的外边由四个色块构成,用线段在不穿越另两个色块的条件下将其中任意两个色块连接起来,如果用三条线段将这四个色块连接起来,不同的连接方法共有()。
A。
8种B。
12种C。
16种D。
20种2、从6名志愿者中选出4个分别从事翻译、导游、导购、保洁四项不同的工作,其中甲乙两名志愿者不能从事翻译工作,则不同的选排方法共有()。
A.96种B.180种C.240种D.280种3、五种不同的商品在货架上排成一排,其中a、b两种必须排在一起,而c、d两种不能排在一起,则不同的选排方法共有()。
A.12种B.20种C.24种D.48种4、编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个的编号与座位号一致的坐法是()。
A。
10种B。
20种C。
30种D。
60种5、设a、b、m为整数(m>0),若a和b被m除得的余数相同,则称a和b对模m同余。
记为a≡b(mod 2m)。
已知a=1+C12+C322+…+C,b≡a(mod 10),则b的值可以是()。
A。
2015B。
2011C。
2008D。
20066、在一次足球预选赛中,某小组共有5个球队进行双循环赛(每两队之间赛两场),已知胜一场得3分,平一场得1分,负一场得分。
积分多的前两名可出线(积分相等则要比净胜球数或进球总数)。
赛完后一个队的积分可出现的不同情况种数为()。
A。
22种B。
23种C。
24种D。
25种7、令an为(1+x)^(n+1)的展开式中含x^n项的系数,则数列{an}的前n项和为()。
A。
n(n+3)/2B。
n(n+1)/2C。
n/2D。
(n+1)/28、若(x+1)^5=a+a1(x-1)+a2(x-1)^2+。
+a5(x-1)^5,则a=()。
A。
32B。
1C。
-1D。
数学选修2-3(排列组合二项式定理)练习题
数学选修2-3(排列组合二项式定理)练习题篇一:第十三章排列组合及二项式定理习题及答案第十三章排列组合二项式定理复习题及答案一、概念:分类加法计数原理分步乘法计数原理排列组合排列数公式Anm?n?n?1??n?2???n?m?1??mn!?n?m?!组合数公式Cmn?AnAmm?n!m!??n?m?!排列数性质:①Ann?n! ②0!?1组合数性质:①Cn0?1②Cnm?Cnn?m③Cnm?Cnm?1?Cnm?1 二、应用:1. 把3本书放到4个抽屉中,不同的放法有▁▁▁种. 答案:43=64 .2. 中国、美国、古巴、日本举行四国女排邀请赛,每个国家都有得冠亚军的可能,但冠军均不能并列,则得冠亚军的所有不同情况共有▁▁种.答案:А24=12.3. 某班有3名学生准备参加校运动会的百米、二百米、跳高、跳远四项比赛,如果每班每项限报1人,则这3名学生参赛的不同方法有▁▁▁种.答案:А34=244. 从1、3、5、10、20这五个数中任选两个相加,则可得不同的和数▁▁▁个.能得到不同的和▁▁个.答案:С25=10С5+С545+С5+С325+С5=3115. 有6个排球队,举行单循环比赛.则比赛的场数有▁▁.答案: С26=156. 有10个人两两碰杯,共碰杯▁▁▁次.答案: С210=45 .7. 用1元、2元、5元、10元人民币各一张,能组成不同的币值▁▁▁种.答案: С14+С24+С34+С44=158. 正十二边形共有▁▁▁条对角线.答案: С212-12=54减去12个顺次相连不成对角线.9.用1、2、3、4、5五个数可以组成不充许数字重复的自然数▁▁个.答案:А15+А25+А3+А545+А5=325 510.用1、2、3、4、5五个不同的数组成不许重复的三位数为▁▁.充许重复的三位数为▁答案:А3=6053=125 511.在三位正整数中0的个数共▁▁▁个.答案:分为三类:一类含两个零有100、200、···900共18个二类十位为0而个位不为0有9×9=81.如101、102、···109、201、202、···909三类十位不为0而个位为0的有9×9=81合计有18+81+81=18012.数72有多少个正约数?.其中正偶数有多少个?答案:72=23×32约数2r×3x其中2的指数有0、1、2、3四种取法,3的指数有0、1、2三种取法共有4×3=12种.偶约数2的指数有1、2、3三种取法共有3×3=9种13. 现有男学生8名,女学生2名,要从中选4人组成一个学习小组,必须有女学生选法种数是▁▁▁.答案:С123·С8+С22·С28=112+28=14014. 要从8名男医生和7名女医生中选5人组成一个医疗小组,如果医疗小组中男.女医生均不少于2人,则不同的选法种数是▁▁. 答案:С28·С37+С8·С327=215615.直线a∥b,a上有5个点,b上有4个点.以这9个点为顶点,可组成不同三角形个数▁▁▁个.答案:С25·С5+С5·С1124=70.16.除点O外,在∠AOB的边OA上另有5点,边OB上另有4点,以含点O在内的10个点为顶点,可以组成多少不同的三角形.答案:① С2310-С6-С5=90. OA中6取3. OB中5取3在一条直线上1433② С5·С+С5·С24+С5·С114=90 OA、OB有一个和两个点及O17. 在10名学生中有6名男学生,4名女学生,要从中选5名参加义务劳动,女学生至多有2名的选法有▁▁▁种.答案:С4·С6+С514·С46+С24·С6=186318.某校从8名教师中选派4名教师同时去4个边远地区支教?每地1人?,其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有▁▁▁种. 答案:甲去则乙不去丙去有С25·А44甲不去则丙不去有С46·А44共有240+360=60019.安排7位工作人员在5月1日至5月7 日值班,其中甲乙二人都不安排在5月1日和2 日,不同的安排方法共有▁▁▁▁种.答案:甲乙两人不在1日和2日有А有А225种方法,其余5人在剩下的5天中安排一天有А5 共5·А5=240 520.电视台在“欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中确定一名幸运伙伴,有____种不同的结果.答案:28800分两类:①幸运之星在甲信箱中抽,先定幸运之星,再在两信箱中各定幸运伙伴有30?29?20?17400种结果②幸运之星在乙信箱中抽,同理有20?19?30?11400种结果.因此,共有不同结果17400?11400?28800种21. 某班级有一个7人小组,现任选其中3人相互调整座位,其余4人座位不变,则不同的调整方案的种数有()А. 35 B. 70С. 210D. 105答案:B. 从7人中选出3人有C73?35种情况,再对选出的3人调整座位有2种情况3有2C7?7022. 要从10名男生和5名女生中选出6人组成啦啦队,若男生选取同的选法种数▁▁▁种. 答案:男10名女5名С41023,剩余选女生,则不·С25=210023. 将5名实习生教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有( ) А. 30种 B. 90种С. 180种D. 270种答案:分下列4步:① 三个班中桃一个班得一名教师有С3种② 5个教师中选一人进这个班有С5种③从剩下的4名教师中再选2人进第二个班有С4种④ 最后剩下的2名教师进第三个班有С2种由分步计数原理共有С3·С5·С11112224·С22=90种24. 某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不个,则该外商不同的投资方案有()А. 16种в.36种С.42种D.60种答案:分两类① 三个项目分别在三个城市内有А②三个项目分别在两个城市内有С2334种24·А 共有24+36=60种25.正六边形ABCDEF中,АС∥у轴,从六个顶点中任取三点,使这三点能确定一条形如y?ax?bx?c?a?0?的抛物线的概率是▁▁▁.2答案:由二次函数性质知三点可确定一条抛物线但两点连线不能与纵轴平行,故概率为C6?2?4C363?35对AC有上下左右4种抛物线不满足题意26. 从1、2、3┅100中,任选两个不同的数相乘,乘积(如两数相等仍按两个积计算)能被3整除的取法有▁▁▁种.答案:能被3整除的数33个,不能被3整除的数67个.则С133·С167+С233=2739 不能被3整除的数С2100-2739=27. 一个袋子装有红球与白球各5个,要从中取4个,取出的红球多于白球的取法有▁▁种.答案:С3·С15+С545·С5=5528. 用数字0、1、2┅9这10个数字可组成第一位数字是2或3或6的7位电话号码个答案:2开头106 个3开头106个6开头106个共3×1062229. 己知,a?{1,2,3},b?{3,4},r?{1,2,3,4},那么方程?x?a???y?b??r2共可表示▁▁▁个不同的圆.答案:3×2×4=2430. 十字路口来往的车辆共有▁▁种不同的行车路线.答案:A42?12每个路口有两种方法.31. 若m∈{?2,?1,0,1,2,3},n∈{?3,?2,?1,0,1,2},方程示中心在原点的双曲线,则最多可表示▁▁条不同的双曲线.答案:13.m??2n=1 、2两条m??1 n=1 .2 两条m?1 n=?3,?2,?1. 三条m?2时n三条m?3时n三条共13条32. 有一元币3张,5元币一张,10元币2张.,可以组成多少种不同的币值.答案:有一种币值时3+1+2=6种两种币值时1元、5元有1×3=3种1元、10元有3×2=6种5元、10元有2×1=2种三种币值时3×2×1=6种共6+3+6+2+6=23种.33. 直线Ax?By?0,若从0、1、2、3、5、7六个数字中每次取两个不同的数作为Α、B的值,则表示不同直线的条数为()Α.2条B. 12条C.22条D. 25条答案:C 取出的两个数中含有0时有两条直线.取出的两个数中不含0时有Α共Α2525x2m+y2n=1 表+2=22条.34. 设集合M={K|K?3 ,K?Z}. Ρ(x ,y)是坐标平面上的点,且x,y?M 则Ρ表示平面上▁▁个点.答案:25.M={?2,?1,0,1,2}横纵坐标均5种共5×5=25个35.有386、486、586型电脑各一台,甲、乙、丙、丁四名操作人员的技术等次不同,甲、乙会操作三种型号的电脑,丙不能操作586,而丁只会操作386,今从这四名操作人员中选3人分别去操作以上电脑,则不同的选派方法有()Α. 4种B. 6种C. 8种D. 12种答案:C有丁时586486386 无丁时586486386甲丙丁甲乙丙乙丙丁甲丙乙乙甲丁乙丙甲甲乙丁乙甲丙共4+4=8种36. 从一个3×4方格中的一个顶点Α到对角顶点B的最短路线有几条.答案:从Α到B的最短路线均需7步,包括横4纵3,则从7步中取4步或3步的组合.42则从Α到B的最短路线共有C7=C3=35条.若2×5方格为C7=C5 7737. 5人排成一排,甲不站在正中间的排法种数为()Α. 24B. 48 C. 96 D. 119答案:C甲不在正中有Α14. 其余4人任选Α44则Α14?Α44=96也可Α5-Α544=9638.7人站成一排,如果甲、乙两人必须不相邻,则不同的排法种数()Α. 1440B. 3600C. 4320 D. 4800 答案:Α77-2Α6=3600639. 一名老师和4名获奖同学排一排照相留念,若老师不排在两端,则不同的排法共▁▁种.答案:72 老师A3学生Α14414A3A4?7240. 5人排一排,如果Α必须站在B的左边(Α、B可以不相邻),则不同的排法有▁▁▁种.答案:Α44+Α3?Α3+Α1312?Α3+Α3=6033× × × × × Α BBBBΑ BBBΑ BBΑ B41. 5人排成一排,甲不站在左端,乙不站在右端,共有多少种不同的排法.答案:Α5-甲在左或乙在右2A4+多减的一个Α3=7842.有Α、B、C、D、E五人并排站在一排,如果Α、B必须相邻且B在Α的右边.不同的排法▁▁种答案:4Α3=24 ×××××3543ΑB????ΑB??篇二:选修2-3二项式定理练习题二项式定理练习题1、在(x?1)4的展开式中,x的系数为.(用数字作答).1??22、在?x? 的展开式中,的系数为.(用数字作答). x?4x??3、(x3?)7的展开式中x5的系数是.(用数字作答).4、在(2x?1)的展开式中,含x2的项的系数是(用数字作答). 561x?385、?x的展开式中的系数是________(用数字作答). x?6、已知(1?x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为()5A.212 B.211C.210D.297、?x?2? 的展开式中,x2的系数等于.(用数字作答).8、在?2?x?的展开式中,x3的系数为55.(用数字作答).9、二项式(x?1)n(n?N?)的展开式中x2的系数为15,则n?()A.4 B.5C.6 D.73210、已知?的展开式中含x的项的系数为30,则a?()5A.B. C.6 D-625B.11、(x?x?y)的展开式中,xy的系数为()52(A)10(B)20 (C)30 (D)60篇三:选修2-3_排列、组合与二项式定理测试题选修2-3 排列、组合与二项式定理一、选择题:(本大题共10小题,每小题5分,共50分)1.若从集合P到集合Q={a,b,c}所有不同的映射共有81个,则从集合Q到集合P可作的不同的映射共有()A.32个B.27个C.81个D.64个2.某班举行联欢会,原定的五个节目已排出节目单,演出前又增加了两个节目,若将这两个节目插入原节目单中,则不同的插入方法总数为()A.42B.36C.30D.123.全班48名学生坐成6排,每排8人,排法总数为P,排成前后两排,每排24人,排法总数为Q,则有()A.P>QB.P=QC.P D.不能确定4.从正方体的六个面中选取3个面,其中有2个面不相邻的选法共有()种A.8 B.12C.16D.205.12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有()A.CCC4124844B.3CCC4124844C.CCCA412484433D.C12C8C4A334446.某单位准备用不同花色的装饰石材分别装饰办公楼中的办公室、走廊、大厅的地面及楼的外墙,现有编号为1~6的六种不同花色的装饰石材可选择,其中1号石材有微量的放射性,不可用于办公室内,则不同的装饰效果有()种A.350B.300C.65D.507.有8人已站成一排,现在要求其中4人不动,其余4人重新站位,则有()种重新站位的方法A.1680B.256C.360D.2808.一排九个坐位有六个人坐,若每个空位两边都坐有人,共有()种不同的坐法A.7200 B.3600 C.2400 D.1200 9.在(1x?1x3)n的展开式中,所有奇数项二项式系数之和等于1024,则中间项的二项式系数是()A. 462B. 330C.682 D.79210.在(1+ax)的展开式中,x项的系数是x项系数与x项系数的等比中项,则a的值为() A.73255B.53C.259D.253二、填空题(本大题共5小题,每小题4分,共20分)11.某公园现有A、B、C三只小船,A船可乘3人,B船可乘2人,C船可乘1人,今有三个成人和2个儿童分乘这些船只(每船必须坐人),为安全起见,儿童必须由大人陪同方可乘船,他们分乘这些船只的方法有_____________种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合与二项式定理单元练习
姓名:
一,选择题
1.从10名学生中推出3名学生参加申奥宣传活动,不同的选法种数为( )
A .(110C )3
B .110
C 19
C C .3
10P D .310C 2. 从6名短跑运动员中选取4人参加4⨯100m 接力赛,如果甲,乙两人都不跑第一棒,那么不同的参赛方案有( )
A .180种
B .240种
C .300种
D .360种 3.9)1(-x 按x 的降幂排列系数最大的项是(
)
A . 第四项和第五项
B .第五项
C .第五项和第六项
D .第六项 4.从4台A 型笔记本电脑和5台B 型笔记本电脑中任意选取3台,其中至少要有A 型和B 型笔记本电脑一台,则不同的选取方法共有( ) A .140种 B .84种 C .70种 D .35种
5.从男乒乓球运动员7人,女乒乓球运动员5人中选出4人,进行男女混合双打比赛,不同的分配方法数为( )
222
52725272
5
274
42527..4..P C C D P P C C C B P C C A ⋅⋅⋅⋅⋅⋅
6.6
)12(x
x -
的展开式中的常数项是( )
A .-20
B .20
C .-160
D .160
7. 若3322103)32(x a x a x a a x +++=+,则231220)()(a a a a +-+的值为( ) A .-1
B .1
C .0
D .2
8.设n x x )3(2
13
1
+的展开式的各项系数之和为t,其二项式系数为h,若t+h=272,则展开式的x 2项的系数是( ) A .2
1
B .1
C .2
D .3
9. 5个旅客投宿3家旅店,不同的投宿法共有( ) A .35种
B .53种
C .3
5C 种
D .35P 种
10.如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联,连线标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点A 向结点B 传递信息,信息可以分开沿不同的路线同进传递,则单位时间内传递的最大信息量为( ) A .26 B .24 C .20 D .19
二.填空题,
11.1
1
22
lim ++∞→n n n n n C C = ; 12.已知6
2)2(
p
x x -的展开式中不含x 的项是2720,则P 的值是 ;
13.有唱歌、相声、小品、哑剧、杂技5个节目,其中哑剧不排第一,相声不排
第五,则节目排演方法数为 。
14.在7)3(x -的展开式中,x 5的系数是 。
15.若1)1(23+++++=+ bx ax x x n n ,且1:3:=b a ,那么n= 。
16.商品A 、B 、C 、D 、E 在货架上排成一排,A 、B 要排在一起,C 、D 不排在一起的排法有 种。
(用数字作答)
17.在二项式11)1(-x 的展开式中,系数最小的项的系数为 。
18.设n 是一个自然数,n n x )1(+的展开式中x 3的系数为16
1
,则n= 。
19.把5名优秀高中毕业生保送到三所大学,每所至少一人,则不同的保送方案的种数是 。
20.在代数式522)1
1)(524(x
x x +--的展开式中,常数项为 。
21.若在n x
x )1
(5-的展开式中,第4项是常数项,则n= 。
22.3个人去坐8个座位,若每人左右都有空位,则不同坐法的种数是 。