高二数学排列组合二项式定理单元测试题(带答案).doc
第三章-排列、组合与二项式定理-高二数学人教B版(2019)选择性必修第二册单元检测卷(A卷)含解析

第三章 排列、组合与二项式定理——高二数学人教B 版(2019)选择性必修第二册单元检测卷(A 卷)【满分:150分】一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知322A 100A x x =,则x =( )A.11B.12C.13D.142.把3个不同的小球放入到4个不同的盒子中,所有可能的放法种数为( )A.24B.4C.34 D.433.在6(2)(1)m x y ++的展开式中,若3x y 的系数为800,则含4xy 项的系数为( )A.30B.960C.300D.3604.某学校在校门口建造一个花圃,花圃分为9个区域(如图),现要在每个区域栽种一种颜色的花,且各个区域的花颜色各不相同,其中红色、白色两种花被随机地分别种植在不同的小三角形区域,则它们在不相邻(没有公共边)区域的概率为( )5.某中学第24届篮球赛正如火如荼地进行中,全年级共20个班,每四个班一组,如1—4班为一组,5—8班为二组……进行单循环小组赛(没有并列),胜出的5个班级和从余下队伍中选出的数据最优秀的1个班级共6支球队按抽签的方式进行淘汰赛,最后胜出的三个班级再进行单循环赛,按积分的高低(假设没有并列)决出最终的冠亚季军,则此次篮球赛学校共举办的比赛场数为( )A.51B.42C.39D.366.15-的展开式中,常数项为( )A.1365B.3003C.5005D.64357.某校环保小组共有8人,该小组计划前往3个不同的景区开展活动,要求每个景区至少有2人,每个人都参与且只能去一个景区,则不同的分配方案有( )A.490种B.980种C.2940种D.5880种8.中国灯笼又统称为灯彩,是一种古老的中国传统工艺品.灯笼综合了绘画、剪纸、纸扎、刺缝等工艺,与中国人的生活息息相关.灯笼成了中国人喜庆的象征.经过历代灯彩艺人的继承和发展,形成了丰富多彩的品种和高超的工艺水平,从种类上主要有宫灯、纱灯、吊灯等类型,现将红木宫灯、檀木宫灯、楠木纱灯、花梨木纱灯、恭喜发财吊灯、吉祥如意吊灯各一个随机挂成一排,则有且仅有一种类型的灯笼相邻的概率为( )二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列四个关系式中,一定成立的是( )A.3477C C = B.222334100101C C C C +++= C.11(1)A A m m n n n +++= D.若,m n +∈N ,且2023m n <≤,则20232023C C m n <10.若2022220220122022(1)x a a x a x a x -=++++ ,则( )A.展开式中所有项的二项式系数之和为20222B.展开式中二项式系数最大的项为第1012项C.01a =D.12320220a a a a ++++= 11.第三届世界智能驾驶挑战赛在天津召开,小赵、小李、小罗、小王、小张为5名志愿者,现有翻译、安保、礼仪、服务四项不同的工作可供安排,则下列说法正确的有( )A.若5人每人可任选一项工作,则有45种不同的方案B.若每项工作至少安排1人,则有240种不同的方案C.若礼仪工作必须安排2人,其余工作安排1人,则有60种不同的方案D.已知5人身高各不相同,若安排5人拍照,前排2人,后排3人,后排要求身高最高的站中间,则有40种不同的方案三、填空题:本题共3小题,每小题5分,共15分.12.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有_________种.13.若6b ax x ⎛⎫+ ⎪⎝⎭的展开式中常数项为160,则22a b +的最小值为__________.14.第19届杭州亚运会的吉祥物是一组名为“江南忆”的机器人:“琮琮”代表世界遗产良渚古城遗址,“莲莲”代表世界遗产西湖,“宸宸”代表世界遗产京杭大运河.现有6个不同的吉祥物,其中“琮琮”、“莲莲”和“宸宸”各2个,将这6个吉祥物排成前后两排,每排3个,且每排相邻两个吉祥物名称不同,则排法种数共有__________.(用数字作答)四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知1677A 20A x x -=,x +∈N .(1)求x 的值;(2)求2012017C C x x x --++的值.16.中华文化源远流长,为了让青少年更好地了解中国的传统文化,某培训中心计划利用暑期开设“围棋”“武术”“书法”“剪纸”“京剧”“刺绣”六门体验课程.(1)现有甲、乙、丙三名学生报名参加暑期的体验课程,每人都选两门课程,甲和乙有一门共同的课程,丙和甲、乙的课程都不同,求所有选课的种数;(2)计划安排A ,B ,C ,D ,E 五名教师教这六门课程,每名教师至少任教一门课程,一门课程只由一名教师任教,每门课程都有教师任教,教师A 不任教“围棋”课程,教师B 只能任教一门课程,求所有课程安排的种数.17.已知nx ⎛ ⎝的展开式中只有第五项的二项式系数最大.(1)求该展开式中有理项的项数;(2)求该展开式中系数最大的项.18.在下面两个条件中任选一个,补充在后面问题中的横线上,并完成解答.条件①:展开式前三项的二项式系数的和等于37;条件②:第3项与第7项的二项式系数相等.问题:在二项式(21)n x -的展开式中,已知__________.(1)求展开式中二项式系数最大的项;(2)设121210(21)n n n n n x a x a x a x a x a ---=+++++ ,求123n a a a a ++++ 的值;(3)求11(21)n x x ⎛⎫-- ⎪⎝⎭的展开式中2x 的系数.19.用0,1,2,3,4,5,6这七个数字,完成下面的问题.(1)用以上七个数字能组成多少个三位偶数(允许有重复数字)?(2)用以上七个数字能组成多少个无重复数字的能被5整除的四位数?221y b+=,其中,{0,1,2,3,4,5,6}a b ∈,则满足焦距不小于8的不同椭圆方程有多少个?答案以及解析1.答案:C解析:根据题意得2x ≥.由322A 100A x x =得2(21)(22)100(1)x x x x x --=-,整理可得2125x -=,解得13x =,经检验满足题意.2.答案:C解析:第1个小球放入盒子中有4种放法;第2个小球放入盒子中也有4种放法;第3个小球放入盒子中也有4种放法.只要把这3个小球放完,就做完了这件事情,所以由分步乘法计数原理可得共有34种放法.3.答案:B解析:由题意可知3316C 2C 800m⨯⨯=,即160800m =,解得5m =,所以含4xy 项的系数为15465C 2C 960⨯⨯=.故选B.4.答案:D解析:每个区域种不同颜色的花,有99A 种方法.这9个区域中相邻的区域有9个(13,23,34,26,48,56,67,78,89),所以红色、白色种在相邻区域有27279A A ⨯⨯种方法,所以红色、白色在不相邻(没有公共边)区域的概率为2727999A A 1A ⨯⨯-=5.答案:D解析:先进行单循环赛,有245C 30=场,胜出的5个班级和从余下队伍中选出的数据最优秀的1个班级共6支球队按抽签的方式进行淘汰赛,6支球队打3场,决出最后胜出的三个班,最后3个班再进行单循环赛,有23C 3=场,所以共打了303336++=场.故选D.6.答案:C解析:二项式15展开式的通项5515611515C (1)C rr r r r r r T x--+⎛==- ⎝⋅,r ∈N ,.由得6r =,此时66715(1)C 5005T =-=,15r ≤5506r -=所以所求常数项为5005.故选C.7.答案:C210=种分配方案;280=种分配方案.第二步:将3组成员分配到3个不同的景区开展环保活动,共有33A 6=种分配方案.故符合要求的分配方案共有(210280)62940+⨯=种,故选C.8.答案:A解析:设红木宫灯、檀木宫灯分别为1a ,2a ,楠木纱灯、花梨木纱灯分别为1b ,,恭喜发财吊灯、吉祥如意吊灯分别为,.先求仅,相邻的种数,把12a a 看作一个元素,当排在首或尾时,不同的排法有种;当排在五个位置中第二或第四位时,不同的排法有种;当排在第三个位置时,不同的排法有种,故仅相邻共有12396N N N ++=种排法.同理得仅12b b 相邻,仅12c c 相邻的2种情况,也都有96种排法.所以有且仅有一种类型的灯笼相邻的概率669632A 5P ⨯==.故选A.9.答案:AC解析:由组合数性质知3477C C =一定成立,A 正确;222322232233410033410044100101C C C C C C C 1C C C 1C 1+++=++++-=+++-==- ,B 错误;11(1)A (1)(1)(1)(1)(1)[(1(1)1])A m m n n n n n n n m n n n n m +++=+--+=+-+-++= ,C 正确;由组合数性质知n +∈N 且2023n ≤,当11011n ≤≤时,2023C n 单调递增,当10122023n ≤≤时,2023C n 单调递减,因此D 错误.故选AC.10.答案:ABC2b 1c 2c 1a 2a 12a a ()2111242A C C 232N =⨯⨯⨯=12a a ()1122422C C A 232N =⨯⨯⨯=12a a 11222322222C C A A A 32N =⨯⨯=12a a解析:展开式中所有项的二项式系数和为0120222022202220222022C C C 2+++= ,故A 正确;展开式中第1012项的二项式系数为10112022C ,是所有项的二项式系数中的最大值,故B 正确;令0x =可得01a =,故C 正确;令1x =可得0120220a a a +++= ,12320221a a a a ∴++++=- ,故D 错误.故选ABC.11.答案:BCD解析:对于A ,若5人每人可任选一项工作,则每人都有4种选法,则5人共有54种选法,因此A 错误;对于B ,分两步分析,先将5人分为4组,再将分好的4组安排四项不同的工作,有2454C A 240=(种)分配方法,因此B 正确;对于C ,分两步分析,在5人中任选2人,安排礼仪工作,有25C 10=(种)选法,再将其余3人安排余下的三项工作,有33A 6=(种)方法,则由分步乘法计数原理可得共有10660⨯=(种)不同的方案,因此C 正确;对于D ,分两步分析,在5人中任选2人,安排在第一排有25A 20=(种)排法,其余3人安排在第二排,要求身高最高的站中间,剩下两人有2种排法,则有20240⨯=(种)不同的方案,因此D 正确.故选BCD.12.答案:36解析:此题分两步完成:第一步,将4名同学分成3组,有种分法;第二步,将所分3组进行排列,有种排法.所以不同的安排方法共有(种).13.答案:4解析:二项式展开式的通项为6662166C ()C kk k k k k kk b T ax a b x x ---+⎛⎫== ⎪⎝⎭⋅,令620k -=,则3k =,所以63336C 160a b -=,即3336C 160a b =,所以2ab =.因为2224a bab +≥=,当且仅当a b ==的最小值为4.14.答案:336解析:由题意可分两种情形:24C 33A 2343C A 36=6b ax x ⎛⎫+ ⎪⎝⎭22b +①前排含有两种不同名称的吉祥物,首先,前排从“琮琮”“莲莲”和“宸宸”中取两种,其中一种取两个,另一种选一个,有1122223222C C C C A 24=种排法;其次,后排有22A 2=种排法,故共有24248⨯=种不同的排法;②前排含有三种不同名称的吉祥物,有11132223C C C A 48=种排法;后排有33A 6=种排法,此时共有486288⨯=种排法;因此,共有48288336+=种排法,故答案为:336.15.答案:(1)3x =(2)1330解析:(1)由已知得6!7!720(6)!(8)!x x ⨯=⨯--,化简得215360x x -+=,解得3x =或12x =.又因为6,17,x x ≤⎧⎨-≤⎩所以3x =.(2)将3x =代入得1723232020202021C C C C C 1330+=+==.16.答案:(1)360种(2)1140种解析:(1)第一步,先将甲和乙的不同课程排好,有26A 种排法;第二步,将甲和乙的相同课程排好,有14C 种排法;第三步,因为丙和甲、乙的课程都不同,所以丙的排法有23C 种.因此,所有选课的种数为212643A C C 360⨯⨯=.(2)①当A 只任教1门时,先排A 任教课程,有15C 种,再从剩下的5门中排B 的任教课程,有15C 种,接下来剩余4门中必有2门为同一名老师任教,分三组全排列,共有2343C A 种.所以当A 只任教1门时,共有1123554343C C C A 5532190021⨯=⨯⨯⨯⨯⨯=⨯种;②当A 任教2门时,先选A 任教的2门有25C 种,剩下4位教师任教四门课程,这样共有245454C A 432124021⨯=⨯⨯⨯⨯=⨯种.所以,符合题意的课程安排共有9002401140+=种.综上,教师A 不任教“围棋”,教师B 只能任教一门课程的课程安排方案共有1140种.17.答案:(1)5项(2)17921x -15=,解得8n =,则8x ⎛+ ⎝的展开式的通项为882188C 2C 2k k k k k k k T x x x--+=⨯⨯=⨯⨯8k ≤≤,k ∈N .求展开式中的有理项,需令382k-∈Z ,所以0,2,4,6,8k =,所以有理项共有5项.(2)设第1k +项的系数最大,则11881188C 2C 2,C 2C 2,k k k k k kk k --++⎧⨯≥⨯⎨⨯≥⨯⎩即21,912,81k k k k ⎧≥⎪⎪-⎨⎪≥⎪-+⎩解得56k ≤≤,因为k ∈N ,所以5k=或6k =.当5k =时,155268C 21792T x =⨯⨯=当6k =时,661178C 21792T x x --=⨯⨯=,所以展开式中系数最大的项为17921x -.18.答案:(1)41120x (2)0(3)560解析:选择①,由012C C C 37n n n ++=,解得8n =.选择②,由26C C n n =,解得8n =.(1)展开式中二项式系数最大的项为444458C (2)(1)1120T x x =⨯⨯-=.(2)令1x =,则80128(21)1a a a a ++++=-= ,令0x =,则80(01)1a =-=,所以12380a a a a ++++= .(3)因为888111(21)(21)(21)x x x x x ⎛⎫--=--- ⎪⎝⎭,所以811(21)x x ⎛⎫-- ⎪⎝⎭的展开式中含2x 的项为62653528811C (2)(1)C (2)(1)560x x x x ⎛⎫⨯-+-⨯-= ⎪⎝⎭,所以展开式中2x 的系数为560.19.答案:(1)168个(2)220个(3)14个解析:(1)七个数字0,1,2,3,4,5,6中,是偶数的为0,2,4,6,是奇数的为1,3,5,组成的三位偶数允许有重复数字,则百位数字是0的情况有4728⨯=种,所以允许有重复数字的三位偶数有2474719628168⨯-⨯=-=个.(2)组成无重复数字的能被5整除的四位数,末尾数字只能为0或5.当末尾数字为0时,有36A 654120=⨯⨯=个;当末尾数字为5时,有255A 554100=⨯⨯=个.所以组成无重复数字的能被5整除的四位数有120100220+=个.221y b+=,其中,{0,1,2,3,4,5,6}a b ∈,知a b ≠且0ab ≠.当a b >时,由28c ≥,得8≥整理得2216b a ≤-,所以5a =或6,若5a =,则1,2,3b =,此时满足条件的椭圆有3个;若6a =,则1,2,3,4b =,此时满足条件的椭圆有4个.所以满足条件的椭圆有347+=个,同理,当a b <时,满足条件的椭圆也有7个.综上,焦距不小于8的不同椭圆方程有7714+=个.。
排列组合+二项式定理(含答案)

高二数学:排列组合二项式定理一、选择题(本大题共16小题,共80.0分)1.如图,花坛内有五个花池,有五种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则最多有几种栽种方案( )A. 180种B. 240种C. 360种D. 420种【答案】D【解析】解:若5个花池栽了5种颜色的花卉,方法有A55种,若5个花池栽了4种颜色的花卉,则2、4两个花池栽同一种颜色的花;或者3、5两个花池栽同一种颜色的花,方法有2A54种,若5个花池栽了3种颜色的花卉,方法有A53种,故最多有A55+2A54+A53=420种栽种方案,故选D.若5个花池栽了5种颜色的花卉,方法有A55种,若5个花池栽了4种颜色的花卉,方法有2A54种,若5个花池栽了3种颜色的花卉,方法有A53种,相加即得所求.本题主要考查排列、组合以及简单计数原理的应用,体现了分类讨论的数学思想,属于中档题.2.甲、乙、丙等6人排成一排,且甲、乙均在丙的同侧,则不同的排法共有( )种(用数字作答).A. 720B. 480C. 144D. 360【答案】B【解析】解:甲、乙、丙等六位同学进行全排可得A66=720种,∵甲乙丙的顺序为甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6种,∴甲、乙均在丙的同侧,有4种,∴甲、乙均在丙的同侧占总数的46=23∴不同的排法种数共有23×720=480种.故选:B.甲、乙、丙等六位同学进行全排,再利用甲、乙均在丙的同侧占总数的46=23,即可得出结论.本题考查排列、组合及简单计数问题,考查学生的计算能力,比较基础.3.从1,3,5中选2个不同数字,从2,4,6,8中选3个不同数字排成一个五位数,则这些五位数中偶数的个数为( )A. 5040B. 1440C. 864D. 720【答案】C【解析】解;先任选一个偶数排在末尾,共有4种选法,其它2个奇数的选法共有3种,剩余2个偶数的选法共有3种,这4个数全排列,共有4×3×2×1=24种方法,共有则这些五位数中偶数的个数为4×3×3×24= 864,故选:C.先按要求排末尾,再排其它,根据分步计数原理可得.本题考查加法原理和乘法原理综合运用,考查学生分析解决问题的能力,属于中档题.4.从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为( )A. 48B. 72C. 90D. 96【答案】D【解析】解:根据题意,从5名学生中选出4名分别参加竞赛,分2种情况讨论:①、选出的4人没有甲,即选出其他4人即可,有A44=24种情况,②、选出的4人有甲,由于甲不能参加生物竞赛,则甲有3种选法,在剩余4人中任选3人,参加剩下的三科竞赛,有A43=24种选法,则此时共有3×24=72种选法,则有24+72=96种不同的参赛方案;故选:D.根据题意,分2种情况讨论选出参加竞赛的4人,①、选出的4人没有甲,②、选出的4人有甲,分别求出每一种情况下分选法数目,由分类计数原理计算可得答案.本题考查排列、组合的实际应用,注意优先考虑特殊元素.5.小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为( )A. 60B. 72C. 84D. 96【答案】C【解析】解:根据题意,分3种情况讨论:①、若小明的父母的只有1人与小明相邻且父母不相邻时,先在其父母中选一人与小明相邻,有C21=2种情况,将小明与选出的家长看成一个整体,考虑其顺序有A22=2种情况,当父母不相邻时,需要将爷爷奶奶进行全排列,将整体与另一个家长安排在空位中,有A22×A32=12种安排方法,此时有2×2×12=48种不同坐法;②、若小明的父母的只有1人与小明相邻且父母相邻时,将父母及小明看成一个整体,小明在一端,有2种情况,考虑父母之间的顺序,有2种情况,则这个整体内部有2×2=4种情况,将这个整体与爷爷奶奶进行全排列,有A33=6种情况,此时有2×2×6=24种不同坐法;③、小明的父母都与小明相邻,即小明在中间,父母在两边,将3人看成一个整体,考虑父母的顺序,有A22=2种情况,将这个整体与爷爷奶奶进行全排列,有A33=6种情况,此时,共有2×6=12种不同坐法;则一共有48+24+12=84种不同坐法;故选:C.根据题意,分3种情况讨论:①、小明的父母的只有1人与小明相邻且父母不相邻,②、小明的父母的只有1人与小明相邻且父母相邻,③、小明的父母都与小明相邻,分别求出每一种情况下的排法数目,由分类计数原理计算可得答案.本题考查排列、组合的应用,关键是根据题意,进行不重不漏的分类讨论.6.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(A,B可以不相邻),那么不同的排法共有( )A. 24种B. 60种C. 90种D. 120种【答案】B【解析】解:根据题意,使用倍分法,五人并排站成一排,有A55种情况,而其中B站在A的左边与B站在A的右边是等可能的,则其情况数目是相等的,×A55=60,则B站在A的右边的情况数目为12故选B.根据题意,首先计算五人并排站成一排的情况数目,进而分析可得,B 站在A 的左边与B 站在A 的右边是等可能的,使用倍分法,计算可得答案.本题考查排列、组合的应用,注意使用倍分法时,注意必须保证其各种情况是等可能的.7. C 74+C 75+C 86等于( ) A. C 95B. C 96C. C 87D. C 97【答案】B【解析】解:根据组合数公式C n+1m =C n m−1+C n m得,C 74+C 75+C 86=(C 74+C 75)+C 86 =C 85+C 86 =C 96. 故选:B .利用组合数公式C n+1m =C n m−1+C n m,进行化简即可.本题考查了组合数公式C n+1m =C n m−1+C n m的逆用问题,是基础题目.8. 9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品来检查,至少有两件一等品的抽取方法是( )A. C 42⋅C 52B. C 42+C 43+C 44C. C 42+C 52D. C 42⋅C 52+C 43⋅C 51+C 44⋅C 50【答案】D【解析】解:一共有4件一等品,至少两件一等品分为2件,3件,4件,第一类,一等品2件,从4件任取2件,再从3件二等品或2件三等品共5件产品中任取2件,有C 42⋅C 52, 第二类,一等品3件,从4件任取3,再从3件二等品或2件三等品共5件产品中任取1,有C 43⋅C 51,第二类,一等品4件,从4件中全取,有C 44⋅C 50, 根据分类计数原理得,至少有两件一等品的抽取方法是C 42⋅C 52+C 43⋅C 51+C 44⋅C 50. 故选:D .利用分类计数原理,一共有4件一等品,至少两件一等品分为2件,3件,4件,然后再按其它要求抽取. 本题主要考查了分类计数原理,如何分类是关键,属于基础题.9. 4名同学争夺三项冠军,冠军获得者的可能种数是( )A. 43B. A 43C. C 43D. 4 【答案】A【解析】解:每一项冠军的情况都有4种,故四名学生争夺三项冠军,获得冠军的可能的种数是43, 故选:A .每个冠军的情况都有4种,共计3个冠军,故分3步完成,根据分步计数原理,运算求得结果. 本题主要考查分步计数原理的应用,属于基础题.10. 某班班会准备从含甲、乙的7人中选取4人发言,要求甲、乙两人至少有一人参加,且若甲、乙同时参加,则他们发言时顺序不能相邻,那么不同的发言顺序有( ) A. 720种 B. 520种 C. 600种 D. 360种 【答案】C【解析】解:分两类:第一类,甲、乙两人只有一人参加,则不同的发言顺序有C 21C 53A 44种;第二类:甲、乙同时参加,则不同的发言顺序有C 22C 52A 22A 32种.共有:C 21C 53A 44+C 22C 52A 22A 32=600(种). 故选:C .分两类:第一类,甲、乙两人只有一人参加,第二类:甲、乙同时参加,利用加法原理即可得出结论. 本题考查排列、组合的实际应用,正确分类是关键.11. 现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两部分不能用同一种颜色,则不同的着色方法共有 ( ) A. 144种 B. 72种 C. 64种 D. 84种 【答案】D【解析】解:由题意知本题是一个分步计数问题, 需要先给最上面金着色,有4种结果, 再给榜着色,有3种结果,给题着色,与榜同色,给名着色,有3种结果;与榜不同色,有2种结果,给名着色,有2种结果 根据分步计数原理知共有4×3×(3+2×2)=84种结果, 故选D .需要先给最上面金着色,有4种结果,再给榜着色,有3种结果,给题着色,与榜同色,给名着色,有3种结果;与榜不同色,有2种结果,给名着色,有2种结果,根据分步计数原理得到结果.本题考查计数原理的应用,解题的关键是理解“公共边的两块区域不能使用同一种颜色,”根据情况对C 处涂色进行分类,这是正确计数,不重不漏的保证.12. 六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A. 192种B. 216种C. 240种D. 288种 【答案】B【解析】解:最左端排甲,共有A 55=120种,最左端只排乙,最右端不能排甲,有C 41A 44=96种, 根据加法原理可得,共有120+96=216种. 故选:B .分类讨论,最左端排甲;最左端只排乙,最右端不能排甲,根据加法原理可得结论. 本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.13. 有黑、白、红三种颜色的小球各5个,都分别标有数字1,2,3,4,5,现取出5个,要求这5个球数字不相同但三种颜色齐备,则不同的取法种数有( ) A. 120种 B. 150种 C. 240种 D. 260种 【答案】B【解析】解:根据题意,取出的5个球有三种颜色且数字不同, 分2步进行分析:①,先把取出的5个球分成3组,可以是3,1,1,也可以是1,2,2; 若分成3,1,1的三组,有C 53C 21C 11A 22=10种分组方法; 若分成1,2,2的三组,有C 51C 42C 22A 22=15种分组方法;则共有10+15=25种分组方法,②,让三组选择三种不同颜色,共有A 33=6种不同方法 则共有25×6=150种不同的取法; 故选:B .因为要求取出的5个球分别标有数字1,2,3,4,5且三种颜色齐备,所以肯定是数字1,2,3,4,5各取一个,分2步分析:先把5个球分成三组,再每组选择一种颜色,由分步计数原理计算可得答案. 本题考查分步计数原理的应用,注意题目中“5个球数字不相同但三种颜色齐备”的要求.14. 从4双不同鞋中任取4只,结果都不成双的取法有____种.( )A. 24B. 16C. 44D. 384 【答案】B【解析】解:取出的四只鞋不成双,可分四步完成,依次从四双鞋子中取一只,取四次,故总的取法有2×2×2×2=16种, 故选B .取出的四只鞋不成双,可分四步完成,依次从四双鞋子中取一只,取四次,利用乘法原理可得结论.本题考查排列、组合及简单计数问题,考查乘法原理的运用,比较基础.15.某公共汽车上有10位乘客,沿途5个车站,乘客下车的可能方式有( )种.A. 510B. 105C. 50D. A105【答案】A【解析】解:根据题意,公共汽车沿途5个车站,则每个乘客有5种下车的方式,则10位乘客共有510种下车的可能方式;故选:A.根据题意,分析可得每个乘客有5种下车的方式,由分步计数原理计算可得答案.本题考查排列、组合的实际应用,16.从0,1,2,3,4中选取三个不同的数字组成一个三位数,其中奇数有( )A. 18个B. 27个C. 36个D. 60个【答案】A【解析】解:先从1,3中选一个为个位数字,再剩下的3个(不包含0)取1个为百位,再从剩下3个(包含0)取一个为十位,故有2×3×3=18个,故答案为:18.先从1,3中选一个为个位数字,再剩下的3个(不包含0)取1个为百位,再从剩下3个(包含0)取一个为十位,根据分步计数原理可得.本题考查了分步计数原理,关键是分步,属于基础题.二、填空题(本大题共9小题,共45.0分)17.(1+2x)5的展开式中含x2项的系数是______ .(用数字作答)【答案】40【解析】解:由二项式定理的通项公式T r+1=C n r a n−r b r可设含x2项的项是T r+1=C5r15−r(2x)r=2r C5r x r,可知r=2,所以系数为22C52=40所以答案应填40本题是求系数问题,故可以利用通项公式T r+1=C n r a n−r b r来解决,在通项中令x的指数幂为2可求出含x2是第几项,由此算出系数为40本题主要考查二项式定理中通项公式的应用,属于基础题型,难度系数0.9.一般地通项公式主要应用有求常数项,有理项,求系数,二项式系数等.18.(x−1x )(2x+1x)5的展开式中,常数项为______.【答案】−40【解析】解:(x−1x )(2x+1x)5展开式中常数项是(2x+1x )5展开式中的1x项与x的乘积,加上含x项与−1x的乘积;由(2x+1x)5展开式的通项公式为T r+1=C5r⋅(2x)5−r⋅(1x)r=25−r⋅C5r⋅x5−2r,令5−2r=−1,解得r=3,∴T4=22⋅C53⋅1x =40x;令5−2r=1,解得r=2,∴T3=23⋅C52⋅x=80x;所求展开式的常数项为40 x ⋅x+80x⋅(−1x)=40−80=−40.故答案为:−40.根据(x−1x )(2x+1x)5展开式中常数项是(2x+1x)5展开式中的1x项与x的乘积,加上x项与−1x的乘积;利用(2x+1x)5展开式的通项公式求出对应的项即可.本题考查了二项式定理的应用问题,是基础题.19.小明、小刚、小红等5个人排成一排照相合影,若小明与小刚相邻,且小明与小红不相邻,则不同的排法有______ 种.【答案】36【解析】解:根据题意,分2种情况讨论:①、小刚与小红不相邻,将除小明、小刚、小红之外的2人全排列,有A22种安排方法,排好后有3个空位,将小明与小刚看成一个整体,考虑其顺序,有A22种情况,在3个空位中,任选2个,安排这个整体与小红,有A32种安排方法,有A22×A32×A22=24种安排方法;②、小刚与小红相邻,则三人中小刚在中间,小明、小红在两边,有A22种安排方法,将三人看成一个整体,将整个整体与其余2人进行全排列,有A33种安排方法,此时有A33×A22=12种排法,则共有24+12=36种安排方法;故答案为:36.根据题意,分2种情况讨论:①、小刚与小红不相邻,②、小刚与小红相邻,由排列、组合公式分别求出每一种情况的排法数目,由分类加法原理计算可得答案.本题考查排列、组合的运用,注意特殊元素优先考虑,不同的问题利用不同的方法解决如相邻问题用捆绑,不相邻问题用插空等方法.20.(1−3x)7的展开式中x2的系数为______ .【答案】7【解析】解:由于(1−3x)7的展开式的通项公式为T r+1=C7r⋅(−1)r⋅x r3,令r3=2,求得r=6,可得展开式中x2的系数为C76=7,故答案为:7.在二项展开式的通项公式中,令x的幂指数等于2,求出r的值,即可求得展开式中x2的系数.本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于基础题21.已知C203x=C20x+4,则x=______ .【答案】2或4【解析】解:∵C203x=C20x+4,则3x=x+4,或3x+x+4=20,解得x=2或4.故答案为:2或4.由C203x=C20x+4,可得3x=x+4,或3x+x+4=20,解出即可得出.本题考查了组合数的计算公式、方程的解法,考查了推理能力与计算能力,属于基础题.22.从4台甲型和5台乙型电视机中任意取出三台,其中至少要有甲型和乙型电视机各1台,则不同的取法共有______ 种.【答案】70【解析】解:甲型电视机2台和乙型电视机1台,取法有C42C51=30种;甲型电视机1台和乙型电视机2台,取法有C41C52=40种;共有30+40=70种.故答案为:70任意取出三台,其中至少要有甲型和乙型电视机各1台,有两种方法,一是甲型电视机2台和乙型电视机1台;二是甲型电视机1台和乙型电视机2台,分别求出取电视机的方法,即可求出所有的方法数.本题考查组合及组合数公式,考查分类讨论思想,是基础题.23.一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个小正方体抛掷2次,则向上的数之积的数学期望是______ .【答案】49【解析】解:一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个小正方体抛掷2次,向上的数之积可能为ξ=0,1,2,4,P(ξ=0)=C31C31+C31C31+C31C31C61C61=34,P(ξ=1)=C21C21C61C61=19,P(ξ=2)=C21C11+C11C21C61C61=19,P(ξ=4)=C11C11C61C61=136,∴Eξ=19+29+436=49.故答案为:49.一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个骰子掷两次得到结果有三种情况,使得它们两两相乘,得到变量可能的取值,结合事件做出概率和期望.数字问题是概率中经常出现的题目,一般可以列举出要求的事件,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的可以借助于排列数和组合数来表示.24.把5本不同的书全部分给4个学生,每个学生至少一本,不同的分发种数为______.(用数字作答)【答案】240【解析】解:由题意知先把5本书中的两本捆起来看做一个元素共有C52,这一个元素和其他的三个元素在四个位置全排列共有A44,∴分法种数为C52⋅A44=240.故答案为:240.由题意知先把5本书中的两本捆起来看做一个元素,这一个元素和其他的三个元素在四个位置全排列,根据分步计数原理两个过程的结果数相乘得到结果.排列组合问题在几何中的应用,在计算时要求做到,兼顾所有的条件,先排约束条件多的元素,做的不重不漏,注意实际问题本身的限制条件.25.从4名男同学和6名女同学中选取3人参加某社团活动,选出的3人中男女同学都有的不同选法种数是______(用数字作答)【答案】96【解析】解:根据题意,在4名男同学和6名女同学共10名学生中任取3人,有C103=120种,其中只有男生的选法有C43=4种,只有女生的选法有C63=20种则选出的3人中男女同学都有的不同选法有120−4−20=96种;故答案为:96.根据题意,用间接法分析:首先计算在10名学生中任取3人的选法数目,再分析其中只有男生和只有女生的选法数目,分析即可得答案.本题考查排列、组合的应用,注意利用间接法分析,可以避免分类讨论.三、解答题(本大题共5小题,共60.0分)26.已知(2x√x)n展开式前两项的二项式系数的和为10.(1)求n的值.(2)求出这个展开式中的常数项.【答案】解:(1)∵(2x√x)n展开式前两项的二项式系数的和为10∴C n0+C n1=10,解得n=9;(2)∵(2x√x )n展开式的通项T r+1=C n r(2x)n−r(√x)r=2n−r C n r x n−3r2----8分∴令n−3r2=0且n=9得r=6,∴(2x+√x)n展开式中的常数项为第7项,即T7=29−6⋅C96=672.【解析】(1)根据二项式展开式得到前两项的系数,根据系数和解的n的值,(2)利用展开式的通项,求常数项,只要使x的次数为0即可.本题主要考查了二项式定理,利用好通项,属于基础题.27.已知n为正整数,在二项式(12+2x)n的展开式中,若前三项的二项式系数的和等于79.(1)求n的值;(2)判断展开式中第几项的系数最大?【答案】解:(1)根据题意,C n0+C n1+C n2=79,即1+n+n(n−1)2=79,整理得n2+n−156=0,解得n=12或n=−13(不合题意,舍去)所以n=12;…(5分)(2)设二项式(12+2x)12=(12)12⋅(1+4x)12的展开式中第k+1项的系数最大,则有{C12k⋅4k≥C12k−1⋅4k−1 C12k⋅4k≥C12k+1⋅4k+1,解得9.4≤k≤10.4,所以k=10,所以展开式中第11项的系数最大.…(10分)【解析】(1)根据题意列出方程C n0+C n1+C n2=79,解方程即可;(2)设该二项式的展开式中第k+1项的系数最大,由此列出不等式组,解不等式组即可求出k的值.本题考查了二项式定理的应用问题,也考查了转化思想与不等式组的解法问题,是综合性题目.28.已知二项式(1+√2x)n=a0+a1x+a2x2+⋯+a n x n(x∈R,n∈N)(1)若展开式中第五项的二项式系数是第三项系数的3倍,求n的值;(2)若n为正偶数时,求证:a0+a2+a4+a6+⋯+a n为奇数.(3)证明:C n1+2C n2⋅2+3C n3⋅22+⋯+nC n n⋅2n−1=n⋅3n−1(n∈N+)【答案】解:(1)由题意可得C n 4=3⋅C n 2(√2)2,∴n =11.(2)证明:当n 为正偶数时,则a 0+a 2+a 4+a 6+⋯+a n =1+2C n 2+22⋅C n 4+⋯+2n2⋅C n n , 除第一项为奇数外,其余的各项都是偶数,故1+2C n 2+22⋅C n 4+⋯+2n2⋅C nn 为奇数, 即a 0+a 2+a 4+a 6+⋯+a n 为奇数.(3)∵kC n k =n ⋅C n−1k−1, ∴C n 1+2C n 2⋅2+3C n 3⋅22+⋯+nC n n ⋅2n−1=n(C n−10+C n−11×2+C n−12×22+⋯+C n−1n−1×2n−1) =n ⋅(1+2)n−1=n ⋅3n−1.【解析】(1)直接利用条件可得C n 4=3⋅C n 2(√2)2,由此求得n 的值.(2)当n 为正偶数时,则a 0+a 2+a 4+a 6+⋯+a n =1+2C n 2+22⋅C n 4+⋯+2n2⋅C nn ,除第一项为奇数外,其余的各项都是偶数,从而证得结论.(3)由kC n k =n ⋅C n−1k−1,可得C n 1+2C n 2⋅2+3C n 3⋅22+⋯+nC n n ⋅2n−1=n(C n−10+C n−11×2+C n−12×22+⋯+C n−1n−1×2n−1),再利用二项式定理证得所给的等式成立.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.29. 从5名男生和4名女生中选出4人去参加座谈会,问:(Ⅰ)如果4人中男生和女生各选2人,有多少种选法?(Ⅱ)如果男生中的甲与女生中的乙至少要有1人在内,有多少种选法? (Ⅲ)如果4人中必须既有男生又有女生,有多少种选法?【答案】解:(Ⅰ)根据题意,从5名男生中选出2人,有C 52=10种选法,从4名女生中选出2人,有C 42=6种选法,则4人中男生和女生各选2人的选法有10×6=60种;(Ⅱ)先在9人中任选4人,有C 94=126种选法,其中甲乙都没有入选,即从其他7人中任选4人的选法有C 74=35种, 则甲与女生中的乙至少要有1人在内的选法有126−35=91种;(Ⅲ)先在9人中任选4人,有C 94=126种选法,其中只有男生的选法有C 51=5种,只有女生的选法有C 41=1种, 则4人中必须既有男生又有女生的选法有126−5−1=120种.【解析】(Ⅰ)根据题意,分别计算“从5名男生中选出2人”和“从4名女生中选出2人”的选法数目,由分步计数原理计算可得答案;(Ⅱ)用间接法分析:先计算在9人中任选4人的选法数目,再排除其中“甲乙都没有入选”的选法数目,即可得答案;(Ⅲ)用间接法分析:先计算在9人中任选4人的选法数目,再排除其中“只有男生”和“只有女生”的选法数目,即可得答案.本题考查排列、组合的应用,涉及分步、分类计数原理的应用,(Ⅱ)(Ⅲ)中可以选用间接法分析.30. 某次文艺晚会上共演出8个节目,其中2个唱歌、3个舞蹈、3个曲艺节目,求分别满足下列条件的排节目单的方法种数:(1)一个唱歌节目开头,另一个压台; (2)两个唱歌节目不相邻;(3)两个唱歌节目相邻且3个舞蹈节目不相邻.【答案】解:(1)先排歌曲节目有A 22种排法,再排其他节目有A 66种排法,所以共有A 22A 66=1440种排法.(2)先排3个舞蹈节目,3个曲艺节目,有A 66种排法,再从其中7个空(包括两端)中选2个排歌曲节目,有A 72种插入方法,所以共有A 66A 72=30240种排法.(3)两个唱歌节目相邻,用捆绑法,3个舞蹈节目不相邻,利用插空法,共有A 44A 53A 22=2880种. 【解析】(1)先排歌曲节目,再排其他节目,利用乘法原理,即可得出结论; (2)先排3个舞蹈,3个曲艺节目,再利用插空法排唱歌,即可得到结论;(3)两个唱歌节目相邻,用捆绑法,3个舞蹈节目不相邻,利用插空法,即可得到结论.本题考查排列组合知识,考查学生利用数学知识解决实际问题的能力,属于中档题.。
排列组合和二项式定理测试卷及答案(4套)(已上传)

排列组合与二项式定理(1)【基本知识】1.甲班有四个小组,每组10人,乙班有3个小组,每组15人,现要从甲、乙两班中选1人担任校团委部,不同的选法种数为 852.6人站成一排,甲、乙 、丙三人必须站在一起的排列种数为 1444.用二项式定理计算59.98,精确到1的近似值为( 99004 )5.若2)nx 的项是第8项,则展开式中含1x的项是第 9项6.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 34种7.已知8()a x x-展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是 1或288.某城市新修建的一条道路上有12盏路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有 38A 种9.设34550500150(1)(1)(1)(1)x x x x a a x a x ++++++++=+++L L ,则3a 的值是 451C10.不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁两种不能排在一起,则不同的排法种数共有____24______.11.102(2)(1)x x +-的展开式中10x 的系数为____179______.(用数字作答)若1531-++++n n n n n C C C C ΛΛ=32,则n = 612.用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第____10_____个数。
13、体育老师把9个相同的足球放入编号为1、2、3的三个箱子里,要求每个箱子放球的个数不少于其编号,则不同的放法有___10___种。
三、解答题15、已知n 展开式中偶数项的二项式系数之和为256,求x 的 系数.【解】由二项式系数的性质:二项展开式中偶数项的二项式系数之和为2n -1,得n =9,由通项92923199C (C (2)r rrrrr r r T x---+==-g g g ,令92123r r --=,得r =3,所以x 的二项式为39C =84, 而x 的系数为339C (2)84(8)672-=⨯-=-g.16、有5名男生,4名女生排成一排:(1)从中选出3人排成一排,有多少种排法?(2)若男生甲不站排头,女生乙不站在排尾,则有多少种不同的排法? (3)要求女生必须站在一起,则有多少种不同的排法? (4)若4名女生互不相邻,则有多少种不同的排法?【解】(1)39504A = (2)287280 (3)17280 (4)211217.从7个不同的红球,3 个不同的白球中取出4个球,问:(1)有多少种不同的取法?(2)其中恰有一个白球的取法有多少种? (3)其中至少有现两个白球的取法有多少种? 【解】(1)210 (2)105 (3)7018、 已知n展开式中偶数项二项式系数和比()2na b +展开式中奇数项二项式系数和小120,求:(1)n展开式中第三项的系数;(2)()2na b +展开式的中间项。
排列组合及二项式定理试题和答案

排列组合、二项式定理一、选择题:1.5人排一个5天的值日表,每天排一人值日,每人可以排多天或不排,但相邻两天不能排同一人,值日表排法的总数为 A .120B .324C .720D .12802.一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是 A .40B .74C .84D .2003.以三棱柱的六个顶点中的四个顶点为顶点的三棱锥有 A .18个B .15个C .12个D .9个4.从一架钢琴挑出的十个音键中,分别选择3个,4个,5个,…,10个键同时按下,可发出和弦,若有一个音键不同,则发出不同的和弦,则这样的不同的和弦种数是 A .512B .968C .1013D .10245.如果()n x x x +的展开式中所有奇数项的系数和等于512,则展开式的中间项是 A .6810C xB .5710C xxC .468C xD .6811C xx6.用0,3,4,5,6排成无重复字的五位数,要求偶数字相邻,奇数字也相邻,则这样的五位数的个数是 A .36B .32C .24D .207.若n 是奇数,则112217777n n n n n n n C C C ---+++⋯⋯+被9除的余数是A .0B .2C .7D .88.现有一个碱基A ,2个碱基C ,3个碱基G ,由这6个碱基组成的不同的碱基序列有 A .20个B .60个C .120个D .90个9.某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个节目插入原节目单中,那么不同的插法种数为 A .504B .210C .336D .12010.在342005(1)(1)(1)x x x ++++⋯⋯++的展开式中,x 3的系数等于 A .42005CB .42006CC .32005CD .32006C11.现有男女学生共8人,从男生中选2人,从女生中选1人,分别参加数理化三科竞赛,共有90种不同方案,则男、女生人数可能是 A .2男6女B .3男5女C .5男3女D .6男2女12.若x ∈R ,n ∈N + ,定义nx M =x (x +1)(x +2)…(x +n -1),例如55M -=(-5)(-4)(-3)(-2)(-1)=-120,则函数199()x f x xM -=的奇偶性为A .是偶函数而不是奇函数B .是奇函数而不是偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数13.由等式43243212341234(1)(1)(1)(1),x a x a x a x a x b x b x b x b ++++=++++++++定义映射12341234:(,,,)(,,,),f a a a a b b b b →则f (4,3,2,1)等于 A .(1,2,3,4)B .(0,3,4,0)C .(-1,0,2,-2)D .(0,-3,4,-1)14.已知集合A ={1,2,3},B ={4,5,6},从A 到B 的映射f (x ),B 中有且仅有2个元素有原象,则这样的映射个数为 A .8B .9C .24D .2715.有五名学生站成一排照毕业纪念照,其中甲不排在乙的左边,又不与乙相邻,而不同的站法有 A .24种B .36种C .60种D .66种16.等腰三角形的三边均为正数,它们周长不大于10,这样不同形状的三角形的种数为 A .8B .9C .10D .1117.甲、乙、丙三同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有 A .36种B .42种C .50种D .72种18.若1021022012100210139(2),()()x a a x a x a x a a a a a a -=+++⋯+++⋯+-++⋯+则 的值为 A .0B .2C .-1D .1答题卡题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 答案二、填空题:19.某电子器件的电路中,在A ,B 之间有C ,D ,E ,F 四个焊点(如图),如果焊点脱落,则可能导致电路不通.今发现A ,B 间电路不通,则焊点脱落的不同情况有 种. 20.设f (x )=x 5-5x 4+10x 3-10x 2+5x +1,则f (x )的反函数f -1(x )= .21.正整数a 1a 2…a n …a 2n -2a 2n -1称为凹数,如果a 1>a 2>…a n ,且a 2n -1>a 2n -2>…>a n ,其中a i(i =1,2,3,…)∈{0,1,2,…,9},请回答三位凹数a 1a 2a 3(a 1≠a 3)共有 个(用数字作答).22.如果a 1(x -1)4+a 2(x -1)3+a 3(x -1)2+a 4(x -1)+a 5=x 4,那么a 2-a 3+a 4 .23.一栋7层的楼房备有电梯,在一楼有甲、乙、丙三人进了电梯,则满足有且仅有一人要上7楼,且甲不在2楼下电梯的所有可能情况种数有.24.已知(x+1)6(ax-1)2的展开式中,x3的系数是56,则实数a的值为.三、解答题:25.(本小题满分12分)将7个相同的小球任意放入四个不同的盒子中,每个盒子都不空,共有多少种不同的方法?26.(本小题满分12分)已知(41x+3x2)n展开式中的倒数第三项的系数为45,求:⑴含x3的项;⑵系数最大的项.27.(本小题满分12分)求证:123114710(31)(32)2.n n n n n n C C C n C n -++++⋯++=+⋅第十一单元 排列组合、二项式定理参考答案一、选择题(每小题5分,共90分): 题号1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 答案 DBCBBDCBABBADDBCBD提示1.D 分五步:5×4×4×4×4=1280.2.B 分三步:33425154545474.C C C C C C ++= 3.C 46312.C -=4.B 分8类:3451001210012101010101010101010101010()2(11045)968.C C C C C C C C C C C +++⋯+=+++⋯+-++=-++=5.B 12512,10,n n -=∴=中间项为5555761010().T C x x C x x ==6.D 按首位数字的奇偶性分两类:2332223322()20A A A A A +-=7.C 原式=(7+1)n -1=(9-1)2-1=9k -2=9k ’+7(k 和k ’均为正整数).8.B 分三步:12365360C C C =9.A 939966504,504.A A A ==或10.B 原式=11.B 设有男生x 人,则2138390,(1)(8)30x x C C A x x x -=--=即,检验知B 正确.12.A 2222()(9)(8)(9191)(1)(4)(81).f x x x x x x x x x =--⋯-+-=--⋯- 13.D 比较等式两边x 3的系数,得4=4+b 1,则b 1=0,故排除A ,C ;再比较等式两边的常数项,有1=1+b 1+b 2+b 3+b 4,∴b 1+b 2+b 3+b 4=0.14.D 223327.C =15.B 先排甲、乙外的3人,有33A 种排法,再插入甲、乙两人,有24A 种方法,又甲排乙的左边和甲排乙的右边各占12 ,故所求不同和站法有3234136().2A A =种16.C 共有(1,1,1),(1,2,2),(1,3,3),(1,4,4),(2,2,2),(2,2,3),(2,3,3),(2,4,4),(3,3,3)(3,3,4)10种.17.B 每人值班2天的排法或减去甲值周一或乙值周六的排法,再加上甲值周一且乙值周32003320062006442006(1)[1(1)](1)(1)(1).1(1)x x x x x x C x x+-+-+++=+-+即求中的系数为六的排法,共有2212264544242().C C A C A -+=种18.D 设f (x )=(2-x )10,则(a 0+a 2+…+a 10)2-(a 1+a 3+…+a 9)2=(a 0+a 1+…+a 10)(a 0-a 1+a 2-…-a 9+a 10)=f (1)f (-1)=(2+1)10(2-1)10=1。
高二数学排列组合与二项式定理试题答案及解析

高二数学排列组合与二项式定理试题答案及解析1.…除以88的余数是()A.-1B.-87C.1D.87【答案】C【解析】根据题意,由于…=(1-90)10=8910=(88+1)10,展开式可知展开式的最后一项不能被88整除,可知答案为C.【考点】二项式定理点评:主要是考查了二项式定理的逆用,属于基础题。
2.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.30种B.24种C.12种D.6种【答案】B【解析】第一步:从4门课程中选1门相同有种选法;第二步:让甲从剩下的3门中再选1门,选法有种;第三步:再让乙从剩下的2门中选1门,选法有种,所以所求的选法有。
故选B。
【考点】分步乘法计数原理点评:分步乘法计数原理:完成一件事,需要分成n个步骤,做第1步有种不同的方法,做第2步有种不同的方法……,做第n步有种不同的方法.那么完成这件事共有种不同的方法.3.如图,小圆圈表示网络的结点,结点之间的箭头表示它们有网线相联,连线标注的数字表示该段网线单位时间内可以通过的最大信息量。
现从结点A向结点G传递信息,信息可以分开沿不同的路线同时传递。
则单位时间内传递的最大信息量为()A.31B.6C.10D.14【答案】B【解析】信息传递,可有三条路线,每条路线上通过的信息量均为2 ,所以,单位时间内传递的最大信息量为6 ,选B。
【考点】本题主要考查阅读理解能力,分类讨论思想。
点评:简单题,看似复杂,实际上,关键是理解题意,看各条“路线”上,传递信息的最大值之和。
4.由1、2、3、4、5组成个位数字不是3的没有重复数字的五位奇数共有个(用数字作答).【答案】48【解析】由题意先排个位,从1,5两个数中随便取一个有,然后再用剩余的四个数字排前面四个位置有,∴由分步原理可知由1、2、3、4、5组成个位数字不是3的没有重复数字的五位奇数共有个【考点】本题考查了排列组合的综合运用点评:熟练掌握排列组合的综合运用是解决此类问题的关键,属基础题5.设为奇数,则除以9的余数为.【答案】【解析】∵,∴除以9的余数为7【考点】本题考查了二项式定理的运用点评:对于余数问题一般是把式子拆开,然后利用二项式定理展开求余数,属基础题6.有6名同学参加两项课外活动,每位同学必须参加一项活动且不能同时参加两项,每项活动最多安排4人,则不同的安排方法有种.(用数学作答)【答案】50【解析】解:由题意知本题是一个分类计数问题,∵每项活动最多安排4人,∴可以有三种安排方法,即(4,2)(3,3)(2,4)当安排4,2时,需要选出4个人参加共有=15,当安排3,3,时,共有=20种结果,当安排2,4时,共有=15种结果,∴根据分类计数原理知共有15+20+15=50种结果,故答案为:50【考点】分类计数问题点评:本题是一个分类计数问题,这是经常出现的一个问题,解题时一定要分清做这件事需要分为几类,每一类包含几种方法,把几个步骤中数字相加得到结果7.的展开式中,的系数是()A.B.C.297D.207【答案】D【解析】由题意可知,的系数即为【考点】本小题主要考查二项展开式的应用.点评:解决二项式问题一般离不开展开式的通项公式,要灵活应用.8.两位同学一起去一家单位应聘,面试前单位负责人对他们说:“我们要从面试的人中招聘3人,你们俩同时被招聘进来的概率是1∕70”.根据这位负责人的话可以推断出参加面试的人数为()A.21B.35C.42D.70【答案】A【解析】设参加面试的人数为n,由题意可知,解得n=21.【考点】本小题主要考查排列组合在实际问题中的应用.点评:准确理解题意,准确计算是解决此类问题的关键.9.(本小题满分12分)已知二项式(N*)展开式中,前三项的二项式系数和是,求:(Ⅰ)的值;(Ⅱ)展开式中的常数项.【答案】(Ⅰ)10 (Ⅱ)【解析】(Ⅰ)…… 2分(舍去).………… 5分(Ⅱ) 展开式的第项是,,………… 10分故展开式中的常数项是.……… 12分10.甲、乙、丙、丁四位同学各自对A、B两变量的线性相关性做实验,并用回归分析方法分析求得相关系数r与残差平方和m如下表:则哪位同学的实验结果体现A、B两变量有更强的线性相关性()A、甲B、乙C、丙D、丁【答案】D【解析】解:在验证两个变量之间的线性相关关系中,相关系数的绝对值越接近于1,相关性越强,在四个选项中只有丁的相关系数最大,残差平方和越小,相关性越强,只有丁的残差平方和最小,综上可知丁的试验结果体现A、B两变量有更强的线性相关性,故选D.11.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有()A.40种B.60种C.100种D.120种【答案】B【解析】根据题意,首先从5人中抽出两人在星期五参加活动,有种情况,再从剩下的3人中,抽取两人安排在星期六、星期日参加活动,有种情况,则由分步计数原理,可得不同的选派方法共有 =60种.故选B.12.平面上有相异10个点,每两点连线可确定的直线的条数是每三点为顶点所确定的三角形个数的,若无任意四点共线,则这10个点的连线中有且只有三点共线的直线的条数为__________条.【答案】3【解析】【考点】排列、组合及简单计数问题。
排列组合+二项式定理(含答案)

高二数学:排列组合二项式定理一、选择题(本大题共16小题,共80.0分)1.如图,花坛内有五个花池,有五种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则最多有几种栽种方案( )A. 180种B. 240种C. 360种D. 420种2.甲、乙、丙等6人排成一排,且甲、乙均在丙的同侧,则不同的排法共有( )种(用数字作答).A. 720B. 480C. 144D. 3603.从1,3,5中选2个不同数字,从2,4,6,8中选3个不同数字排成一个五位数,则这些五位数中偶数的个数为( )A. 5040B. 1440C. 864D. 7204.从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为( )A. 48B. 72C. 90D. 965.小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为( )A. 60B. 72C. 84D. 966.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(A,B可以不相邻),那么不同的排法共有( )A. 24种B. 60种C. 90种D. 120种7.C74+C75+C86等于( )A. C95B. C96C. C87D. C978.9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品来检查,至少有两件一等品的抽取方法是( )A. C 42⋅C 52B. C 42+C 43+C 44C. C 42+C 52D. C 42⋅C 52+C 43⋅C 51+C 44⋅C 509.4名同学争夺三项冠军,冠军获得者的可能种数是( )A. 43B. A43C. C43D. 410.某班班会准备从含甲、乙的7人中选取4人发言,要求甲、乙两人至少有一人参加,且若甲、乙同时参加,则他们发言时顺序不能相邻,那么不同的发言顺序有( )A. 720种B. 520种C. 600种D. 360种11.现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两部分不能用同一种颜色,则不同的着色方法共有( )A. 144种B. 72种C. 64种D. 84种12.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A. 192种B. 216种C. 240种D. 288种13.有黑、白、红三种颜色的小球各5个,都分别标有数字1,2,3,4,5,现取出5个,要求这5个球数字不相同但三种颜色齐备,则不同的取法种数有( )A. 120种B. 150种C. 240种D. 260种14.从4双不同鞋中任取4只,结果都不成双的取法有____种.( )A. 24B. 16C. 44D. 38415.某公共汽车上有10位乘客,沿途5个车站,乘客下车的可能方式有( )种.A. 510B. 105C. 50D. A10516.从0,1,2,3,4中选取三个不同的数字组成一个三位数,其中奇数有( )A. 18个B. 27个C. 36个D. 60个二、填空题(本大题共9小题,共45.0分)17.(1+2x)5的展开式中含x2项的系数是______ .(用数字作答)18.(x−1x )(2x+1x)5的展开式中,常数项为______.19.小明、小刚、小红等5个人排成一排照相合影,若小明与小刚相邻,且小明与小红不相邻,则不同的排法有______ 种.20.(1−3x)7的展开式中x2的系数为______ .21.已知C203x=C20x+4,则x=______ .22.从4台甲型和5台乙型电视机中任意取出三台,其中至少要有甲型和乙型电视机各1台,则不同的取法共有______ 种.23.一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个小正方体抛掷2次,则向上的数之积的数学期望是______ .24.把5本不同的书全部分给4个学生,每个学生至少一本,不同的分发种数为______.(用数字作答)25.从4名男同学和6名女同学中选取3人参加某社团活动,选出的3人中男女同学都有的不同选法种数是______(用数字作答)三、解答题(本大题共5小题,共60.0分)26.已知(2x√x)n展开式前两项的二项式系数的和为10.(1)求n的值.(2)求出这个展开式中的常数项.27.已知n为正整数,在二项式(12+2x)n的展开式中,若前三项的二项式系数的和等于79.(1)求n的值;(2)判断展开式中第几项的系数最大?28.已知二项式(1+√2x)n=a0+a1x+a2x2+⋯+a n x n(x∈R,n∈N)(1)若展开式中第五项的二项式系数是第三项系数的3倍,求n的值;(2)若n为正偶数时,求证:a0+a2+a4+a6+⋯+a n为奇数.(3)证明:C n1+2C n2⋅2+3C n3⋅22+⋯+nC n n⋅2n−1=n⋅3n−1(n∈N+)29.从5名男生和4名女生中选出4人去参加座谈会,问:(Ⅰ)如果4人中男生和女生各选2人,有多少种选法?(Ⅱ)如果男生中的甲与女生中的乙至少要有1人在内,有多少种选法?(Ⅲ)如果4人中必须既有男生又有女生,有多少种选法?30.某次文艺晚会上共演出8个节目,其中2个唱歌、3个舞蹈、3个曲艺节目,求分别满足下列条件的排节目单的方法种数:(1)一个唱歌节目开头,另一个压台;(2)两个唱歌节目不相邻;(3)两个唱歌节目相邻且3个舞蹈节目不相邻.高二数学:排列组合二项式定理一、选择题(本大题共16小题,共80.0分)1.如图,花坛内有五个花池,有五种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则最多有几种栽种方案( )A. 180种B. 240种C. 360种D. 420种【答案】D【解析】解:若5个花池栽了5种颜色的花卉,方法有A55种,若5个花池栽了4种颜色的花卉,则2、4两个花池栽同一种颜色的花;或者3、5两个花池栽同一种颜色的花,方法有2A54种,若5个花池栽了3种颜色的花卉,方法有A53种,故最多有A55+2A54+A53=420种栽种方案,故选D.若5个花池栽了5种颜色的花卉,方法有A55种,若5个花池栽了4种颜色的花卉,方法有2A54种,若5个花池栽了3种颜色的花卉,方法有A53种,相加即得所求.本题主要考查排列、组合以及简单计数原理的应用,体现了分类讨论的数学思想,属于中档题.2.甲、乙、丙等6人排成一排,且甲、乙均在丙的同侧,则不同的排法共有( )种(用数字作答).A. 720B. 480C. 144D. 360【答案】B【解析】解:甲、乙、丙等六位同学进行全排可得A66=720种,∵甲乙丙的顺序为甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6种,∴甲、乙均在丙的同侧,有4种,∴甲、乙均在丙的同侧占总数的46=23∴不同的排法种数共有23×720=480种.故选:B.甲、乙、丙等六位同学进行全排,再利用甲、乙均在丙的同侧占总数的46=23,即可得出结论.本题考查排列、组合及简单计数问题,考查学生的计算能力,比较基础.3.从1,3,5中选2个不同数字,从2,4,6,8中选3个不同数字排成一个五位数,则这些五位数中偶数的个数为( )A. 5040B. 1440C. 864D. 720【答案】C【解析】解;先任选一个偶数排在末尾,共有4种选法,其它2个奇数的选法共有3种,剩余2个偶数的选法共有3种,这4个数全排列,共有4×3×2×1=24种方法,共有则这些五位数中偶数的个数为4×3×3×24= 864,故选:C.先按要求排末尾,再排其它,根据分步计数原理可得.本题考查加法原理和乘法原理综合运用,考查学生分析解决问题的能力,属于中档题.4.从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为( )A. 48B. 72C. 90D. 96【答案】D【解析】解:根据题意,从5名学生中选出4名分别参加竞赛,分2种情况讨论:①、选出的4人没有甲,即选出其他4人即可,有A44=24种情况,②、选出的4人有甲,由于甲不能参加生物竞赛,则甲有3种选法,在剩余4人中任选3人,参加剩下的三科竞赛,有A43=24种选法,则此时共有3×24=72种选法,则有24+72=96种不同的参赛方案;故选:D.根据题意,分2种情况讨论选出参加竞赛的4人,①、选出的4人没有甲,②、选出的4人有甲,分别求出每一种情况下分选法数目,由分类计数原理计算可得答案.本题考查排列、组合的实际应用,注意优先考虑特殊元素.5.小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为( )A. 60B. 72C. 84D. 96【答案】C【解析】解:根据题意,分3种情况讨论:①、若小明的父母的只有1人与小明相邻且父母不相邻时,先在其父母中选一人与小明相邻,有C21=2种情况,将小明与选出的家长看成一个整体,考虑其顺序有A22=2种情况,当父母不相邻时,需要将爷爷奶奶进行全排列,将整体与另一个家长安排在空位中,有A22×A32=12种安排方法,此时有2×2×12=48种不同坐法;②、若小明的父母的只有1人与小明相邻且父母相邻时,将父母及小明看成一个整体,小明在一端,有2种情况,考虑父母之间的顺序,有2种情况,则这个整体内部有2×2=4种情况,将这个整体与爷爷奶奶进行全排列,有A33=6种情况,此时有2×2×6=24种不同坐法;③、小明的父母都与小明相邻,即小明在中间,父母在两边,将3人看成一个整体,考虑父母的顺序,有A22=2种情况,将这个整体与爷爷奶奶进行全排列,有A33=6种情况,此时,共有2×6=12种不同坐法;则一共有48+24+12=84种不同坐法;故选:C.根据题意,分3种情况讨论:①、小明的父母的只有1人与小明相邻且父母不相邻,②、小明的父母的只有1人与小明相邻且父母相邻,③、小明的父母都与小明相邻,分别求出每一种情况下的排法数目,由分类计数原理计算可得答案.本题考查排列、组合的应用,关键是根据题意,进行不重不漏的分类讨论.6.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(A,B可以不相邻),那么不同的排法共有( )A. 24种B. 60种C. 90种D. 120种【答案】B【解析】解:根据题意,使用倍分法,五人并排站成一排,有A55种情况,而其中B站在A的左边与B站在A的右边是等可能的,则其情况数目是相等的,×A55=60,则B站在A的右边的情况数目为12故选B.根据题意,首先计算五人并排站成一排的情况数目,进而分析可得,B站在A的左边与B站在A的右边是等可能的,使用倍分法,计算可得答案.本题考查排列、组合的应用,注意使用倍分法时,注意必须保证其各种情况是等可能的.7. C 74+C 75+C 86等于( ) A. C 95B. C 96C. C 87D. C 97【答案】B【解析】解:根据组合数公式C n+1m =C n m−1+C n m得,C 74+C 75+C 86=(C 74+C 75)+C 86 =C 85+C 86 =C 96. 故选:B .利用组合数公式C n+1m =C n m−1+C n m,进行化简即可.本题考查了组合数公式C n+1m =C n m−1+C n m的逆用问题,是基础题目.8. 9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品来检查,至少有两件一等品的抽取方法是( )A. C 42⋅C 52B. C 42+C 43+C 44C. C 42+C 52D. C 42⋅C 52+C 43⋅C 51+C 44⋅C 50【答案】D【解析】解:一共有4件一等品,至少两件一等品分为2件,3件,4件,第一类,一等品2件,从4件任取2件,再从3件二等品或2件三等品共5件产品中任取2件,有C 42⋅C 52, 第二类,一等品3件,从4件任取3,再从3件二等品或2件三等品共5件产品中任取1,有C 43⋅C 51,第二类,一等品4件,从4件中全取,有C 44⋅C 50, 根据分类计数原理得,至少有两件一等品的抽取方法是C 42⋅C 52+C 43⋅C 51+C 44⋅C 50. 故选:D .利用分类计数原理,一共有4件一等品,至少两件一等品分为2件,3件,4件,然后再按其它要求抽取. 本题主要考查了分类计数原理,如何分类是关键,属于基础题.9. 4名同学争夺三项冠军,冠军获得者的可能种数是( )A. 43B. A 43C. C 43D. 4 【答案】A【解析】解:每一项冠军的情况都有4种,故四名学生争夺三项冠军,获得冠军的可能的种数是43, 故选:A .每个冠军的情况都有4种,共计3个冠军,故分3步完成,根据分步计数原理,运算求得结果. 本题主要考查分步计数原理的应用,属于基础题.10. 某班班会准备从含甲、乙的7人中选取4人发言,要求甲、乙两人至少有一人参加,且若甲、乙同时参加,则他们发言时顺序不能相邻,那么不同的发言顺序有( ) A. 720种 B. 520种 C. 600种 D. 360种 【答案】C【解析】解:分两类:第一类,甲、乙两人只有一人参加,则不同的发言顺序有C 21C 53A 44种;第二类:甲、乙同时参加,则不同的发言顺序有C 22C 52A 22A 32种.共有:C 21C 53A 44+C 22C 52A 22A 32=600(种). 故选:C .分两类:第一类,甲、乙两人只有一人参加,第二类:甲、乙同时参加,利用加法原理即可得出结论. 本题考查排列、组合的实际应用,正确分类是关键.11. 现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两部分不能用同一种颜色,则不同的着色方法共有 ( ) A. 144种 B. 72种 C. 64种 D. 84种 【答案】D【解析】解:由题意知本题是一个分步计数问题, 需要先给最上面金着色,有4种结果, 再给榜着色,有3种结果,给题着色,与榜同色,给名着色,有3种结果;与榜不同色,有2种结果,给名着色,有2种结果 根据分步计数原理知共有4×3×(3+2×2)=84种结果, 故选D .需要先给最上面金着色,有4种结果,再给榜着色,有3种结果,给题着色,与榜同色,给名着色,有3种结果;与榜不同色,有2种结果,给名着色,有2种结果,根据分步计数原理得到结果.本题考查计数原理的应用,解题的关键是理解“公共边的两块区域不能使用同一种颜色,”根据情况对C 处涂色进行分类,这是正确计数,不重不漏的保证.12. 六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A. 192种B. 216种C. 240种D. 288种 【答案】B【解析】解:最左端排甲,共有A 55=120种,最左端只排乙,最右端不能排甲,有C 41A 44=96种, 根据加法原理可得,共有120+96=216种. 故选:B .分类讨论,最左端排甲;最左端只排乙,最右端不能排甲,根据加法原理可得结论. 本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.13. 有黑、白、红三种颜色的小球各5个,都分别标有数字1,2,3,4,5,现取出5个,要求这5个球数字不相同但三种颜色齐备,则不同的取法种数有( ) A. 120种 B. 150种 C. 240种 D. 260种 【答案】B【解析】解:根据题意,取出的5个球有三种颜色且数字不同, 分2步进行分析:①,先把取出的5个球分成3组,可以是3,1,1,也可以是1,2,2; 若分成3,1,1的三组,有C 53C 21C 11A 22=10种分组方法; 若分成1,2,2的三组,有C 51C 42C 22A 22=15种分组方法;则共有10+15=25种分组方法,②,让三组选择三种不同颜色,共有A 33=6种不同方法 则共有25×6=150种不同的取法; 故选:B .因为要求取出的5个球分别标有数字1,2,3,4,5且三种颜色齐备,所以肯定是数字1,2,3,4,5各取一个,分2步分析:先把5个球分成三组,再每组选择一种颜色,由分步计数原理计算可得答案. 本题考查分步计数原理的应用,注意题目中“5个球数字不相同但三种颜色齐备”的要求.14. 从4双不同鞋中任取4只,结果都不成双的取法有____种.( )A. 24B. 16C. 44D. 384 【答案】B【解析】解:取出的四只鞋不成双,可分四步完成,依次从四双鞋子中取一只,取四次,故总的取法有2×2×2×2=16种, 故选B .取出的四只鞋不成双,可分四步完成,依次从四双鞋子中取一只,取四次,利用乘法原理可得结论.本题考查排列、组合及简单计数问题,考查乘法原理的运用,比较基础.15.某公共汽车上有10位乘客,沿途5个车站,乘客下车的可能方式有( )种.A. 510B. 105C. 50D. A105【答案】A【解析】解:根据题意,公共汽车沿途5个车站,则每个乘客有5种下车的方式,则10位乘客共有510种下车的可能方式;故选:A.根据题意,分析可得每个乘客有5种下车的方式,由分步计数原理计算可得答案.本题考查排列、组合的实际应用,16.从0,1,2,3,4中选取三个不同的数字组成一个三位数,其中奇数有( )A. 18个B. 27个C. 36个D. 60个【答案】A【解析】解:先从1,3中选一个为个位数字,再剩下的3个(不包含0)取1个为百位,再从剩下3个(包含0)取一个为十位,故有2×3×3=18个,故答案为:18.先从1,3中选一个为个位数字,再剩下的3个(不包含0)取1个为百位,再从剩下3个(包含0)取一个为十位,根据分步计数原理可得.本题考查了分步计数原理,关键是分步,属于基础题.二、填空题(本大题共9小题,共45.0分)17.(1+2x)5的展开式中含x2项的系数是______ .(用数字作答)【答案】40【解析】解:由二项式定理的通项公式T r+1=C n r a n−r b r可设含x2项的项是T r+1=C5r15−r(2x)r=2r C5r x r,可知r=2,所以系数为22C52=40所以答案应填40本题是求系数问题,故可以利用通项公式T r+1=C n r a n−r b r来解决,在通项中令x的指数幂为2可求出含x2是第几项,由此算出系数为40本题主要考查二项式定理中通项公式的应用,属于基础题型,难度系数0.9.一般地通项公式主要应用有求常数项,有理项,求系数,二项式系数等.18.(x−1x )(2x+1x)5的展开式中,常数项为______.【答案】−40【解析】解:(x−1x )(2x+1x)5展开式中常数项是(2x+1x )5展开式中的1x项与x的乘积,加上含x项与−1x的乘积;由(2x+1x)5展开式的通项公式为T r+1=C5r⋅(2x)5−r⋅(1x)r=25−r⋅C5r⋅x5−2r,令5−2r=−1,解得r=3,∴T4=22⋅C53⋅1x =40x;令5−2r=1,解得r=2,∴T3=23⋅C52⋅x=80x;所求展开式的常数项为40 x ⋅x+80x⋅(−1x)=40−80=−40.故答案为:−40.根据(x−1x )(2x+1x)5展开式中常数项是(2x+1x)5展开式中的1x项与x的乘积,加上x项与−1x的乘积;利用(2x+1x)5展开式的通项公式求出对应的项即可.本题考查了二项式定理的应用问题,是基础题.19.小明、小刚、小红等5个人排成一排照相合影,若小明与小刚相邻,且小明与小红不相邻,则不同的排法有______ 种.【答案】36【解析】解:根据题意,分2种情况讨论:①、小刚与小红不相邻,将除小明、小刚、小红之外的2人全排列,有A22种安排方法,排好后有3个空位,将小明与小刚看成一个整体,考虑其顺序,有A22种情况,在3个空位中,任选2个,安排这个整体与小红,有A32种安排方法,有A22×A32×A22=24种安排方法;②、小刚与小红相邻,则三人中小刚在中间,小明、小红在两边,有A22种安排方法,将三人看成一个整体,将整个整体与其余2人进行全排列,有A33种安排方法,此时有A33×A22=12种排法,则共有24+12=36种安排方法;故答案为:36.根据题意,分2种情况讨论:①、小刚与小红不相邻,②、小刚与小红相邻,由排列、组合公式分别求出每一种情况的排法数目,由分类加法原理计算可得答案.本题考查排列、组合的运用,注意特殊元素优先考虑,不同的问题利用不同的方法解决如相邻问题用捆绑,不相邻问题用插空等方法.20.(1−3x)7的展开式中x2的系数为______ .【答案】7【解析】解:由于(1−3x)7的展开式的通项公式为T r+1=C7r⋅(−1)r⋅x r3,令r3=2,求得r=6,可得展开式中x2的系数为C76=7,故答案为:7.在二项展开式的通项公式中,令x的幂指数等于2,求出r的值,即可求得展开式中x2的系数.本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于基础题21.已知C203x=C20x+4,则x=______ .【答案】2或4【解析】解:∵C203x=C20x+4,则3x=x+4,或3x+x+4=20,解得x=2或4.故答案为:2或4.由C203x=C20x+4,可得3x=x+4,或3x+x+4=20,解出即可得出.本题考查了组合数的计算公式、方程的解法,考查了推理能力与计算能力,属于基础题.22.从4台甲型和5台乙型电视机中任意取出三台,其中至少要有甲型和乙型电视机各1台,则不同的取法共有______ 种.【答案】70【解析】解:甲型电视机2台和乙型电视机1台,取法有C42C51=30种;甲型电视机1台和乙型电视机2台,取法有C41C52=40种;共有30+40=70种.故答案为:70任意取出三台,其中至少要有甲型和乙型电视机各1台,有两种方法,一是甲型电视机2台和乙型电视机1台;二是甲型电视机1台和乙型电视机2台,分别求出取电视机的方法,即可求出所有的方法数.本题考查组合及组合数公式,考查分类讨论思想,是基础题.23.一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个小正方体抛掷2次,则向上的数之积的数学期望是______ .【答案】49【解析】解:一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个小正方体抛掷2次,向上的数之积可能为ξ=0,1,2,4,P(ξ=0)=C31C31+C31C31+C31C31C61C61=34,P(ξ=1)=C21C21C61C61=19,P(ξ=2)=C21C11+C11C21C61C61=19,P(ξ=4)=C11C11C61C61=136,∴Eξ=19+29+436=49.故答案为:49.一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个骰子掷两次得到结果有三种情况,使得它们两两相乘,得到变量可能的取值,结合事件做出概率和期望.数字问题是概率中经常出现的题目,一般可以列举出要求的事件,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的可以借助于排列数和组合数来表示.24.把5本不同的书全部分给4个学生,每个学生至少一本,不同的分发种数为______.(用数字作答)【答案】240【解析】解:由题意知先把5本书中的两本捆起来看做一个元素共有C52,这一个元素和其他的三个元素在四个位置全排列共有A44,∴分法种数为C52⋅A44=240.故答案为:240.由题意知先把5本书中的两本捆起来看做一个元素,这一个元素和其他的三个元素在四个位置全排列,根据分步计数原理两个过程的结果数相乘得到结果.排列组合问题在几何中的应用,在计算时要求做到,兼顾所有的条件,先排约束条件多的元素,做的不重不漏,注意实际问题本身的限制条件.25.从4名男同学和6名女同学中选取3人参加某社团活动,选出的3人中男女同学都有的不同选法种数是______(用数字作答)【答案】96【解析】解:根据题意,在4名男同学和6名女同学共10名学生中任取3人,有C103=120种,其中只有男生的选法有C43=4种,只有女生的选法有C63=20种则选出的3人中男女同学都有的不同选法有120−4−20=96种;故答案为:96.根据题意,用间接法分析:首先计算在10名学生中任取3人的选法数目,再分析其中只有男生和只有女生的选法数目,分析即可得答案.本题考查排列、组合的应用,注意利用间接法分析,可以避免分类讨论.三、解答题(本大题共5小题,共60.0分)26.已知(2x√x)n展开式前两项的二项式系数的和为10.(1)求n的值.(2)求出这个展开式中的常数项.【答案】解:(1)∵(2x√x)n展开式前两项的二项式系数的和为10∴C n0+C n1=10,解得n=9;(2)∵(2x√x )n展开式的通项T r+1=C n r(2x)n−r(√x)r=2n−r C n r x n−3r2----8分∴令n−3r2=0且n=9得r=6,∴(2x+√x)n展开式中的常数项为第7项,即T7=29−6⋅C96=672.【解析】(1)根据二项式展开式得到前两项的系数,根据系数和解的n的值,(2)利用展开式的通项,求常数项,只要使x的次数为0即可.本题主要考查了二项式定理,利用好通项,属于基础题.27.已知n为正整数,在二项式(12+2x)n的展开式中,若前三项的二项式系数的和等于79.(1)求n的值;(2)判断展开式中第几项的系数最大?【答案】解:(1)根据题意,C n0+C n1+C n2=79,即1+n+n(n−1)2=79,整理得n2+n−156=0,解得n=12或n=−13(不合题意,舍去)所以n=12;…(5分)(2)设二项式(12+2x)12=(12)12⋅(1+4x)12的展开式中第k+1项的系数最大,则有{C12k⋅4k≥C12k−1⋅4k−1 C12k⋅4k≥C12k+1⋅4k+1,解得9.4≤k≤10.4,所以k=10,所以展开式中第11项的系数最大.…(10分)【解析】(1)根据题意列出方程C n0+C n1+C n2=79,解方程即可;(2)设该二项式的展开式中第k+1项的系数最大,由此列出不等式组,解不等式组即可求出k的值.本题考查了二项式定理的应用问题,也考查了转化思想与不等式组的解法问题,是综合性题目.28.已知二项式(1+√2x)n=a0+a1x+a2x2+⋯+a n x n(x∈R,n∈N)(1)若展开式中第五项的二项式系数是第三项系数的3倍,求n的值;(2)若n为正偶数时,求证:a0+a2+a4+a6+⋯+a n为奇数.(3)证明:C n1+2C n2⋅2+3C n3⋅22+⋯+nC n n⋅2n−1=n⋅3n−1(n∈N+)【答案】解:(1)由题意可得C n 4=3⋅C n 2(√2)2,∴n =11.(2)证明:当n 为正偶数时,则a 0+a 2+a 4+a 6+⋯+a n =1+2C n 2+22⋅C n 4+⋯+2n2⋅C n n , 除第一项为奇数外,其余的各项都是偶数,故1+2C n 2+22⋅C n 4+⋯+2n2⋅C nn 为奇数, 即a 0+a 2+a 4+a 6+⋯+a n 为奇数.(3)∵kC n k =n ⋅C n−1k−1, ∴C n 1+2C n 2⋅2+3C n 3⋅22+⋯+nC n n ⋅2n−1=n(C n−10+C n−11×2+C n−12×22+⋯+C n−1n−1×2n−1) =n ⋅(1+2)n−1=n ⋅3n−1.【解析】(1)直接利用条件可得C n 4=3⋅C n 2(√2)2,由此求得n 的值.(2)当n 为正偶数时,则a 0+a 2+a 4+a 6+⋯+a n =1+2C n 2+22⋅C n 4+⋯+2n2⋅C nn ,除第一项为奇数外,其余的各项都是偶数,从而证得结论.(3)由kC n k =n ⋅C n−1k−1,可得C n 1+2C n 2⋅2+3C n 3⋅22+⋯+nC n n ⋅2n−1=n(C n−10+C n−11×2+C n−12×22+⋯+C n−1n−1×2n−1),再利用二项式定理证得所给的等式成立.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.29. 从5名男生和4名女生中选出4人去参加座谈会,问:(Ⅰ)如果4人中男生和女生各选2人,有多少种选法?(Ⅱ)如果男生中的甲与女生中的乙至少要有1人在内,有多少种选法? (Ⅲ)如果4人中必须既有男生又有女生,有多少种选法?【答案】解:(Ⅰ)根据题意,从5名男生中选出2人,有C 52=10种选法,从4名女生中选出2人,有C 42=6种选法,则4人中男生和女生各选2人的选法有10×6=60种;(Ⅱ)先在9人中任选4人,有C 94=126种选法,其中甲乙都没有入选,即从其他7人中任选4人的选法有C 74=35种, 则甲与女生中的乙至少要有1人在内的选法有126−35=91种;(Ⅲ)先在9人中任选4人,有C 94=126种选法,其中只有男生的选法有C 51=5种,只有女生的选法有C 41=1种, 则4人中必须既有男生又有女生的选法有126−5−1=120种.【解析】(Ⅰ)根据题意,分别计算“从5名男生中选出2人”和“从4名女生中选出2人”的选法数目,由分步计数原理计算可得答案;(Ⅱ)用间接法分析:先计算在9人中任选4人的选法数目,再排除其中“甲乙都没有入选”的选法数目,即可得答案;(Ⅲ)用间接法分析:先计算在9人中任选4人的选法数目,再排除其中“只有男生”和“只有女生”的选法数目,即可得答案.本题考查排列、组合的应用,涉及分步、分类计数原理的应用,(Ⅱ)(Ⅲ)中可以选用间接法分析.30. 某次文艺晚会上共演出8个节目,其中2个唱歌、3个舞蹈、3个曲艺节目,求分别满足下列条件的排节目单的方法种数:(1)一个唱歌节目开头,另一个压台; (2)两个唱歌节目不相邻;(3)两个唱歌节目相邻且3个舞蹈节目不相邻.【答案】解:(1)先排歌曲节目有A 22种排法,再排其他节目有A 66种排法,所以共有A 22A 66=1440种排法.(2)先排3个舞蹈节目,3个曲艺节目,有A 66种排法,再从其中7个空(包括两端)中选2个排歌曲节目,有A 72种插入方法,所以共有A 66A 72=30240种排法.(3)两个唱歌节目相邻,用捆绑法,3个舞蹈节目不相邻,利用插空法,共有A 44A 53A 22=2880种. 【解析】(1)先排歌曲节目,再排其他节目,利用乘法原理,即可得出结论; (2)先排3个舞蹈,3个曲艺节目,再利用插空法排唱歌,即可得到结论;。
高二数学排列组合及二项式定理检测题.doc

高二数学排列组合及二项式定理检测题(2)姓名 班级编号 分数一、选择题:本大题共10小题,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知8)(xa x -展开式中常数项为11中实数a 是常数,则展开式中各项系数的和是( ) A.82 B. 83 C. 1或83 D.1或822.1003)23(+x 展开所得关于x 的多项式中,系数为有理数的共有( )项A.50B.17C.16D. 153.若443322104)32(x a x a x a x a a x ++++=+,则2312420)()(a a a a a +-++的值为( )A.1B.-1C.0D.24.对于二项式)()1(3+∈+N n x xn ,四位同学作了四种判断,其中正确的是( ) (1)存在+∈N n ,展开式中有常数项; (2)对任意+∈N n ,展开式中没有常数项; (3)对任意+∈N n ,展开式中没有x 的一次项; (4)存在+∈N n ,展开式中有x 的一次项。
A. (1)(3)B.(2)(3)C.(2)(4)D.(1)(4) 5已知naa )12(3+的展开式的常数项是第七项,则正整数n 的值为 ( ) A .7 B .8 C .9 D . 106.5555除以8,所得余数是( )A.7B. 1C.0D. 1-7.设n 为自然数,则nn n k n k n k n n n n C C C C )1(2)1(22110-++-++--- 等于 ( )A.n2 B.0 C.-1 D. 18.如图是某汽车维修公司的维修点环形分布图。
公司在年初分配给A 、B 、C 、D 四个维修点某种配件各50件。
在使用前发现需将A 、B 、C 、D 四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行。
那么要完成上述调整,最少的调动件数(n 件配件从一个维修点调整到相邻维修点的调动件数为n )为( )A.18B.17C.16D. 159.某市为改善生态环境,计划对城市外围A 、B 、C 、D 、E 、F 六个区域(如图)进行治理,第一期工程拟从这六个区域中选取三个,根据要求至多有两个区域相邻,则不同的选取方案共有( )A.6B.10C.16D.15了3盘,丙赛了2盘,丁只赛了1盘,则小强已经赛了( ) A .4盘 B .3盘 C .2盘 D .1盘本大题共5小题,每小题5分,共25分。
排列组合经典练习题答案答案.doc

排列组合二项定理排列组合二项定理知识要点—、两个原理.1.乘法原理、加法原理.2.可以有事复无奉的排列.从m个不同元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二...... 第n位上选取元素的方法都是m个,所以从m个不同元素中,每次取出n个元素可重复排列数m-m-... m= m n..例如:n件物品放入m个抽屉中,不限放法,共有多少种不同放法?(解:秫"种)二' 排列.1.⑴对排列定义的理解.定义:从n个不同的元素中任取m(m<n)个元素,哲眼丁定顺序排成一列,叫做从儿个不同元素中取出秫个元素的一个排列.⑵相同排列.如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同.⑶排列数.从n个不同元素中取出个元素排成一列,称为从«个不同元素中取出m个元素的一个排列.从n个不同元素中取出m个元素的一个排列数,用符号A片表示.⑷排列数公式:A m= n(n一1)• • • (〃一m +1)= :——(m < n, n, m G N)注意:n-nl=(n + l)!-n!规定0! = 1看=履客规定C?=C:=12,含有可事及素的排列问题.对含有相同元素求排列个数的方法是:设重集S有k个不同元素a” a2,......a”其中限重复数为ni、n2......n k,且n = ni+n2+ ... 以,则S的排列个数等于n = ----- --- .n i ln2\..n k\例如:已知数字3、2、2,求其排列个数"=(1 + 2)!=3又例如:数字5、5、5、求其排列个数?其排列个1!2! 数n = - = l.3!三、组合.1.⑴组合:从〃个不同的元素中任取m(m<n)个元素并成一组,叫做从〃个不同元素中取出秫个元素的一个组合.⑵组合数公式:c,"=41 = "("T)“・(n + l)C"'=—-—”A;;;尻"m\(n-my.⑶两个公式:①C*=Cf②C%+驾=C£%1从n个不同元素中取出m个元素后就剩下n-m个元素,因此从n个不同元素中取出n-m个元素的方法是一一对应的,因此是一样多的就是说从n个不同元素中取出n-m个元素的唯一的一个组合.(n + 1)! (n (或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是 含红球选法有c m -*-c ;=c m-,! 一类是不含红球的选法有C :)%1 根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与 不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m-l 个元素,所以有C”':,如果不取这 一元素,则需从剩余n 个元素中取出m 个元素,所以共有C :种,依分类原理有C m ~\+C^=C n ^.⑷排列与组合的联系与区别.联系:都是从"个不同元素中取出加个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.⑸①几个常用组合数公式 n n n nC°+C 2+C 4+••- =C*+C 3+C 5+••• =2,?-1n n nn n n ° 〃十° m+1 十° m+2 • •七 m+n+1kc k =心:1 「k_ 1 厂灯1C n~ C n+1k + 1 n + 1%1 常用的证明组合等式方法例.i. 裂项求和法.如:-+-+-+—— =1-一—(利用 —=——一1)n! (〃一 1)! n\ 2! 3! 4! (n + 1)! (〃 + 1)!ii. 导数法.iii.数学归纳法.iv.倒序求和法.V.递推法(即用 c"-+c m -l=c n :;递推)如:C ;+C ;+C ;+ •••C :=C"+:. Vi.构造二项式.如:(C°)2+(C^)2 + ••• + (C:)2=C 2;; 证明:这里构造二项式(x + l)"(l + x)"=(l + x)2"其中x"的系数,左边为席吒+•••+ac=e)2+(c;)2+...+(a)2,而右边=c 2:四、排列' 组合综合.i.i.排列、组合问题几大解题方法及题型:%1 直接法.②排除法.%1 捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局 部”的排列.它主要用于解决“元素相邻问题”,例如,一般地,n 个不同元素排成一列,要求其中某/»(/»<»)个元素必相邻的排列有个.其中A ::::;是一个“整体排列”,而则是“局部排列”.又例如①有n 个不同座位,A 、B 两个不能相邻,则有排列法种数为-%1 有n 件不同商品,若其中A 、B 排在一起有%1 有n 件不同商品,若其中有二件要排在一起有A,;.A ;;:;.注:①③区别在于①是确定的座位,有A ;种;而③的商品地位相同,是从n 件不同商品任取的2个,有不 确定性.%1插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题例如:n个元素全排列,其中m个元素互不相邻,不同的排法种数为多少?(插空法),当n-m+l>m,即mV*时有意义,2%1占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.%1调序法:当某些元素次序一定时,可用此法.解题方法是:先将n个元素进行全排列有种,个元素的全排列有A岩种,由于要求m个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到A n去调序的作用,即若"个元素排成一列,其中加个元素次序一定,共有二种排列方法.A m例如:n个元素全排列,其中m个元素顺序不变,共有多少种不同的排法?C n C%1平均法:若把kn个不同元素平均分成k组,每组n个,共有~ .例如:从1, 2, 3, 4中任取2个元素将其平均分成2组有几种分法?有管=3 (平均分组就用不着管组2!与组之间的顺序问题了)又例如将200名运动员平均分成两组,其中两名种子选手必在一组的概率是多少?厂8厂2(p=)G”2!注意:分组与插空综合.例如:n个元素全排列,其中某m个元素互不相邻且顺序不变,共有多少种排法?有当n-m+l>m, BP m<ZL±l 时有意义.2%1隔板法:常用于解正整数解组数的问题.例如:%1+X2+X3+X4=12的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为无,巧/3/4显然X1+X2+X3+X4=12,故(x1,x2,x3,x4)是方程的一组解.反之,方程的任何一组解(y1,j,2,y3,y4),对应着惟了的一f 中在〔12个球之间插入隔板的方式(如图•匚丁',二,所示)故方程的解和插板的方法一一对应.即方程的解的组数等于插隔板的方法数C* 注意:若为非负数解的X 个数,即用勺皿中⑶等于"1 ,有X] + x2 + .v3... + X" = A => % -1 + % -1 + ■■-a n -1 = A ,进而转化为求a的正整数解的个数为C^+n .%1定位问题:从n个不同元素中每次取出k个不同元素作排列规定某r个元素都包含在内,并且都排在某r 个指定位置则有例如:从n个不同元素中,每次取出m个元素的排列,其中某个元素必须固定在(或不固定在)某一位置上,共有多少种排法?固定在某一位置上:A::;;不在某一位置上:A':—A';;]:或&岩+&」.&;:(一类是不取出特殊元素a, 有A”. 一类是取特殊元素a,有从m-1个位置取一个位置,然后再从n-1个元素中取m-1,这与用插空法解决是一样的)%1指定元素排列组合问题.i.从n个不同元素中每次取出k个不同的元素作排列(或组合),规定某r个元素都包含在内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列、组合、二项式定理与概率测试题
一、选择题 (本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一 项是符合题目要求的. )
1、 如图所示的是 2008 年北京奥运会的会徽,其中的 “中国印 ”的外边是由四个色块构成,可以用
线段在不穿越另两个色块的条件下将其中任意两个色块连接起来 (如同架桥 ),如果用三条线段将这
四个色块连接起来,不同的连接方法共有 ()
A.8种
B.12种
C. 16种
D.20种
2、从 6 名志愿者中选出 4 个分别从事翻译、导游、导购、保洁四项不同的工作,其中甲乙两名志愿者不能从事
翻译工作,则不同的选排方法共有( ) A .96 种
B .180 种
C .240 种
D .280 种
3、五种不同的商品在货架上排成一排,其中 a 、b 两种必须排在一起,而
c 、
d 两种不能排在一起,则
不同的选
排方法共有( )
A .12 种
B .20 种
C .24 种
D .48 种
4、编号为 1、2、 3、4、5 的五个人分别去坐编号为
1、2、 3、4、5 的五个座位,其中有且只有两个的编号与座位号一
致的坐法是( )
A. 10种
B. 20 种
C. 30 种
D . 60 种
5、 设 a 、 b 、 m 为整数( m>0),若 a 和 b 被 m 除得的余数相同,则称
a 和
b 对模 m 同余 .记为 a ≡b(mod m)。
已知
1
2
·2+C
3 20
,则 b 的值可以是( )
a=1+C 20 +C 20
20 ·22
+ +C ·219
, b ≡a(mod 10)
20
.2011 C
6、在一次足球预选赛中,某小组共有 5 个球队进行双循环赛 (每两队之间赛两场 ),已知胜一场得 3 分,平一场得
1 分,负一场得 0 分.积分多的前两名可出线 (积分相等则要比净胜球数或进球总数
).赛完后一个队的积分可出现
的不同情况种数为( ) A .22 种
B .23 种
C .24 种
D .25 种
n 1
n 1
1
、 令 a n 为(1 x) 的展开式中含 x 项的系数,则数列 { } 的前 n 项和为
(
)
7
a n
n(n 3)
n(n 1) n 2n
A .
B .
C .
D .
2
2
n 1
n 1
8、 若 ( x 1)5 a 0 a 1( x 1) a 2 (x 1)2 ... a 5(x 1)5 ,则 a 0 = (
)
A . 32
B .1
C . -1
D . -32
n
9、 二项式 3x 2
2
(n N * ) 展开式中含有常数项,则 n 的最小取值是 (
)
3
x
A 5
B 6
C 7
D 8
10、四面体的顶点和各棱中点共 10 个点,在其中取 4 个不共面的点,则不同的取法共有(
)
A .150 种
B .147 种
C .144 种
D . 141 种
11、两位到北京旅游的外国游客要与
2008 奥运会的吉祥物福娃( 5 个)合影留念,要求排成一排,两位游客相邻且不
排在两端,则不同的排法共有 ( )
A .1440
B . 960
C .720
D .480
12、若 x ∈ A 则 1 ∈ A ,就称 A 是伙伴关系集合,集合 M={ - 1, 0, 1 , 1
,1,2,3,4}
x
3 2
的所有非空子集中,具有伙伴关系的集合的个数为(
)
A .15
B . 16
C . 28
D . 25
题号 1 2
3
4
5
6
7
8
9
10
11
12
答案
二、填空题 (每小题 5 分,共 20 分,把答案填在题中横线上
)
13.四封信投入 3 个不同的信箱,其不同的投信方法有
_________种.
14、在 ( x 2 1)( x 2) 7 的展开式中 x 3 的系数是
.
15、已知数列 { a n }的通项公式为 a n
2n 1 1,则 a 1C n 0 +a 2C 1n + a 3C n 3 + a n 1C n n =
16、对于任意正整数,定义
“n 的双阶
乘
n!!
如”下:对于
n 是偶数时,
n!!=n (n ·- 2) (n ·-4)
6× ;4×2对于
n 是奇数时, n!!=n (n ·- 2) (n ·- 4)
5×.3×1
现有如下四个命题:① (2005!!) (2006!!)=2006!· ;② 2006!!=2 1003·1003!;③ 2006!! 的个位数是
5.正确的命题是 ________.
0;④ 2005!! 的个位数是 三、解答题
(注意各题要写出简要的解答过程,并要计算出具体的数字,否则不给分
)
17、某学习小组有 8 个同学,从男生中选
2 人,女生中选 1 人参加数学、物理、化学三种竞赛,要求每科均有 1
人参加,共有 180 种不同的选法.那么该小组中男、女同学各有多少人
18、设 m, n∈ Z+, m、 n≥1,f(x)=(1+x)m+(1+x)n的展开式中, x 的系数为 19.
( 1)求 f(x)展开式中 x2的系数的最值;(2)对于使f(x)中x2的系数取最小值时的m、 n 的值,求 x7的系数.
19、7 位同学站成一排.问:
(1)甲、乙两同学必须相邻的排法共有多少种(2)甲、乙和丙三个同学都相邻的排法共有多少种
(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种
(4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起的排法有多少种
20、已知( x
1
) n 的展开式中前三项的系数成等差数列.2 x
(Ⅰ )求n 的值;(Ⅱ)求展开式中系数最大的项.
21、由0,1,2,3,4,5这六个数字。
( 1)能组成多少个无重复数字的四位数(2)能组成多少个无重复数字的四位偶数
( 3)组成无重复数字的四位数中比4032 大的数有多少个
22、规定 =x(x- 1)(x-m+ 1),其中 x∈R,m 为正整数,且 =1,这是排列数 (n,m 是正整数,且 m≤ n)的一种推广.
( 1)求的值;(2)排列数的两个性质:①,②.(其中m,n是正整数)是否都能推广到 (x∈ R, m 是正整数 )的情形若能推广,写出推广的形式并给予证明;若不能,则说明理由.。