高二数学数列测试题及答案.doc

合集下载

(完整版)高二数学数列专题练习题(含答案),推荐文档

(完整版)高二数学数列专题练习题(含答案),推荐文档

高中数学《数列》专题练习1.与的关系:,已知求,应分时;n S n a 11(1)(1)n n n S n a S S n -=⎧⎪=⎨->⎪⎩n S n a 1=n 1a =1S 时,=两步,最后考虑是否满足后面的.2≥n n a 1--n n S S 1a n a 2.等差等比数列等差数列等比数列定义()1n n a a d--=2n ≥*1()n na q n N a +=∈通项,dn a a n )1(1-+=(),()n m a a n m d n m =+->mn m n n n q a a q a a --==,11中项如果成等差数列,那么叫做与,,a A b A a 的等差中项.。

b 2a b A +=等差中项的设法:da a d a +-,,如果成等比数列,那么叫做与的等,,a G b G a b 比中项.abG =2等比中项的设法:,,aq a aq前项n 和,)(21n n a a nS +=d n n na S n 2)1(1-+=时;时1=q 1,na S n =1≠q qqa a q q a S n n n --=--=11)1(,11*(,,,,)m n p q a a a a m n p q N m n p q +=+∈+=+若,则2m p q =+qp ma a a +=2若,则q p n m +=+qp nm a a a a =2*2,,(,,,)m p q m p q a a a p q n m N =+=⋅∈若则有性质、、为等差数列n S 2n n S S -32n n S S -、、为等比数列n S 2n n S S -32n n S S -函数看数列12221()()22n n a dn a d An B d d s n a n An Bn=+-=+=+-=+111(1)11nn n n n n a a q Aq q a as q A Aq q q q===-=-≠--判定方法(1)定义法:证明为常数;)(*1N n a a n n ∈-+(2)等差中项:证明,*11(2N n a a a n n n ∈+=+-)2≥n (1)定义法:证明为一个常数)(*1N n a a n n ∈+(2)等比中项:证明21n n a a -=*1(,2)n a n N n +⋅∈≥(3)通项公式:均是不为0常数)(,nn a cq c q =3.数列通项公式求法:(1)定义法(利用等差、等比数列的定义);(2)累加法;(3)累乘法(型);n n n c a a =+1(4)利用公式;(5)构造法(型);(6)倒数法等11(1)(1)n n n S n a S S n -=⎧⎪=⎨->⎪⎩b ka a n n +=+14.数列求和(1)公式法;(2)分组求和法;(3)错位相减法;(4)裂项求和法;(5)倒序相加法。

高二数学数列专题练习题(含答案)

高二数学数列专题练习题(含答案)

高二数学数列专题练习题(含答案)高中数学《数列》专题练1.数列基本概念已知数列的前n项和S_n和第n项a_n之间的关系为:a_n=S_n-S_{n-1} (n>1),当n=1时,a_1=S_1.通过这个关系式可以求出任意一项的值。

2.等差数列和等比数列等差数列和等比数列是两种常见的数列类型。

对于等差数列,有通项公式a_n=a_1+(n-1)d,其中d为公差。

对于等比数列,有通项公式a_n=a_1*q^{n-1},其中q为公比。

如果a、G、b成等比数列,那么G叫做a与b的等比中项。

如果a、A、b、B成等差数列,那么A、B叫做a、b的等差中项。

3.求和公式对于等差数列,前n项和S_n=n(a_1+a_n)/2.对于等比数列,前n项和S_n=a_1(1-q^n)/(1-q),其中q不等于1.另外,对于等差数列,S_n、S_{2n}-S_n、S_{3n}-S_{2n}构成等差数列;对于等比数列,S_n、S_{2n}/S_n、S_{3n}/S_{2n}构成等比数列。

4.数列的函数看法数列可以看作是一个函数,通常有以下几种形式:a_n=dn+(a_1-d),a_n=An^2+Bn+C,a_n=a_1q^n,a_n=k*n+b。

5.判定方法对于数列的常数项,可以使用定义法证明;对于等差中项,可以证明2a_n=a_{n-1}+a_{n+1};对于等比中项,可以证明2a_n=a_{n-1}*a_{n+1}。

最后,对于数列的通项公式,可以使用数学归纳法证明。

1.数列基本概念和通项公式数列是按照一定规律排列的一列数,通常用{ }表示。

其中,第n项表示为an,公差为d,公比为q。

常用的数列有等差数列和等比数列。

等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。

等比数列的通项公式为an = a1q^(n-1),其中a1为首项,q为公比。

2.数列求和公式数列求和是指将数列中的所有项加起来的操作。

高二数学数列专题练习题(含答案)

高二数学数列专题练习题(含答案)

高中数学《数列》专题练习1.n S 与n a 的关系:11(1)(1)n n n S n a S S n -=⎧⎪=⎨->⎪⎩ ,已知n S 求n a ,应分1=n 时1a =1S ; 2≥n 时,n a =1--n n S S 两步,最后考虑1a 是否满足后面的n a .2.等差等比数列3.数列通项公式求法:(1)定义法(利用等差、等比数列的定义);(2)累加法;(3)累乘法(n n n c a a =+1型);(4)利用公式11(1)(1)n n n S n a S S n -=⎧⎪=⎨->⎪⎩;(5)构造法(b ka a n n +=+1型);(6)倒数法等 4.数列求和(1)公式法;(2)分组求和法;(3)错位相减法;(4)裂项求和法;(5)倒序相加法。

5. n S 的最值问题:在等差数列{}n a 中,有关n S 的最值问题——常用邻项变号法求解:(1)当0,01<>d a 时,满足⎩⎨⎧≤≥+001m ma a的项数m 使得m S 取最大值.(2)当 0,01><d a 时,满足⎩⎨⎧≥≤+001m m a a 的项数m 使得m S 取最小值。

也可以直接表示n S ,利用二次函数配方求最值。

在解含绝对值的数列最值问题时,注意转化思想的应用。

一、选择题1.已知{}n a 为等差数列,若π=++951a a a ,则28cos()a a +的值为( )A .21-B .23-C .21D .232.在等比数列{}n a 中,若,243119753=a a a a a 则=1129a a ( )A .9B .1C .2D .3 3.已知等差数列{}n a 的前n 项和为,21,551S a a S n =+且,209=a 则=11S ( ) A .260 B .220 C .130 D .1104.各项均不为零的等差数列{}n a 中,若),2,(*112≥∈=--+-n N n a a a n n n 则S 2 009等于( )A .0B .2C .2 009D .4 0185.在△ABC 中,tan A 是以4-为第三项,4为第七项的等差数列的公差,tan B 是以31为第三项,9为第六项的等比数列的公比,则这个三角形是( )A.钝角三角形B.锐角三角形C.等腰三角形D.非等腰的直角三角形6.记等差数列{}n a 的前项和为n s ,若103s s =,且公差不为0,则当n s 取最大值时,=n ( )A .4或5B .5或6C .6或7D .7或87.已知数列{}n a 的前n 项和n S 满足1)1log 2+=+n S n (,则通项公式为( )A.)(2*N n a n n ∈=B. ⎩⎨⎧≥==)2(2)1(3n n a n n C. )(2*1N n a n n ∈=+ D. 以上都不正确8.等差数列{}n a 的前n 项和为n S ,已知2110m m m a a a -++-=,2138m S -=,则m =( )A .38B .20C .10D .9 9.设数列{}n a 的前n 项和2n S n =,则8a 的值为( ) A .15 B .16 C .49 D .6410.n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332S a =-,则公比q =( ) A .3B .4C .5D .611.等比数列{}n a 的前n 项和为n S ,且41a ,22a ,3a 成等差数列,若,11=a 则4S =( ) A .7 B .8 C .15 D .1612.已知数列{}n a 的前n 项和为n S ,11a =,12n n S a +=,,则n S =( ) A .12-n B .1)23(-n C .1)32(-n D .121-n二、填空题:13.已知等比数列{}n a 为递增数列.若,01>a 且,5)(212++=+n n n a a a 则数列{}n a 的公比=q .14.设等比数列{}n a 的公比,2=q 前n 项和为,n S 则24a S = .15.数列{}n a 的前n 项和记为()11,1,211n n n S a a S n +==+≥则{}n a 的通项公式 16.等比数列{}n a 的首项为a 1=1,前n 项和为,n S 若S 10S 5=3132,则公比q 等于________. 三、解答题17.已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令b n =211n a -(n ∈N *),求数列{}n b 的前n 项和n T . 18.已知等比数列{}n a 的各项均为正数,且212326231,9a a a a a +==. (I )求数列{}n a 的通项公式. (II )设31323log log log n n b a a a =+++,求数列1{}nb 的前n 项和.19.已知{}n a 为等比数列,256,151==a a ;n S 为等差数列}{n b 的前n 项和,,21=b 8525S S =. (1) 求{}n a 和}{n b 的通项公式; (2) 设n T n n b a b a b a ++=2211,求n T .20.设各项均为正数的数列{}n a 的前n 项和为n S ,满足21441,,n n S a n n N *+=--∈且2514,,a a a 构成等比数列. (1)证明:2a =(2) 求数列{}n a 的通项公式; (3) 证明:对一切正整数n ,有1223111112n n a a a a a a ++++<. 21.2a ,5a 是方程2x 02712=+-x 的两根, 数列{}n a 是公差为正的等差数列,数列{}n b 的前n 项和为n T ,且n T 211-=n b ()*∈N n . (1)求数列{}n a ,{}n b 的通项公式;(2)记n c =n a n b ,求数列{}n c 的前n 项和n S .22.设数列{}n a 满足10a =且1111.11n na a +-=-- (Ⅰ)求{}n a 的通项公式; (Ⅱ)设1, 1.nn n k n k b b S ===<∑记S 证明:。

【必刷题】2024高二数学上册数列与数学归纳法专项专题训练(含答案)

【必刷题】2024高二数学上册数列与数学归纳法专项专题训练(含答案)

【必刷题】2024高二数学上册数列与数学归纳法专项专题训练(含答案)试题部分一、选择题:1. 已知数列{an}为等差数列,a1=3,a5=15,则公差d为()A. 3B. 4C. 5D. 62. 数列{an}的通项公式为an = 2n 1,则数列{an}的前5项和为()A. 25B. 30C. 35D. 403. 若数列{an}满足an+1 = 2an,且a1=1,则数列{an}是()A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法确定4. 用数学归纳法证明1+3+5+…+(2n1)=n²,下列步骤中错误的是()A. 验证n=1时等式成立B. 假设n=k时等式成立C. 证明n=k+1时等式成立D. 直接得出结论1+3+5+…+(2n1)=n²5. 已知数列{an}的通项公式为an = n² + n,则数列{an+1 an}的前5项和为()A. 20B. 25C. 30D. 356. 数列{an}为等比数列,a1=2,a3=8,则a5=()A. 16B. 24C. 32D. 647. 已知数列{an}满足an+2 = an+1 + an,a1=1,a2=1,则a5=()A. 3B. 4C. 5D. 68. 若数列{an}的通项公式为an = 3n 2,则数列{an}的前n项和为()A. n(3n1)/2B. n(3n+1)/2C. n(3n2)/2D. n(3n+2)/29. 用数学归纳法证明等式2^n > n²,下列步骤中错误的是()A. 验证n=1时等式成立B. 假设n=k时等式成立C. 证明n=k+1时等式成立D. 直接得出结论2^n > n²10. 已知数列{an}的通项公式为an = 2^n,则数列{an+1 / an}的值为()A. 1B. 2C. 3D. 4二、判断题:1. 数列{an}的通项公式为an = n²,则数列{an}是等差数列。

高二数学数列单元测试题11.doc

高二数学数列单元测试题11.doc

数列单元测试011一、选择题1.在正整数100至500之间能被11整除的个数为( ) A .34 B .35 C .36 D .37 2.在数列{a n }中,a 1=1,a n +1=a n 2-1(n ≥1),则a 1+a 2+a 3+a 4+a 5等于( ) A .-1 B .1 C .0 D .23.{a n }是等差数列,且a 1+a 4+a 7=45,a 2+a 5+a 8=39,则a 3+a 6+a 9的值是( ) A .24 B .27 C .30 D .33 4.设函数f (x )满足f (n +1)=2)(2nn f +(n ∈N *)且f (1)=2,则f (( ) A .95 B .97 C .105 D .1925.等差数列{a n }中,已知a 1=-6,a n =0,公差d ∈N *,则n (n ≥3)的最大值为( ) A .5 B .6 C .7 D .8 6.设a n =-n 2+10n +11,则数列{a n }从首项到第几项的和最大( ) A .第10项 B .第11项 C .第10项或11项 D .第12项 7.已知等差数列{a n }的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S ) A .180 B .-180 C .90 D .-90 8.现有相同的钢管,把它们堆放成正三角形垛,要使剩余的钢管尽可能的少, 那么剩余钢管的根数为( ) A .9 B .10 C .19 D .299.由公差为d 的等差数列a 1、a 2、a 3…重新组成的数列a 1+a 4, a 2+a 5, a 3+a 6…是( ) A .公差为d 的等差数列 B .公差为2d 的等差数列 C .公差为3d 的等差数列 D .非等差数列10.在等差数列{a n }中,若S 9=18,S n =240,a n -4=30,则n 的值为( ) A .14 B .15 C .16 D .17 二、填空题11.在数列{a n }中,a 1=1,a n +1=22+n n a a (n ∈N *),则72是这个数列的第_________项. 12.在等差数列{a n }中,已知S 100=10,S 10=100,则S 110=_________.13.在-9和3之间插入n 个数,使这n +2个数组成和为-21的等差数列,则n =_______. 14.等差数列{a n },{b n }的前n 项和分别为S n 、T n ,若n n T S =132+n n ,则1111b a =_________. 三、解答题15.已知数列{a n }的前n 项和S n =2n 2-5n ,求该数列的通项公式为a n16.在等差数列{a n }中,若a 1=25且S 9=S 17,求数列前多少项和最大.17.数列通项公式为a n =n 2-5n +4,问(1)数列中有多少项是负数?(2)n 为何值时,a n 有最小值?并求出最小值.18.甲、乙两物体分别从相距70 m 的两处同时相向运动,甲第一分钟走2 m ,以后每分钟比 前1分钟多走1 m ,乙每分钟走5 m . (1)甲、乙开始运动后,几分钟相遇.(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1 m ,乙继续每分 钟走5 m ,那么开始运动几分钟后第二次相遇?19.已知数列{a n }的前n 项和为S n ,且满足a n +2S n ·S n -1=0(n ≥2),a 1=21. (1)求证:{nS 1}是等差数列; (2)求a n 表达式;(3)若b n =2(1-n )a n (n ≥2),求证:b 22+b 32+…+b n 2<1.答案:1.【解析】观察出100至500之间能被11整除的数为110、121、132、…它们构成一个等差数列,公差为11,数a n =110+(n -1)·11=11n +99,由a n ≤500,解得n ≤36.4,n ∈N *,∴n ≤36.【答案】C 2.【解析】由已知:a n +1=a n 2-1=(a n +1)(a n -1), ∴a 2=0,a 3=-1,a 4=0,a 5=-1.【答案】A 3.【解析】a 1+a 4+a 7,a 2+a 5+a 8,a 3+a 6+a 9成等差数列,故a 3+a 6+a 9=2×39-45=33.【答案】D4.【解析】f (n +1)-f (n )=2n ⇒⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⨯=-⨯=-⨯=-1921)19()20( 221)2()3(121)1()2(f f f f f f相加得f (f (1)=21(1+2+…+19)⇒f (95+f (1)=97.【答案】B 5.【解析】a n =a 1+(n -1)d ,即-6+(n -1)d =0⇒n =d6+1∵d ∈N *,当d =1时,n 取最大值n =7.【答案】C 6.【解析】由a n =-n 2+10n +11=-(n +1)(n -11),得a 11=0,而a 10>0,a 12<0,S 10=S 11. 【答案】C 7.【解析】由等差数列性质,a 4+a 6=a 3+a 7=-4与a 3·a 7=-12联立,即a 3,a 7是方程x 2+4x -12=0的两根,又公差d >0,∴a 7>a 3⇒a 7=2,a 3=-6,从而得a 1=-10,d =2,S 80.【答案】A8.【解析】1+2+3+…+n <即2)1(-n n < 显然n =剩余钢管最少,此时用去22019⨯=190根.【答案】B9.【解析】(a 2+a 5)-(a 1+a 4)=(a 2-a 1)+(a 5-a 4)=2d .(a 3+a 6)-(a 2+a 5)=(a 3-a 2)+(a 6-a 5)=2d .依次类推.【答案】B10.【解析】S 9=2)(991a a +=18⇒a 1+a 9=4⇒2(a 1+4d )=4. ∴a 1+4d =2,又a n =a n -4+4d .∴S n =2)(1n a a n +=16n =240.∴n =15.【答案】B11.【解析】由已知得11+n a =n a 1+21,∴{n a 1}是以11a =1为首项,公差d =21的等差数列. ∴n a 1=1+(n -1)21,∴a n =12+n =72,∴n =6.【答案】6 12.【解析】S 100-S 10=a 11+a 12+…+a 100=45(a 11+a 100)=45(a 1+a 110)=-90⇒a 1+a 110=-2.S 110=21(a 1+a 110)×110=-110.【答案】-110 13.【解析】-21=2)39)(2(+-+n ,∴n =5.【答案】514.【解】1111b a =2)(212)(212)(2)(211211211211b b a a b b a a ++=++=322112132122121=+⨯⨯=T S .【答案】3221 15. 16.【解】∵S 9=S 17,a 1=25,∴9×25+2)19(9-⨯d =17×25+2)117(17-d 解得d =-2,∴S n =25n +2)1(-n n (-2)=-(n -13)2+169. 由二次函数性质,故前13项和最大.注:本题还有多种解法.这里仅再列一种.由d =-2,数列a n 为递减数列.a n =25+(n -1)(-2)≥0,即n ≤13.5. ∴数列前13项和最大. 17.【解】(1)由a n 为负数,得n 2-5n +4<0,解得1<n <4.∵n ∈N *,故n =2或3,即数列有2项为负数,分别是第2项和第3项. (2)∵a n =n 2-5n +4=(n -25)2-49,∴对称轴为n =25=2.5 又∵n ∈N *,故当n =2或n =3时,a n 有最小值,最小值为22-5×2+4=-2. 18.【解】(1)设n 分钟后第1次相遇,依题意得2n +2)1(-n n +5n =70 整理得:n 2+13n -140=0,解得:n =7,n =-去)∴第1次相遇在开始运动后7分钟. (2)设n 分钟后第2次相遇,依题意有:2n +2)1(-n n +5n =3×70 整理得:n 2+13n -6×70=0,解得:n =15或n =-28(舍去) 第2次相遇在开始运动后15分钟. 19.【解】(1)∵-a n =2S n S n -1,∴-S n +S n -1=2S n S n -1(n ≥2) S n ≠0,∴n S 1-11-n S =2,又11S =11a =2,∴{nS 1}是以2为首项,公差为2的等差数列. (2)由(1)n S 1=2+(n -1)2=2n ,∴S n =n21当n ≥2时,a n =S n -S n -1=-)1(21-n n ,n =1时,a 1=S 1=21,∴a n =⎪⎪⎩⎪⎪⎨⎧≥=)2( 1)-(21-)1( 21n n n n(3)由(2)知b n =2(1-n )a n =n 1,∴b 22+b 32+…+b n 2=221+231+…+21n <211⨯+321⨯+…+n n )1(1-=(1-21)+(21-31)+…+(11-n -n1)=1-n 1<1.。

高二数学数列试题答案及解析

高二数学数列试题答案及解析

高二数学数列试题答案及解析1.定义一种运算&,对于,满足以下性质:(1)2&2=1,(2)(&2=(&2)+3,则2008&2的数值为【答案】-3008【解析】(&2=(&2)+3,即(&2)=(&2-3,则 2&2,4&2,6&2,(&2)构成等差数列,(&2)=2&2+(1004-1)*(-3)=-30082.已知等差数列{an }的前n 项和Sn满足S3=0,S5=-5.(1)求{an}的通项公式;(2)求数列的前n 项和【答案】(1);(2)【解析】(1)设等差数列的首项,公差分别是,代入公式;(2)将和代入通项公式,整理,第二步是裂项相消,整理.试题解析:(1)因为S3=0,S5=-5。

(6分)(2)所以数列的前n项和…+=…+=。

(6分)【考点】1.等差数列的前n项和;2.等差数列的通项公式;3.裂项相消法求和.3.已知数列是首项为的等比数列,是的前项和,且,则数列的前项和为A.或B.或C.D.【答案】A【解析】显然,则,解得,则成等比数列,其公比为,则其前5项和为或.【考点】等比数列的求和公式.4.已知数列的前项和为,.(Ⅰ)求数列的通项公式;(Ⅱ)设数列的前项和为,,点在直线上,若存在,使不等式成立,求实数的最大值.【答案】(1);(2)4.【解析】(1)利用进行求解;(2)先利用点在直线上求得的通项,再利用求得,再利用错位相减法进行求和.试题解析:(Ⅰ)(1)(2)(2)-(1)得,即,成等比数列,公比为..(Ⅱ)由题意得:,成等差数列,公差为.首项,,,当时,,当时,成立,.,令,只需.(3)(4)(3)-(4)得:.为递增数列,且 ,,实数的最大值为.【考点】1.的应用;(2)错位相减法.5.已知正项数列的前项和为,对任意,有.(1)求数列的通项公式;(2)令,设的前项和为,求证:【答案】(1)(2)证明见解析.【解析】第一问根据题中所给的条件,令取时,对应的式子写出,之后两式相减,可得相邻两项的差为常数,从而得到数列为等差数列,令,可得数列的首项,从而求得数列的通项公式,第二问对式子进行分母有理化,化简可得,再求和,中间项就消没了,从而证得结果.试题解析:(1)由可得,,两式相减得,整理得,根据数列是正项数列,所以有,且有,所以数列是以为首项,以为公比的等比数列,所以有;(2)【考点】求数列的通项公式,数列求和问题.6.等差数列中,,则前7项的和()A.B.28C.63D.36【答案】C【解析】由等差中项可得, .故C正确.【考点】1等差数列的性质;2等差数列的前项和.7.(本小题满分12分)已知是一个等差数列,且。

高二数学数列试题答案及解析

高二数学数列试题答案及解析

高二数学数列试题答案及解析1.设等差数列的公差为d,前项和为,等比数列的公比为.已知,,,.(Ⅰ)求数列,的通项公式;(Ⅱ)当时,记,求数列的前项和.【答案】(Ⅰ)或;(Ⅱ).【解析】(Ⅰ)由题意有,即,解得或故或.(Ⅱ)由,知,,故,于是,①.②①-②可得,故.【考点】本题综合考查等差数列、等比数列和错位相减法求和,属中档题.2.已知数列的前项和构成数列,若,则数列的通项公式________.【答案】【解析】当时,,当时,,综上所述,,故答案为.【考点】数列通项与前项和之间的关系以及公式的应用.【方法点睛】本题主要考查数列通项与前项和之间的关系以及公式的应用,属于难题.已知求的一般步骤:(1)当时,由求的值;(2)当时,由,求得的表达式;(3)检验的值是否满足(2)中的表达式,若不满足则分段表示;(4)写出的完整表达式.3.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第n个图案中有白色地面砖块.【答案】4n+2【解析】第个图案有块,第个图案有块,第个图案有块,所以第个图案有块【考点】观察数列的通项4.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共为3升,下面3节的容积共4升,则第5节的容积为升.【答案】【解析】由题意可知,解得,所以.【考点】等差数列通项公式.5.在等差数列{an }中,S15>0,S16<0,则使an>0成立的n的最大值为 ().A.6B.7C.8D.9【答案】C【解析】依题意得S15==15a8>0,即a8>0;S16==8(a1+a16)=8(a8+a9)<0,即a8+a9<0,a9<-a8<0.因此使an>0成立的n的最大值是8,选C.6.已知数列是等比数列,,是和的等差中项.(1)求数列的通项公式;(2)设,求数列的前项和.【答案】(1)(2)【解析】(1)求等比数列通项公式,一般方法为待定系数法,即列出两个独立条件,解方程组即可,本题可利用等比数列通项公式广义定义求解,即,而是和的等差中项,都转化为:(2)先代入求解,再根据错位相减法求和,注意项的符号变化,项数的确定.试题解析:(1)设数列的公比为,因为,所以,.因为是和的等差中项,所以.即,化简得.因为公比,所以.所以().(2)因为,所以.所以.则,①. ②①-②得,,所以.【考点】等比数列通项公式,错位相减法求和7.等差数列,的前n项和分别为和,若则=________.【答案】.【解析】根据等差数列的性质,由.【考点】等差数列的性质.8.数列的一个通项公式是()A.B.C.D.【答案】B【解析】设此数列为,其符号为其绝对值为,可得通项公式.选B【考点】数列的通项公式9.《九章算术》是我国古代内容极为丰富的一部数学专著,书中有如下问题:今有女子善织,日增等尺,七日织28尺,第二日,第五日,第八日所织之和为15尺,则第九日所织尺数为A.8B.9C.10D.11【答案】B【解析】该数列为等差数列,且,即,解得.【考点】等差数列,数学文化.10.等差数列{an}共有2n+1项,其中奇数项之和为4,偶数项之和为3,则n的值是()A.3B.5C.7D.9【答案】A【解析】利用等差数列的求和公式和性质得出,代入已知的值即可.解:设数列公差为d,首项为a1,奇数项共n+1项,其和为S奇===(n+1)an+1=4,①偶数项共n项,其和为S偶===nan+1=3,②得,,解得n=3故选A【考点】等差数列的前n项和.11.数列的一个通项公式是()A.B.C.D.【答案】B【解析】观察数列的前6项知,该数列是以1为首项2为公比的等比数列,所以.故选B.【考点】观察法求数列的通项公式.12.数列是等差数列,若,且它的前项和有最大值,那么当取得最小正值时,值等于( )A.11B.17C.19D.21【答案】C【解析】由于前项和有最大值,所以,根据,有,,,所以,,结合选项可知,选C.【考点】等差数列的基本性质.13.设等差数列的公差为d,若数列为递减数列,则()A.B.C.D.【答案】C【解析】因为是等差数列,则,又由于为递减数列,所以,故选C.【考点】1.等差数列的概念;2.递减数列.14.设数列{an },{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,那么由an+bn所组成的数列的第37项的值为()A.0B.37C.100D.-37【答案】C【解析】数列{an }和{bn}都是等差数列,所以是等差数列,首项,所以数列是常数列,所以第37项的值为100【考点】等差数列15.设是等差数列的前项和,已知,则等于()A.13B.35C.49D.63【答案】C【解析】依题意有,解得,所以.【考点】等差数列的基本概念.【易错点晴】本题主要考查等差数列的基本概念. 在解有关等差数列的问题时可以考虑化归为和等基本量,通过建立方程(组)获得解.即等差数列的通项公式及前项和公式,共涉及五个量,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题,注意要弄准它们的值.运用方程的思想解等差数列是常见题型,解决此类问题需要抓住基本量、,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.16.设等差数列{an }的前n项和为Sn,若S3=9,S6=36.则a7+a8+a9等于()A.63B.45C.36D.27【答案】B【解析】设公差为d,则解得a1=1,d=2,则a7+a8+a9=3a8=3(a1+7d)=45.17.已知等差数列中,,公差,则使前项和为取最小值的正整数的值是()A.4和5B.5和6C.6和7D.7和8【答案】C【解析】,所以使前项和取最小值的正整数的值为6和7【考点】数列性质18.设是等差数列的前项和,已知,则等于()A.13B.35C.49D.63【答案】C【解析】依题意有,解得,所以.【考点】等差数列的基本概念.【易错点晴】本题主要考查等差数列的基本概念. 在解有关等差数列的问题时可以考虑化归为和等基本量,通过建立方程(组)获得解.即等差数列的通项公式及前项和公式,共涉及五个量,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题,注意要弄准它们的值.运用方程的思想解等差数列是常见题型,解决此类问题需要抓住基本量、,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.19.已知数列的通项公式为,记数列的前项和为,若对任意的恒成立,则实数的取值范围_________.【答案】【解析】由题意可得,,即求的最大值,所以当n=3时,,所以,填。

高二数学数列综合测试题(解析版)

高二数学数列综合测试题(解析版)
所以 或 或 ,所以 或 或 ,所以 的最小值为 .故选:A.
7.已知 分别是等差数列 与 的前 项和,且 ,则 ()
A. B. C. D.
【答案】B
【详解】因为数列 是等差数列,所以 ,
所以 ,
又因为 分别是等差数列 与 的前 项和,且 ,
所以 ,
故选: .
8.已知数列 满足 ,则满足 的 的最大取值为()
11.一个弹性小球从 高处自由落下,每次着地后又跳回原来高度的 再落下.设它第 次着地时,经过的总路程记为 ,则当 时,下面说法正确的是()
A. B. C. 的最小值为 D. 的最小值为250
【答案】BC
【详解】由题可知,第一次着地时, ;第二次着地时, ;
第三次着地时, ;……
第 次着地后,
则 ,显然 ,又 是关于 的增函数, ,故当 时, 的最小值为 ;
A.39B.45C.48D.51
【答案】D
【详解】设该塔群共有n阶,自上而下每一阶的塔数所构成的数列为 ,依题意可知 , ,…, 成等差数列,且公差为2, ,
则 ,解得 .
故最下面三价的塔数之和为 .故选:D
4.等比数列 的前 项和为 , , ,则 为()
A. B. C. D.28或-21
ห้องสมุดไป่ตู้【答案】A
数列复习训练题
一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一个
1.等差数列 中,已知 ,则 ()
A.36B.27C.18D.9
【答案】B
【详解】解:由题得 .故选:B
2.若数列 满足 , , ,则 的值为()
A.-3B.-2C.-1D.2
【答案】C
【详解】由 得 ,故有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014 年高二年级数列测试题一、选择题 (每小题 5 分,共 60 分)1.等差数列 { a n } 中,若 a 2+ a 8= 16, a 4= 6,则公差 d 的值是 ( )A .1B . 2C .- 1D .-22.在等比数列 { a } 中,已知 a = 2, a = 8,则 a 9等于 ()n315A .±4B . 4C .- 4D .163.数列 { a n } 中,对所有的正整数n 都有 a 1·a 2·a 3 a n =n 2 ,则 a 3+ a 5= ()6125 25 31 A. 16B. 9C.19D.154.已知- 9, a , a ,- 1四个实数成等差数列,- 9, b , b , b ,- 1 五个实数成等比12123数列,则 b 2(a 2- a 1)= ()9A .8B .- 8C .±8D.85.等差数列 { a } 的前 n 项和为 S ,若 a+a +a=30,则 S 的值是 ( )nn2 71213A .130B .65C .70D .756.设等差数列 { a n } 的前 n 项和为 S n .若 a 1=- 11, a 4+ a 6=- 6,则当S n 取最小值时,n等于()A .6B . 7C .8D .97.已知 { a } 为等差数列,其公差为-2,且 a 是 a 与 a 的等比中项, S 为 { a } 的前 n 项n739nn和, n ∈ N + ,则 S 10 的值为 ()A .- 110B .- 90C . 90D . 1108.等比数列 { a n } 是递减数列,前 n 项的积为 T n ,若 T 13= 4T 9,则 a 8a 15= ()A .±2B .±4C . 2D .49.首项为- 24 的等差数列,从第 10项开始为正数,则公差 d 的取值范围是 ( )A .d> 8B . d<38 83C. ≤d<3D. <d ≤33310.等比数列 a n 中,首项为 a 1 ,公比为 q ,则下列条件中,使 a n 一定为递减数列的条件是( )A . q1 B 、 a 1 0, q 1 C 、 a 1 0,0 q 1 或 a 1 0, q 1 D 、 q 111. 已知等差数列a n 共有 2n 1 项,所有奇数项之和为130,所有偶数项之和为120,则 n 等于()A. 9 B. 10 C. 11 D. 122 f (n) n(n∈ N +),且 f(1)= 2,则 f(20)为 ( ) 12.设函数 f(x)满足 f(n+ 1)=2A. 95 B.97 C. 105 D. 192二、填空题 (每小题 5 分,共 20 分.把答案填在题中的横线上)13.已知等差数列 { a } 满足: a =2,a = 6.若将 a , a ,a 都加上同一个数,所得的三个n 1 3 14 5数依次成等比数列,则所加的这个数为________.14.已知数列 {a } 中 ,a =1 且1 1 (n∈ N ),则 a =n 1 1 + 10a n 1 a n 315.在数列 { a n} 中, a1= 1, a2= 2,且满足a n a n 1 3(n 1)(n 2) ,则数列{ a n}的通项公式为 a n.已知数列满足: 1 n+ 1 a n, (n∈N* ) ,若n+ 1=-λ1+1,16 a =1,a =n b (n ) a na + 2b1=-λ,且数列 { b n} 是单调递增数列,则实数λ的取值范围为三、解答题 (本大题共70 分.解答应写出必要的文字说明、证明过程或演算步骤) 17.( 10 分)在数列 { a n} 中, a1= 8, a4= 2,且满足 a n+2- 2a n+1+ a n= 0(n∈ N+).(1)求数列 { a n} 的通项公式;(2)求数列 { a n} 的前 20 项和为 S20.18. (12 分 )已知数列{ a n}前n项和n 227n , (1) 求{| a n|}的前 11 项和T11;S n(2)求 {| a n |} 的前22项和 T22;19.(12分)已知数列{ a n}各项均为正数,前n项和为S n,且满足22S n=a n + n-4(n∈ N+).(1)求证 :数列{ a n}为等差数列 ;(2)求数列{ a n}的前 n 项和 S n.20. (12 分 )数列a n 的前 n 项和记为 S ,a11,a n 12S n 1 n 1.n( 1)求a n的通项公式;( 2)等差数列b n 的各项为正,其前 n 项和为 T ,且 T3 15 ,又a1b1, a2b2, a3b3n成等比数列,求T n.21.(12 分 )已知数列 { a n } ,{ b n } 满足 a 1=2, 2a n = 1+ a n a n + 1,b n = a n -1(b n ≠ 0).1(1)求证数列 { } 是等差数列;(2)令 c n1 ,求数列 { c n } 的通项公式.a n 122.( 12 分)在等差数列 { a n } 中,已知公差 d2 , a 2 是 a 1 与 a 4 的等比中项 .(1) 求数列 { a n } 的通项公式; (2) 设 b na n( n 1) ,记Tnb 1 b 2 b 3 b 4( 1)n b n ,求 T n .22014 年高二年级数列试题答案1---12 : BBABAAD CDCDB3n 1 为奇数 )2 (n1 , a nλ<213---16 :-3n 2,为偶数11)42 (n17.解 :(1)∵数列 { a n } 满足 a n + 2- 2a n + 1+a n =0,∴数列 { a n } 为等差数列,设公差为 d.∴a 4= 1+ , =2-8=- 2.∴ a n = 1+-=-- 1) = -a 3d d 3a (n 1)d 8 2(n 10 2n.n 20 (2) S = n(9 n) 得 S = -22018.解: S nn 227na n 2n 28∴当 n 14 时, a n 0n 14 时 a n(1) T 11 | a 1 | | a 2 || a 11 |( a 1a 11 )S 11176(2) T 22(| a 1 | | a 2 || a 13 |) (a 14 || a 22 |)(a 1 a 2a 13 )a14a15a22S13S22S13S222S 13 25419.(1)证明 :当 n=1 时,有 2a 1= +1-4,即 -2a 1-3=0,解得 a 1=3(a 1=-1 舍去 ).[ 来源 :学当 n ≥2时,有 2S n-1 又 n 两式相减得 n+1, = +n-5, 2S = +n-4, 2a = -即 -2a n , 也即 n 2 , 因此 n n-1 或 n n-1 若 n n-1+1= (a -1) = a -1=a a -1=-a . a -1=-a , 则 a n +a n-1=1.而 a 1=3,所以 a 2 =-2,这与数列 {a n } 的各项均为正数相矛盾 ,所以 a n n-1 即 n n-1因此数列 n 为等差数列. -1=a , a -a =1, {a }(2)解:由(1)知 a 1=3,d=1,所以数列 {a n } 的通项公式 a n =3+(n-1) 1=n+2,× 即 a n =n+2.得 S nn 25n221.(1) 证明:∵ b n =a n - 1,∴ a n = b n + 1.又∵ 2a n = 1+ a n a n +1,∴ 2(b n + 1)= 1+(b n + 1)(b n +1+ 1).化简得: b nb n - b n +11 - 1= 1(n ∈ N + ).n +1n n +1n= 1.即- b=b b.∵ b ≠0,∴n n 1nn 1n 1b nb b b b b又 1=1 = 1 =1,∴ { 1 是以 1 为首项, 1 为公差的等差数列.b 1a 1-1 -1 }21 =1+(n -1) ×1=n.∴b n = 1∴ n =1+1=n +1 ∴ a n1 n(2)∴ b nn.ann . c n12n 122.。

相关文档
最新文档