高二数学排列练习题及答案
高中数学排列与组合综合测试题(含答案)

高中数学排列与组合综合测试题(含答案)选修2-3 1.2.2第三课时排列与组合习题课一、选择题1.(2019山东潍坊)6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为()A.40 B.50C.60 D.70[答案] B[解析] 先分组再排列,一组2人一组4人有C26=15种不同的分法;两组各3人共有C36A22=10种不同的分法,所以乘车方法数为252=50,故选B.2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有()A.36种 B.48种C.72种 D.96种[答案] C[解析] 恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A33A24=72种排法,故选C.3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有() A.6个 B.9个C.18个 D.36个[答案] C[解析] 注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有C13=3(种)选法,即1231,1232,1233,而每种选择有A22C23=6(种)排法,所以共有36=18(种)情况,即这样的四位数有18个.4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有()A.2人或3人B.3人或4人C.3人D.4人[答案] A[解析] 设男生有n人,则女生有(8-n)人,由题意可得C2nC18-n=30,解得n=5或n=6,代入验证,可知女生为2人或3人.5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有()A.45种 B.36种C.28种 D.25种[答案] C[解析] 因为108的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2步,那么共有C28=28种走法.6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有()A.24种 B.36种C.38种 D.108种[答案] B[解析] 本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有2种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C13种分法,然后再分到两部门去共有C13A22种方法,第三步只需将其他3人分成两组,一组1人另一组2人即可,由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C13种方法,由分步乘法计数原理共有2C13A22C13=36(种).7.组合数Crn(n1,n,rZ)恒等于()A.r+1n+1Cr-1n-1 B.(n+1)(r+1)Cr-1n-1 C.nrCr-1n-1 D.nrCr-1n-1[答案] D[解析] ∵Crn=n!r!(n-r)!=n(n-1)!r(r-1)![(n-1)-(r-1)]!=nrCr-1n-1,故选D.8.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A.33 B.34C.35 D.36[答案] A[解析] ①所得空间直角坐标系中的点的坐标中不含1的有C12A33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C12A33+A33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C13=3个.故共有符合条件的点的个数为12+18+3=33个,故选A. 9.(2019四川理,10)由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是()A.72 B.96C.108 D.144[答案] C[解析] 分两类:若1与3相邻,有A22C13A22A23=72(个),若1与3不相邻有A33A33=36(个)故共有72+36=108个.10.(2019北京模拟)如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有()A.50种 B.60种C.120种 D.210种[答案] C[解析] 先安排甲学校的参观时间,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为C16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A25种,按照分步乘法计数原理可知共有不同的安排方法C16A25=120种,故选C.二、填空题11.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有________种.(用数字作答)[答案] 2400[解析] 先安排甲、乙两人在后5天值班,有A25=20(种)排法,其余5人再进行排列,有A55=120(种)排法,所以共有20190=2400(种)安排方法.12.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)[答案] 1260[解析] 由题意可知,因同色球不加以区分,实际上是一个组合问题,共有C49C25C33=1260(种)排法.13.(2019江西理,14)将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).[答案] 1080[解析] 先将6名志愿者分为4组,共有C26C24A22种分法,再将4组人员分到4个不同场馆去,共有A44种分法,故所有分配方案有:C26C24A22A44=1 080种.14.(2019山东济宁)要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法(用数字作答).[答案] 72[解析] 5有4种种法,1有3种种法,4有2种种法.若1、3同色,2有2种种法,若1、3不同色,2有1种种法,有432(12+11)=72种.三、解答题15.(1)计算C98100+C199200;(2)求20C5n+5=4(n+4)Cn-1n+3+15A2n+3中n的值.[解析] (1)C98100+C199200=C2100+C1200=100992+200=4950+200=5150.(2)20(n+5)!5!n!=4(n+4)(n+3)!(n-1)!4!+15(n +3)(n+2),即(n+5)(n+4)(n+3)(n+2)(n+1)6=(n+4)(n+3)(n+2)(n+1)n6+15(n+3)(n+2),所以(n+5)(n +4)(n+1)-(n+4)(n+1)n=90,即5(n+4)(n+1)=90.所以n2+5n-14=0,即n=2或n=-7.注意到n1且nZ,所以n=2.[点拨] 在(1)中应用组合数性质使问题简化,若直接应用公式计算,容易发生运算错误,因此,当mn2时,特别是m 接近于n时,利用组合数性质1能简化运算.16.(2019东北师大附中模拟)有一排8个发光二极管,每个二极管点亮时可发出红光或绿光,若每次恰有3个二极管点亮,但相邻的两个二极管不能同时点亮,根据这三个点亮的二极管的不同位置和不同颜色来表示不同的信息,求这排二极管能表示的信息种数共有多少种?[解析] 因为相邻的两个二极管不能同时点亮,所以需要把3个点亮的二极管插放在未点亮的5个二极管之间及两端的6个空上,共有C36种亮灯办法.然后分步确定每个二极管发光颜色有222=8(种)方法,所以这排二极管能表示的信息种数共有C36222=160(种).17.按下列要求把12个人分成3个小组,各有多少种不同的分法?(1)各组人数分别为2,4,6个;(2)平均分成3个小组;(3)平均分成3个小组,进入3个不同车间.[解析] (1)C212C410C66=13 860(种);(2)C412C48C44A33=5 775(种);(3)分两步:第一步平均分三组;第二步让三个小组分别进入三个不同车间,故有C412C48C44A33A33=C412C48C44=34 650(种)不同的分法.18.6男4女站成一排,求满足下列条件的排法共有多少种?(1)任何2名女生都不相邻有多少种排法?(2)男甲不在首位,男乙不在末位,有多少种排法?(3)男生甲、乙、丙排序一定,有多少种排法?(4)男甲在男乙的左边(不一定相邻)有多少种不同的排法?[解析] (1)任何2名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有A66A47种不同排法.(2)方法一:甲不在首位,按甲的排法分类,若甲在末位,则有A99种排法,若甲不在末位,则甲有A18种排法,乙有A18种排法,其余有A88种排法,综上共有(A99+A18A18A88)种排法.方法二:无条件排列总数A1010-甲在首,乙在末A88甲在首,乙不在末A99-A88甲不在首,乙在末A99-A88甲不在首乙不在末,共有(A1010-2A99+A88)种排法.(3)10人的所有排列方法有A1010种,其中甲、乙、丙的排序有A33种,又对应甲、乙、丙只有一种排序,所以甲、乙、丙排序一定的排法有A1010A33种.(4)男甲在男乙的左边的10人排列与男甲在男乙的右边的10人排列数相等,而10人排列数恰好是这二者之和,因此满足条件的有12A1010种排法.。
高二排列组合统计

教学设计教学设计1.用1,3,5三个奇数和2,4两个偶数组成一个五位数,两个偶数之间恰好有一个奇数的五位数的个数是( )A .24B .36C .48D .602.C 33+C 43+C 53+…+C 153等于( )A .C 154B .C 164 C .C 173D .C 1743.有4个不同的小球放入3个盒子中,每个盒子至少放一个小球,则不同的放法共有( )A .12种B .18种C .24种D .36种4.盒中有10个螺丝钉,其中有3个是坏的,现从盒中随机地抽取4个,那么概率是310的事件为( ) A .恰有1个是坏的 B .4个全是好的 C .恰有2个是好的 D .至多有2个是坏的5.甲、乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制,甲在每局比赛中获胜的概率均为34,且各局比赛结果相互独立.则在甲获得冠军的情况下,比赛进行了三局的概率为( )A .13B .25C .23D .456.某电视台的夏日水上闯关节目中的前三关的过关率分别为56,45,35,只有通过前一关才能进入下一关,且通过每关相互独立.一选手参加该节目,则该选手能进入第四关的概率为( )A .25B .1225C .1425D .357.某高三学生进行考试心理素质测试,场景相同的条件下每次通过测试的概率为45,则连续测试4次,至少有3次通过的概率为( )A .512625B .256625C .64625D .641258.设服从二项分布(,)B n p 的随机变量X 的期望与方差分别是10和8,则n p ,的值分别是( ) A .150,5 B .160,5 C .450,5 D .460,59.已知随机变量X 服从正态分布()4,9N ,且()()2P X P X a ≤=≥,则a =( )A .3B .5C .6D .710.已知随机变量X 服从正态分布()23,N σ, 且()40.84P X ≤=, 则()24P X <<= ( ) A .0.84 B .0.68 C .0.32 D .0.1611.甲、乙两类水果的质量(单位:kg )分别服从正态分布()()221122,,,N N μσμσ,其正态分布的密度曲线如图所示,则下列说法中正确的是( )A.甲类水果的平均质量10.4kgμ=B.甲类水果的质量比乙类水果的质量更集中于平均值附近C.甲类水果的平均质量比乙类水果的平均质量小D.乙类水果的质量比甲类水果的质量更集中于平均值附近12.某校寒假行政值班安排,要求每天安排一名行政人员值日,现从包含甲、乙两人的七名行政人员中选四人负责四天的轮班值日,在下列条件下,各有多少种不同的安排方法?(1)甲、乙两人都被选中,且安排在前两天值日;(2)甲、乙两人只有一人被选中,且不能安排在后两天值日.13.(用数字作答)从5本不同的故事书和4本不同的数学书中选出4本,送给4位同学,每人1本,问:(1)如果故事书和数学书各选2本,共有多少种不同的送法?(2)如果故事书甲和数学书乙必须送出,共有多少种不同的送法?14.有7本不同的书:教学设计教学设计(1)全部分给6个人,每人至少一本,有多少种不同的分法?(2)全部分给5个人,每人至少一本,有多少种不同的分法?.15.随着手机的发展,“微信”逐渐成为人们支付购物的一种形式.某机构对“使用微信支付”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信支付”赞成人数如下表.(Ⅰ)若以“年龄45岁为分界点”,由以上统计数据完成下面22 列联表,并判断是否有99%的把握认为“使用微信支付”的态度与人的年龄有关;(Ⅱ)若从年龄在[45,65)的被调查人中按照赞成与不赞成分层抽样,抽取5人进行追踪调查,在5人中抽取3人做专访,求3人中不赞成使用微信支付的人数的分布列和期望值.参考数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.16.为了解某班学生喜欢数学是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表,已知在全部50人中随机抽取1人抽到喜欢数学的学生的概率为3. (1)请将上面的列联表补充完整(不用写计算过程);(2)能否在犯错误的概率不超过0.005的前提下认为喜欢数学与性别有关?说明你的理由; (3)现从女生中抽取2人进一步调查,设其中喜欢数学的女生人数为ξ,求ξ的分布列与期望. 下面的临界表供参考:(参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)教学设计教学设计17.甲、乙两名篮球运动员,甲投篮一次命中的概率为23,乙投篮一次命中的概率为12,若甲、乙各投篮三次,设X 为甲、乙投篮命中的次数的差的绝对值,其中甲、乙两人投篮是否命中相互没有影响. (1)若甲、乙第一次投篮都命中,求甲获胜(甲投篮命中数比乙多)的概率;(2)求X 的分布列及数学期望.18.设随机变量X 的分布列如下:若5p ≥,则()E X 的最大值是___________,()D X 的最大值是___________. 19.设随机变量~(3,4)X N ,且()20.7P X >=,则()4P X ≥=____________.教学设计参考答案1.B【解析】【分析】根据两个偶数之间恰好有一个奇数,采用捆绑法,将两个偶数和一个奇数捆绑在一起, 然后全排列.【详解】将两个偶数和一个奇数捆绑在一起有223A ⨯种方法,然后全排列,共有23233A A 36⨯⨯=种排法.故选:B .【点睛】本题主要考查排列的实际应用,还考查了理解辨析的能力,属于基础题.2.B【解析】【分析】利用组合数的性质求解【详解】C 33+C 43+C 53+…+C 153,4333334456715...C C C C C C =++++++,43333556715...C C C C C =+++++,433366715...C C C C =++++,43437151515......C C C C =++==+,416C =. 故选:B【点睛】本题主要考查组合数的性质,还考查了运算求解的能力,属于基础题.3.D【解析】教学设计【分析】先把小球分3组共有24C种分法,再将3组小球全排列,放入对应3个盒子即可. 【详解】根据题意,分2步安排,第一步,把4个小球分成3组,其中1组2只,剩余2组各1只,分组方法有246C=种,第二步,把这3组小球全排列,对应3个盒子,有336A=种,根据分步计数原理可得所有的不同方法共有6636⨯=种.故选:D【点睛】本题主要考查了计数原理,排列与组合的应用,属于中档题.4.C【解析】【分析】利用超几何分布的概率计算公式,分别计算出对应的概率,由此判断出正确的选项. 【详解】对于选项A,概率为133741012C CC=.对于选项B,概率为4741016CC=.对于选项C,概率为2237410310C CC=.对于选项D,包括没有坏的,有1个坏的和2个坏的三种情况.根据A选项,恰好有一个坏的概率已经是13210>,故D选项不正确.综上所述,本小题选C.【点睛】本小题主要考查超几何分布的识别以及利用超几何分布概率计算公式计算随机事件的概率,属于基础题.5.A【解析】【分析】记事件:A甲获得冠军,事件:B比赛进行三局,计算出事件AB的概率和事件A的概率,然后由条件概率公式可得所求事件的概率为()() () P ABP B AP A=.教学设计【详解】记事件:A 甲获得冠军,事件:B 比赛进行三局,事件:AB 甲获得冠军,且比赛进行了三局,则第三局甲胜,前三局甲胜了两局, 由独立事件的概率乘法公式得()12313944432P AB C =⋅⋅⋅=, 对于事件A ,甲获得冠军,包含两种情况:前两局甲胜和事件AB ,()2392743232P A ⎛⎫∴=+= ⎪⎝⎭,()()()932132273P AB P B A P A ∴==⋅=,故选A. 【点睛】本题考查利用条件概率公式计算事件的概率,解题时要理解所求事件的之间的关系,确定两事件之间的相对关系,并利用条件概率公式进行计算,考查运算求解能力,属于中等题. 6.A【解析】【分析】利用相互独立试验概率乘法公式能求出该选手能进入第四关的概率.【详解】 解:某电视台夏日水上闯关节目中的前三关的过关率分别为56,45,35, 只有通过前一关才能进入下一关,且通过每关相互独立, 一选手参加该节目,则该选手能进入第四关的概率为:54326555⨯⨯=, 故选:A .【点睛】本题考查概率的求法,考查相互独立试验概率乘法公式等基础知识,考查运算求解能力,是基础题.7.A【解析】 4次独立重复实验,故概率为343444414512555625C C ⎛⎫⎛⎫⋅+= ⎪ ⎪⎝⎭⎝⎭. 8.A【解析】【分析】教学设计根据二项分布的期望和方差公式建立方程组即可得解.【详解】题意可得10,(1)8,np np p =⎧⎨-=⎩解得5015n p =⎧⎪⎨=⎪⎩. 故选:A【点睛】此题考查二项分布的认识,根据二项分布的期望和方差建立方程组求解参数,关键在于熟练掌握二项分布的期望方差公式.9.C【解析】【分析】根据在关于4X =对称的区间上概率相等的性质求解.【详解】4μ=,3σ=,(2)(42)(42)(6)()P X P X P X P X P X a ∴≤=≤-=≥+=≥=≥,6a ∴=. 故选:C .【点睛】本题考查正态分布的应用.掌握正态曲线的性质是解题基础.随机变量X 服从正态分布()2,N μσ,则()()P X m P X m μμ≤-=≥+.10.B【解析】【分析】先计算出()()414P X P X >=-≤,由正态密度曲线的对称性得出()2P X <= ()4P X >,于是得出()()()24124P X P X P X <<=-<->可得出答案.【详解】由题可知,()()41410.840.16P X P X >=-≤=-=,由于()2~3,X N σ,所以,()()240.16P X P X <=>=,因此,()()()2412410.160.160.68P X P X P X <<=-<->=--=,故选B. 【点睛】本题考查正态分布在指定区间上的概率,考查正态密度曲线的对称性,解题时要注意正态密度曲线的对称轴,利用对称性来计算,考查运算求解能力,属于基础题. 11.ABC 【解析】 【分析】根据正态分布的图像意义判定即可. 【详解】由图像可知,甲类水果的平均质量10.4kg μ=,乙类水果的平均质量20.8kg μ=,12σσ<,则A ,B ,C 都正确;D 不正确. 故选:ABC . 【点睛】本题主要考查了正态分布图像的理解,属于基础题型. 12.(1)40;(2)240 【解析】 【分析】(1)利用分步计数原理求解,优先考虑甲乙二人再考虑其余人员; (2)先确定甲乙两人之一安排在前两天,再安排其余人员. 【详解】(1)第一步:甲、乙两人安排在前两天值日,有22A 种排法,第二步:从剩下的五人中选两人安排在后两天排列值日,有25A 种排法.根据分步乘法计数原理,可得满足条件的排法种数为2225A A 40.=(2)第一步:从甲、乙两人中选一人安排在前两天中的一天值日,有1122C C ⨯种排法. 第二步:从剩下的五人中选三人安排在剩余的三天值日,有35A 种排法.根据分步乘法计数原理,可得满足条件的排法种数为113225C C A 240=.【点睛】此题考查计数原理的应用,涉及排列组合知识,解决排序问题,关键在于弄清分步与分类的区别.13.(1)1440;(2)504. 【解析】 【分析】(1)由分步乘法计数原理可得共有224544C C A 种送法,计算即可得解; (2)由分步乘法的计数原理可得共有2474504C A =种送法,计算即可得解. 【详解】(1)由题意可知,5本不同的故事书中任选2本有25C 种选择,4本不同的数学书中任选2本有24C 种选择,4个不同的学生又有44A 种选择,因此由乘法计数原理得共有2245441440C C A =种不同的送法;(2)如果故事书甲和数学书乙必须送出,则需要从剩余7本中选2本书即27C 种选择,4个不同的学生又有44A 种选择,因此由乘法计数原理得共有2474504C A =种不同的送法 【点睛】本题考查了分步乘法计数原理与排列组合的综合应用,属于基础题. 14.(1)15120; (2)16800. 【解析】 【分析】(1)根据题意,则分2步进行分析:①、将7本书,分为6组,其中1组2本,其他组每组1本,②、将6组进行全排列对应6人即可;分别求出每一步的情况数目,由分步计数原理计算可得答案.(2)由题意知7本不同的书分给5个人,每人至少一本,并且全部分完,分两种分法:一人得3本,其余4人各得一本;两人各得2本,其余3人各得一本;分别求出再相加. 【详解】(1)根据题意,将7本书分给6个人,且每人至少一本,则必须是其中1个人2本,其他人每人1本,则分2步进行分析:①、将7本书,分为6组,其中1组2本,其他组每组1本,有2721C =种分组方法, ②、将分好的6组对应6人,将6组进行全排列即可,有66720A =种方法,则一共有2172015120⨯=种不同的分法;(2)有两类办法:一人得3本,其余4人各得一本,方法数为3575C A ⋅ ;两人各得2本,其余3人各得一本,方法数为22575512C C A , 所以所求方法种数为3575C A ⋅+22575512C C A =16800种. 【点睛】本题考查排列、组合的运用,此类问题一般是先分组,再对应,属于基础题. 15.(Ⅰ)详见解析;(Ⅱ)详见解析. 【解析】 【分析】(Ⅰ)根据频数分布表补全列联表,代入公式可求得29.98 6.635K ≈>,从而可知有99%的把握;(Ⅱ)根据分层抽样的方法可知抽取的5人中,支持微信支付3人,不支持微信支付2人,根据超几何分布的特点求得分布列和数学期望. 【详解】(Ⅰ)由频数分布表得22⨯列联表如下:2250(3102710)9.979 6.63537301320K ⨯⨯-⨯∴=≈>⨯⨯⨯∴有99%的把握认为“使用微信交流”的态度与人的年龄有关(Ⅱ)年龄在[)45,65中支持微信支付9人,不支持微信支付6人由分层抽样方法可知:抽取的5人中,支持微信支付3人,不支持微信支付2人 设3人中不支持微信支付的人数为ξ,则ξ所有可能的取值为:0,1,2()33351010C P C ξ===,()213235631105C C P C ξ====,()1232353210C C P C ξ===ξ∴的分布列为:()00.110.620.3 1.2E ξ∴=⨯+⨯+⨯=【点睛】本题考查独立性检验、超几何分布的分布列和数学期望的求解,对于学生的基础计算能力有一定的考查,属于常规题型.16.(1)列联表见解析;(2)能,理由见解析;(3)分布列见解析,()45E ξ=. 【解析】 【分析】(1)由题意可知,全部50人中喜欢数学的学生人数为30,据此可完善列联表; (2)根据列联表中的数据计算出2K 的观测值,结合临界值表可得出结论;(3)由题意可知,随机变量ξ的可能取值有0、1、2,利用超几何分布可得出随机变量ξ的概率分布列,并由此可计算出随机变量ξ的数学期望值. 【详解】(1)列联表补充如下:(2)()225020151058.3337.87930202525K ⨯⨯-⨯=≈>⨯⨯⨯,∴在犯错误的概率不超过0.005的前提下,认为喜欢数学与性别有关;(3)喜欢数学的女生人数ξ的可能取值为0、1、2,其概率分别为()0210152257020C C P C ξ===,()110152251112C C P C ξ===, ()2010152253220C C P C ξ===, 故随机变量ξ的分布列为:ξ的期望值为()7134012202205E ξ=⨯+⨯+⨯=. 【点睛】本题考查利用独立性检验解决实际问题,同时也考查了离散型随机变量分布列及其数学期望的计算,涉及超几何分布的应用,考查计算能力,属于中等题. 17.(1)49;(2)分布列见解析,1 【解析】 【分析】(1)甲获胜的情况为3:1,3:2,2:1分别计算概率即可得解;(2)X 的所有可能取值是0,1,2,3,分别计算概率,写出分布列,计算数学期望. 【详解】(1)甲以3:1获胜的概率221211329P ⎛⎫⎛⎫=⨯=⎪ ⎪⎝⎭⎝⎭,甲以3:2获胜的概率22122212C 329P ⎛⎫⎛⎫=⨯= ⎪ ⎪⎝⎭⎝⎭, 甲以2:1获胜的概率213221113329P C ⎛⎫=⨯⨯⨯= ⎪⎝⎭, 则甲获胜的概率1231214.9999P P P P =++=++= (2)由题意可得X 的所有可能取值是0,1,2,3.3323232112233333333112112112(0)C C C C C C 323323323P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯+⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⨯ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭311111722161262724⎛⎫⨯=+++=⎪⎝⎭; 33232333212133331121121121(2)C C C C 3233233232P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 11115723618924=+++=; 33331121111(3)32322162724P X ⎛⎫⎛⎫⎛⎫⎛⎫==⨯+⨯=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭;75111(1)124242424P X ==---=. X 的分布列为故()711510123 1.24242424E X =⨯+⨯+⨯+⨯=此题考查求解概率和分布列,根据分布列求解期望,关键在于准确求解概率. 18.25 3875【解析】 【分析】①根据概率性质求得103p ≤≤,计算出()E X 的范围; ②计算出()D X 结合二次函数性质求解取值范围. 【详解】①由题意可得110,3310,31,5p p p ⎧≤-≤⎪⎪⎪≤≤⎨⎪⎪≥⎪⎩解得1153p ≤≤. 因为()11120212133335E X p p p p ⎛⎫⎛⎫⎛⎫=⨯++⨯-+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以()E X 的最大值是25, ②因为()222111[0(13)]2[1(13)])[2(13)]333D X p p p p p p ⎛⎫⎛⎛⎫=--⨯++--⨯-+--⨯-⎪ ⎪⎝⎭⎝⎝⎭2293p p =-++,因为1153p ≤≤,所以()3875D X ≤,所以()D X 的最大值是38.75【点睛】此题考查求解分布列的期望和方差,根据函数性质求解取值范围,易错点在于漏掉考虑概率的取值范围. 19.0.3【分析】根据正态分布特点,结合对称性可得(4)(2)P X P X ≥=≤. 【详解】由题意可得(4)(2)10.70.3.P X P X ≥=≤=-= 故答案为:0.3 【点睛】此题考查正态分布,根据正态分布密度曲线特征求解概率,关键在于熟练掌握正态分布密度曲线的对称性.。
高二数学排列组合专题训练(一)

⾼⼆数学排列组合专题训练(⼀)⾼⼆数学“排列组合”专题训练(⼀)班级姓名学号⼀.选择填空题1.从编号分别为1,2,3,4,5,6,7,8,9,10,11的11个球中,取出5个⼩球,使这5个⼩球的编号之和为奇数,其⽅法总数为( C )(A )200 (B )230 (C )236 (D )2062. 从{1、2、3、4、…、20}中任选3个不同的数,使这三个数成等差数列,这样的等差数列最多有( B )(A )90个(B )180个(C )200个(D )120个3兰州某车队有装有A ,B ,C ,D ,E ,F 六种货物的卡车各⼀辆,把这些货物运到西安,要求装A 种货物,B 种货物与E 种货物的车,到达西安的顺序必须是A ,B ,E (可以不相邻,且先发的车先到),则这六辆车发车的顺序有⼏种不同的⽅案( B )(A )80 (B )120 (C )240 (D )3604. ⽤0,1,2,3,4这五个数字组成⽆重复数字的五位数,其中恰有⼀个偶数夹在两个奇数之间的五位数的个数是( C )(A )48 (B )36 (C )28 (D )125. 某药品研究所研制了5种消炎药,,,,,54321a a a a a 4种退烧药,,,,4321b b b b 现从中取出两种消炎药和⼀种退烧药同时使⽤进⾏疗效实验,但⼜知,,21a a 两种药必须同时使⽤,且43,b a 两种药不能同时使⽤,则不同的实验⽅案有( D )(A )27种(B )26种(C )16种(D )14种6. 某池塘有A ,B ,C 三只⼩船,A 船可乘3⼈,B 船可乘2 ⼈,C 船可乘1 ⼈,今天3个成⼈和2 个⼉童分乘这些船只,为安全起见,⼉童必须由成⼈陪同⽅能乘船,他们分乘这些船只的⽅法共有( D )(A )120种(B )81种(C )72种(D )27种7. 将5枚相同的纪念邮票和8张相同的明信⽚作为礼品送给甲、⼄两名学⽣,全部分完且每⼈⾄少有⼀件礼品,不同的分法是( A )(A )52 (B )40 (C )38 (D )118. ⽤1、2、3、4、5、6六个数字组成没有重复数字的四位数中,是9的倍数的共有( D )A.360个B.180个C.120个D.24个解:因为3+4+5+6=18能被9整除,所以共有44A =24个.9. 4名男⽣3名⼥⽣排成⼀排,若3名⼥⽣中有2名站在⼀起,但3名⼥⽣不能全排在⼀起,则不同的排法种数有( A )(A )2880 (B )3080 (C )3200 (D )360010. 在5付不同⼿套中任取4只,4只⼿套中⾄少有2只⼿套原来是同⼀付的可能取法有( C )(A) 190 (B) 140 (C )130 (D )3011.将某城市分为四个区(如图),需要绘制⼀幅城市分区地图,现有5种不同颜⾊,图中①②③④,每区只涂⼀⾊,且相邻两区必涂不同的颜⾊(不相邻两区所涂颜⾊不限),则不同的涂⾊⽅式有( A )A.240种B.180种C.120种D.60种12.圆周上有16个点,过任何两点连结⼀弦,这些弦在圆内的交点个数最多有( C )A.A 164B.A 162A 142C.C 164D.C 162C 14213.20个不同的⼩球平均分装到10个格⼦中,现从中拿出5个球,要求没有两个球取⾃同⼀格⼦中,则不同的取法⼀共有( B )A.C 510B.C 520 C.C 510C 12 D.A 210A 12 14.从6双不同的⼿套中任取4只,其中恰好有两只是⼀双的取法有( B )A.120种B.240种C.255种D.300种15.某⼈练习射击,射击8枪命中4枪,这4枪中恰好有3枪连在⼀起的不同种数为( D )A.72B.48C.24D.2016.某博物馆要在20天内接待8所学校的学⽣前去参观,其中⼀所学校因⼈数较多要连续参观3天,其余学校只需要1天,在这20天内不同的安排⽅法为( C )A.C 320A 717B.A 820C.C 118A 717D.A 1818种⼆.填空题17.商店⾥有15种上⾐,18种裤⼦,某⼈要买⼀件上⾐或⼀条裤⼦,共有__33_种不同的选法;要买上⾐、裤⼦各⼀件,共有_270_种不同的选法.18.将1,2,3,4,5,6,7,8,9这九个数排成三横三纵的⽅阵,要求每⼀竖列的三个数从前到后都是由从⼩到⼤排列,则不同的排法种数是_1680 _19.过正⽅体的每三个顶点都可确定⼀个平⾯,其中能与这个正⽅体的12条棱所成的⾓都相等的不同平⾯的个数为 8 个 20.3名⽼师带领6名学⽣平均分成三个⼩组到三个⼯⼚进⾏社会调查,每⼩组有1名⽼师和2名学⽣组成,不同的分配⽅法有 540 种。
排列组合高二练习题及答案

排列组合高二练习题及答案一、排列组合的基本概念和计算方法排列组合是数学中的一个重要概念,在高二数学课程中经常会出现相关的练习题。
下面是一些排列组合的基本概念和计算方法。
1.1 排列的概念排列是从一组元素中选取若干个元素按照一定的次序排列成一列,其中每个元素只能使用一次。
若有n个元素,要从中选取k个元素进行排列,那么排列的数目为P(n,k),公式为P(n,k) = n! / (n - k)!1.2 组合的概念组合是从一组元素中选取若干个元素无序地组成一组,其中每个元素只能使用一次。
若有n个元素,要从中选取k个元素进行组合,那么组合的数目为C(n,k),公式为C(n,k) = n! / (k! * (n - k)!)1.3 阶乘的概念阶乘是指从1乘到该数的连续自然数的乘积。
例如,5的阶乘表示为5!,其计算方法为5! = 5 * 4 * 3 * 2 * 1 = 120。
1.4 排列组合的计算方法在计算排列组合的过程中,需要用到阶乘的概念。
对于较大的数值,可以使用计算器或数学软件进行计算。
二、排列组合高二练习题现在,我们来看一些高二排列组合的练习题,帮助你巩固所学的知识。
2.1 题目一某班有10个学生,要从中选择3个学生组成一个小组,问有多少种不同的选择方法?答案:根据组合的计算方法,可得到C(10,3) = 10! / (3! * (10 - 3)!) = 120 种不同的选择方法。
2.2 题目二10个人依次排队,他们要按照以下条件进行排队:- 男生必须站在女生的前面- 同性别中按字母顺序排队问有多少种不同的排队方法?答案:根据条件,首先将10个人分成男生和女生两组,分别为5个男生和5个女生。
对于同性别中的排队,可以计算出男生的排队方式为P(5,5) = 5! = 120种,女生的排队方式也是一样。
因此,根据乘法原理,男女生排队的不同方法数为P(5,5) * P(5,5) = 120 * 120 = 14400种。
高二数学排列组合练习题

高二数学排列组合练习题1. 某班共有6个男生和5个女生,现从中选出3名男生和2名女生组成一个团队。
问有多少种不同的组队方式?解析:根据排列组合的知识,我们可以使用组合的方式求解。
选取3名男生可以有C(6,3)种选择,选取2名女生可以有C(5,2)种选择。
根据乘法原理,两者的选择方式相互独立,所以总的组队方式数量为C(6,3) * C(5,2) = 20 * 10 = 200种。
2. 某电影院有8个座位,现有8名观众前往观看电影。
其中3对观众是夫妻关系,要求夫妻不能坐在相邻的座位上。
问有多少种不同的座位安排方式?解析:对于夫妻关系的观众,他们不能坐在相邻的座位上,相邻的座位可以看作是一对座位。
首先,我们把3对夫妻的座位看作是3个座位,这样就有6个单独的座位。
对于这6个单独的座位,可以有6!种不同的座位安排方式。
而夫妻关系的座位本身可以有3!种不同安排方式。
根据乘法原理,总的座位安排方式为6! * 3! = 720 * 6 = 4320种。
3. 某商店有8本不同的书和4个不同的笔记本,现要从中选取3本书和2个笔记本作为一份礼品赠送给顾客。
问有多少种不同的礼品组合方式?解析:选取3本书可以有C(8,3)种选择,选取2个笔记本可以有C(4,2)种选择。
根据乘法原理,总的礼品组合方式为C(8,3) * C(4,2) =56 * 6 = 336种。
4. 某个数字锁的密码是由4位数字组成,每位数字可以使用0-9之间的任意数字且可重复。
问共有多少种不同的密码组合方式?解析:对于每一位数字,有10种选择(0-9)。
因此,对于4位数字组成的密码,一共有10^4种不同的组合方式,即10000种。
5. 某班级里有10个学生,其中5个人喜欢足球,2个人喜欢篮球,3个人喜欢乒乓球。
现从中选取4个学生组成一支球队,要求至少有1名喜欢足球、至少有1名喜欢篮球、至少有1名喜欢乒乓球。
问有多少种不同的球队组合方式?解析:可以分为几种情况讨论:情况一:选取1名足球爱好者、1名篮球爱好者和2名乒乓球爱好者。
高二数学难点《排列组合》题型大全

高二数学难点《排列组合》题型大全1.排队问题1.你帅,你帅,你天下最帅,头顶一窝白菜,身披一条麻袋,腰缠一根海带,你以为你是东方不败,其实你是傻瓜二代。
2你的一笑,狼都上吊,你的一叫,鸡飞狗跳,你的一站,臭味弥漫,你一出汗,虱子灾难,你不打扮,比鬼难看,你一打扮,鬼吓瘫痪7人站成一排拍照,共有______种排法.答案:(1)甲必须站在中间的排法_______种. 答案:(2)甲、乙两人必须站在两端的排法_______种. 答案:(3)甲、乙两人必须相邻的排法_______种. 答案:(4)甲、乙不能相邻的排法_______种. 答案:(5)若甲、乙、丙三人必须相邻的排法______种. 答案:(6)其中3人站在前排,4人站在后排的排法_______种. 答案:(7)其中甲、乙、丙站前排,其余4人站后排的排法_______种. 答案:(8)甲、乙不能站两端的排法_______种. 答案:(9)甲、乙均不与丙相邻的排法_______种. 答案:,即分丙站两端和丙不站两端计算(10)最高者站中间,其余6人按从中间到两端依次降低站在两边的排法_______种. 答案:(11)若甲、乙、丙顺序一定,则共有_______种排法. 答案:3377A A (12)若7人站成一圈,有_______种站法. 答案:(固定起点)或777A 2.几何问题 直线、线段、有向线段、射线、弦问题、平面个数、交线条数、交点个数、对角线条数、四面体个数(1)从-11,-7,0,1,2,3,5这七个数中每次选三个作为直线的系数,,C ,且斜率小于0的直线有_______条.答案:70(2)平面内有10个点,可确定_______条线段,_______条有向线段. 答案:(3)空间八个点最多确定_______个平面,_______个四面体. 答案:(4)平面内n 条线段最多有_______个交点. 答案:(5)空间n 个平面最多有_______条交线. 答案:(6)以正方体的八个顶点为顶点的三棱锥有_______个. 答案:(7)以正方形的四个顶点、四边中点、中心共九个点中的三个点可作_______个三角形. 答案:76,即(8)四面体的一个顶点为A ,从其它顶点与各棱中点中取3个点,使它们和点A 在同一平面上,不同取法有_______个. 答案:33,即(9)正方体有_______对异面的棱;棱与对角线异面的有_______对;_______对异面的面对角线;面对角线与体对角线异面的有_______对. 答案:24;24;30;24(10)如果∠AOB 的两边上分别有3个点和4个点,则过这八个点(含点)可作_______个三角形. 答案:42,即,先算不含的,再算含的,(11)从正方体的六个面中选三个面,其中有两个面不相邻的选法_______个. 答案:12(12)过圆周上的2n 个等分点可作_______个直角三角形. 答案:(13)从正四面体的四个顶点及各棱中点共10个点中,任取4个不共面的点的取法有_______种. 答案:141,即3.概率问题(去序法)(1)5名运动员参加100米跑,如每人到达终点的顺序各不同,则甲比乙先到达终点的可有 ________种. 答案:60,即255A (2) A 、B 、C 、D 、E 五人站在一排,若A 必须站在B 的左边(A 、B 可以不相邻),那么不同的排法有_______种. 答案:60,即255A (3)用1、2、3、4、5可以组成_______个无重复数字的三位数,偶数有_______个. 答案:60;24,即4.人民币币值:(通法1:按最大币值考虑;通法2:按每种币值的的拿法考虑)(1)现有壹元、贰元、伍元、拾元人民币各一张,可组成_______种币值. 答案:15,即(2)有1角硬币3枚,贰元币6张,百元币6张,共组成_______种币值. 答案:195,(3)有壹元、贰元、拾元人民币数张,现要支付20元,有_______种支付方法. 答案:18(4)有壹元硬币6枚,伍元币3张,拾元币3张,伍拾元币3张,可组成_______种不同的币值. 答案:201(5)现有壹元币一张、贰元币两张、伍元和拾元人民币各一张,可组成_______种币值. 答案:205.集合映射个数问题(1)集合有个元素,则集合的子集中含有3个元素的集合有_______个;集合共有_______个子集;_______个真子集. 答案:(2)集合,集合,则从→的映射有_______个,从→的映射有_______个. 答案:(3)若集合,,则从A →B 的映射有_______个. 答案:(4)若集合,,若中不同的元素在中有不同的象,则这样从A →B 的映射有_______个. 答案:60,即(5)集合,,则中的元素在中都有原象的映射有_______个. 答案:(6),映射:→,则使的映射有_______个. 答案:7(7),,对中任意元素x ,使均为偶数,则从→映射有_______个. 答案:126.多面手问题(1)9名翻译中,6人懂英语,4人懂日语,既懂英语又懂日语的1人,从中选3名英语,2名日语,有多少种不同选法. 答案:90,即按多面手分类:;按英语翻译分类:(2)11名工人,5人只会排版,4人只会印刷,2人都会,选出4人排版,4人印刷,有多少种不同选法. 答案:185,即按排版工人情况:7.约数问题(1)12有______个约数,60有______个约数(含1和其本身). 答案:6;12(2)一个正整数的最大约数为24,则它有______个约数. 答案:8(3)数2n ×3m ×有____________个约数. 答案:8.分组分配问题(平均分组、部分均匀分组、非均匀分组)6本不同的书分给3个人,按以下要求有多少种不同的分法?(1)平均分给甲、乙、丙三人;答案:(2)分成三份,每份两本;答案:33222426A C C C(3)分给甲一本,乙两本,丙三本;答案:(4)分成三份,一份一本,一份两本,一份三本;答案:(5)分给三个人,一人一本,一人两本,一人三本;答案:(6)分给甲四本,乙、丙各一本;(7)分成三份,一份四本,其余两份各一本; 答案:22111246A C C C 或 (8)分给三个人,一人四本,其余两人各一本;答案:或或2233111246A A C C C (9)分给甲乙丙三人,每人至少一本. 答案:++9.空位连续问题(1)一人射击8枪,4枪命中,其中3枪连在一起的方法有______种. 答案:20,即(2)停车场划出一排12个停车位置,今有8辆车需停放,要求空位连在一起,则停车方法______.答案:9(3)马路上有8盏路灯,为省电,可熄灭其中的3盏,但不能连续熄灭两盏,两头的灯不能熄灭,则熄灭的方法有______种. 答案:4,即(4)在一块并排10垄的田地种,选择两垄分别种植2种作物,每种作物种植一垄,为有利于作物生长,要求A 、B 两种作物之间的间隔不小于6垄,则不同的选垄方法有______种. 答案:1210.贺卡问题(1) 标号为1、2、3的卡片放入标号为1、2、3的三个盒子里,且每个盒子的标号与卡片标号均不同的放法有______种. 答案:2(2) 室四人各写一张贺年卡,先集中起来,然后每人从中拿出一张别人送出的贺年卡,则四张贺年卡不同的分配方法有______种. 答案:9,即(3) 数字为1、2、3、4、5填到标号为1、2、3、4、5的格子里,且所填数字与其格子的标号均不同的填法有______种. 答案:44,即递推式D (n )=(n-1)[D(n-1)+D(n-2)](4)某团支部进行换届选举,从甲、乙、丙、丁中选出三人分别担任班长、书记和宣传委员,规定上届任职的甲、乙、丙不能连任原职,则不同的任职方案______种. 答案:1111.巧插“隔板”问题(特点:要分配的元素是没有差别的)(1)要从6个班选出10个人参加校篮球比赛,每班都要有人参加的选法有______种. 答案:(2)方程的正整数解的个数,自然数解的个数各多少?答案:()(3)将10个相同的球放入9个不同的盒子,且每盒都不空的放法有_____种,放入6个不同盒子有_____种. 答案:(4)将10个相同的球放入3个不同的盒子,盒子的编号为1、2、3,要使放入的球输不小于编号数的放法有_____种. 答案:12.数字问题常识:最高次位不能为0;奇数、偶数取决于末位是否被2整除;若一个正整数每一位上的数字之和能被3整除,则此数能被3整除;末位数为0和5的整数可被5整除.用0、1、2、3、4、5这六个数,(1)可以组成多少个五位数;答案:(2)可以组成多少个无重复数字的五位数;答案:(3)可以组成多少个无重复数字的五位奇数;答案:(4)可以组成多少个无重复数字的五位偶数;答案: (5)可以组成多少个比32000大的无重复数字的五位数;答案: (6)可以组成多少个比32451大的无重复数字的五位数;答案: (7)可以组成多少个能被5整除的无重复数字的五位数;答案: (8)可以组成多少个能被25整除的无重复数字的五位数;答案: (9)可以组成多少个能被3整除的无重复数字的五位数;答案: (10)可以组成多少个能被6整除的无重复数字的五位数;答案: (11)可以组成多少个能被4整除的无重复数字的五位数;答案: (12)求组成的无重复数字的五位数的个位数字之和;答案: (13)求组成的无重复数字的五位数的和. 13. 鞋子成双、单只问题(技巧:先取“双”,再取“只”) 10双互不相同的鞋子混装在一只口袋中,从中任取4只,求满足下列要求的情况数 (1)4只没有成双;答案:,即 (2)4只恰成两双;答案:45,即 (3)4只鞋子2只成双,2只不成双;答案:1440, 14.球队比赛问题 双循环赛(排列)、单循环赛(组合)、淘汰赛、对抗赛 (1)4支队进行淘汰赛以决出冠军共举行______场比赛. 答案:3 (2)现有8支球队,平均分成2个小组,每组4支队分别举行双循环赛决出前两名,再由他们举行淘汰赛决出冠军,共举行______场比赛. 答案:27,即 15.涂色问题(技巧:先涂相邻区域多的,该分类时再分类)(1)将3种颜色涂在如图方格中,相邻不涂相同颜色。
排列组合经典练习题答案答案.doc

排列组合二项定理排列组合二项定理知识要点—、两个原理.1.乘法原理、加法原理.2.可以有事复无奉的排列.从m个不同元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二...... 第n位上选取元素的方法都是m个,所以从m个不同元素中,每次取出n个元素可重复排列数m-m-... m= m n..例如:n件物品放入m个抽屉中,不限放法,共有多少种不同放法?(解:秫"种)二' 排列.1.⑴对排列定义的理解.定义:从n个不同的元素中任取m(m<n)个元素,哲眼丁定顺序排成一列,叫做从儿个不同元素中取出秫个元素的一个排列.⑵相同排列.如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同.⑶排列数.从n个不同元素中取出个元素排成一列,称为从«个不同元素中取出m个元素的一个排列.从n个不同元素中取出m个元素的一个排列数,用符号A片表示.⑷排列数公式:A m= n(n一1)• • • (〃一m +1)= :——(m < n, n, m G N)注意:n-nl=(n + l)!-n!规定0! = 1看=履客规定C?=C:=12,含有可事及素的排列问题.对含有相同元素求排列个数的方法是:设重集S有k个不同元素a” a2,......a”其中限重复数为ni、n2......n k,且n = ni+n2+ ... 以,则S的排列个数等于n = ----- --- .n i ln2\..n k\例如:已知数字3、2、2,求其排列个数"=(1 + 2)!=3又例如:数字5、5、5、求其排列个数?其排列个1!2! 数n = - = l.3!三、组合.1.⑴组合:从〃个不同的元素中任取m(m<n)个元素并成一组,叫做从〃个不同元素中取出秫个元素的一个组合.⑵组合数公式:c,"=41 = "("T)“・(n + l)C"'=—-—”A;;;尻"m\(n-my.⑶两个公式:①C*=Cf②C%+驾=C£%1从n个不同元素中取出m个元素后就剩下n-m个元素,因此从n个不同元素中取出n-m个元素的方法是一一对应的,因此是一样多的就是说从n个不同元素中取出n-m个元素的唯一的一个组合.(n + 1)! (n (或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是 含红球选法有c m -*-c ;=c m-,! 一类是不含红球的选法有C :)%1 根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与 不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m-l 个元素,所以有C”':,如果不取这 一元素,则需从剩余n 个元素中取出m 个元素,所以共有C :种,依分类原理有C m ~\+C^=C n ^.⑷排列与组合的联系与区别.联系:都是从"个不同元素中取出加个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.⑸①几个常用组合数公式 n n n nC°+C 2+C 4+••- =C*+C 3+C 5+••• =2,?-1n n nn n n ° 〃十° m+1 十° m+2 • •七 m+n+1kc k =心:1 「k_ 1 厂灯1C n~ C n+1k + 1 n + 1%1 常用的证明组合等式方法例.i. 裂项求和法.如:-+-+-+—— =1-一—(利用 —=——一1)n! (〃一 1)! n\ 2! 3! 4! (n + 1)! (〃 + 1)!ii. 导数法.iii.数学归纳法.iv.倒序求和法.V.递推法(即用 c"-+c m -l=c n :;递推)如:C ;+C ;+C ;+ •••C :=C"+:. Vi.构造二项式.如:(C°)2+(C^)2 + ••• + (C:)2=C 2;; 证明:这里构造二项式(x + l)"(l + x)"=(l + x)2"其中x"的系数,左边为席吒+•••+ac=e)2+(c;)2+...+(a)2,而右边=c 2:四、排列' 组合综合.i.i.排列、组合问题几大解题方法及题型:%1 直接法.②排除法.%1 捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局 部”的排列.它主要用于解决“元素相邻问题”,例如,一般地,n 个不同元素排成一列,要求其中某/»(/»<»)个元素必相邻的排列有个.其中A ::::;是一个“整体排列”,而则是“局部排列”.又例如①有n 个不同座位,A 、B 两个不能相邻,则有排列法种数为-%1 有n 件不同商品,若其中A 、B 排在一起有%1 有n 件不同商品,若其中有二件要排在一起有A,;.A ;;:;.注:①③区别在于①是确定的座位,有A ;种;而③的商品地位相同,是从n 件不同商品任取的2个,有不 确定性.%1插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题例如:n个元素全排列,其中m个元素互不相邻,不同的排法种数为多少?(插空法),当n-m+l>m,即mV*时有意义,2%1占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.%1调序法:当某些元素次序一定时,可用此法.解题方法是:先将n个元素进行全排列有种,个元素的全排列有A岩种,由于要求m个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到A n去调序的作用,即若"个元素排成一列,其中加个元素次序一定,共有二种排列方法.A m例如:n个元素全排列,其中m个元素顺序不变,共有多少种不同的排法?C n C%1平均法:若把kn个不同元素平均分成k组,每组n个,共有~ .例如:从1, 2, 3, 4中任取2个元素将其平均分成2组有几种分法?有管=3 (平均分组就用不着管组2!与组之间的顺序问题了)又例如将200名运动员平均分成两组,其中两名种子选手必在一组的概率是多少?厂8厂2(p=)G”2!注意:分组与插空综合.例如:n个元素全排列,其中某m个元素互不相邻且顺序不变,共有多少种排法?有当n-m+l>m, BP m<ZL±l 时有意义.2%1隔板法:常用于解正整数解组数的问题.例如:%1+X2+X3+X4=12的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为无,巧/3/4显然X1+X2+X3+X4=12,故(x1,x2,x3,x4)是方程的一组解.反之,方程的任何一组解(y1,j,2,y3,y4),对应着惟了的一f 中在〔12个球之间插入隔板的方式(如图•匚丁',二,所示)故方程的解和插板的方法一一对应.即方程的解的组数等于插隔板的方法数C* 注意:若为非负数解的X 个数,即用勺皿中⑶等于"1 ,有X] + x2 + .v3... + X" = A => % -1 + % -1 + ■■-a n -1 = A ,进而转化为求a的正整数解的个数为C^+n .%1定位问题:从n个不同元素中每次取出k个不同元素作排列规定某r个元素都包含在内,并且都排在某r 个指定位置则有例如:从n个不同元素中,每次取出m个元素的排列,其中某个元素必须固定在(或不固定在)某一位置上,共有多少种排法?固定在某一位置上:A::;;不在某一位置上:A':—A';;]:或&岩+&」.&;:(一类是不取出特殊元素a, 有A”. 一类是取特殊元素a,有从m-1个位置取一个位置,然后再从n-1个元素中取m-1,这与用插空法解决是一样的)%1指定元素排列组合问题.i.从n个不同元素中每次取出k个不同的元素作排列(或组合),规定某r个元素都包含在内。
(完整版)高二数学排列练习题(含答案)

排列练习【同步达纲练习】一、选择题1.设m ∈N *,且m <45,则(45-m)(46-m)(47-m)……(60-m),用排列数符号表示为( )A.A 60-m 15B.A 60-m 16C.A 60-m 45-mD.A 45-m 162.下列等式成立的是( )A.(n+2)(n+1)!=(n-m+1)A m+2m+1B.(n+2)(n+1)!=(n-m)!A n+2m-2C.A n+2m-1=)!1()!2(+-+m n n D.(n+1)n!=(n-m)!A n+1m+13.已知直线Ax+By+C =0的斜率小于0,若A 、B 、C 从-5,-3,-1,0,2,4,7,9这8个数中选取出不同的3个数,则能确定不同的直线条数是( )A.72B.108C.126D.2524.18人站成前后三排照相,每排6人,那么共有不同的排法( )A.A 186A 126种B.A 1818种C.331818A A 种D.A 186A 126A 66A 33种5.用0,1,2,3,4,5这六个数字可以组成没有重复的四位数偶数的个数是( )A.300B.204C.180D.1566.6名同学站成一排,甲、乙不有站在一起,不同的排法有( )A.A 84A 22B.A 86-A 55C.A 44A 52D.A 447.由1、2、3、5四个数组成的无重复数字的四位数中,能被5整除的有( )个A.6B.12C.18D.248.4辆汽车从停车场分班开出,其中甲车必须在乙车之前开始,则发车方案种数为( )A.24B.12C.18D.69.6个停车位置,有3辆汽车需要停放,需要使3个空位连在一起,则停放方法数为( )A.A 44B.A 63C.A 64D.A 3310.5名学生排成一排,其中甲不在排头,乙不在排尾的排法数是( )A.108B.78C.36D.7211.取1、2、3、4、5这五个数字中的两个分别作为一个对数的底数和真数,则所得的不同值有( )A.12个B.13个C.16个D.20个12.书架上有5本不同的数学书和3本不同的语文书,如果将它们排成一排,语文书不连排在一起的不同排法有( )A.14400种B.7200种C.2400种D.1200种二、填空题1.把5个不同颜色的小球分别放在10个小盒中,每个小盒最多只放一个,共有种不同放法.2.若整数x,y满足|x|<4,|y|<5,则以(x,y)为坐标的点共有个.3.7名学生排成一排,其中甲、乙、丙3人排在一起,不同排法有种.4.若A n3=nA33,则n= .5.在所有无重复数字的四位数中,千位上的数字比个位上的数字大2的数共有个.三、解答题1.某排共有9个座位,若3人坐在座位上,每人左、右都有空位,那么有多少种不同的坐法?2.解方程:2A n3=3A n+22+6A n1.3.8个人站成一排,其中甲不站在最左端乙不站在最右端时共有多少种不同的站法.【素质优化训练】1.求证:A n+1m=A n m+mA n m-1.2.7名学生站成一排,下列情况各有多少种不同的排法?(1)甲、乙必须排在一起;(2)甲不在排头,乙不在排尾;(3)甲、乙互不相邻;(4)甲、乙之间须隔一人.3.3张卡片的正反面分别写着数字1和2,3和4,5和6,若将3张卡片并列组成一个三位数,可得到多少个不同的三位数?(6不能作9用)4.从数字0,1,3,5,7中取出不同的3个数作系数,可以组成多少个不同的一元二次方程ax2+bx+c=0?其中有实根的方程有多少个?5.由1、4、5和x四个不同数字组成的数字不重复的所有四位数的数字之和为288,则数字x的值为多少?6.设集合A中有5个元素,集合B中有6个元素,若有由集合A到集合B的映射f,使A中的不同元素对应于B中的不同元素,则这样的映射f有多少个?【生活实际运用】学校开设的课程有语文、数学、外语、政治、物理、化学、体育7门,若星期五只排4节课,并且规定体育不排在第1节和第4节,问星期五的课表有几种排法?分析1:抓住元素分析,优先考虑体育课可分两种情况:(1)排体育课的课表有A21A63种;(2)不排体育课的课表有A64种.∴共有课表排法A12A63+A64=600种.分析2:抓住位置进行分析,可分三步安排:(1)先排第1节课,有6种排法;(2)再排第4节课,有5种排法;(3)最后排第2、3节课,有A52种排法.∴共有课表排法6·5A52=600种.分析3:先不考虑限制条件,课表种数共有A74种,其中体育排在第1、4节的课表有2A63种,排除这些课表数可得所求的课表数A74-2A63=600种.【知识验证实验】一道数学题,有4个可供选择的答案,其中有且只有一个答案是正确的,一个学生解答这样的数学选择题3道.每道题都作了选择,没有全部选对的情况有多少种?答:A41A41A41-1=63种.【知识探究学习】设ABCDEF为正六边形,一只青蛙开始在顶点A处,它每次可随意地跳到相邻两顶点之一,若在5次之内跳到D点,则停止跳动;若5次之内不能到达D点,则跳完5次也停止跳动,那么这只青蛙开始到停止,可能出现的不同跳法共有多少种?解如图,青蛙不可能经过跳1次、2次或4次到达D点,故青蛙的跳法只有下列两类情形:(1)青蛙跳了3次到达D点,有2种跳法;(2)青蛙一共跳5次后停止,这时,前3次的跳法(一定不能到达D点,且有来回跳跃),有23-2种,后两次跳法有22种,故青蛙一共跳5次的跳法有(23-2)·22=24种,由(1)(2)知青蛙共有2+24=26种不同的跳法.参考答案【同步达纲练习】一、1.B 2.D 3.B 4.B 5.D 6.C 7.A 8.B 9.A 10.B 11.B 12.A二、1.A105=30240 2.63 3.A55A33=720 4.4 5.448三、1.让空位固定,然后让3个人去插空位的5个空,(××××××)则共有A53=60种2.n=53.A88-A77-A77+A66=30960【素质优化训练】1.略2.(1)A22A66=1440 (2)A77-2A66+A55=3720 (3)A44A33=144 (4)5A55A22=12003.484.48,185.26.A65=720。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解答题
1.求和()()
2!1!2!4!3!24!3!2!13+++++++++++n n n n . 2.5名男生、2名女生站成一排照像:
(1)两名女生要在两端,有多少种不同的站法?
(2)两名女生都不站在两端,有多少不同的站法?
(3)两名女生要相邻,有多少种不同的站法?
(4)两名女生不相邻,有多少种不同的站法?
(5)女生甲要在女生乙的右方,有多少种不同的站法?
(6)女生甲不在左端,女生乙不在右端,有多少种不同的站法?
3.从6名运动员中选出4人参加4×400m 接力赛,如果甲、乙两人都不能跑第一棒,那么共有多少种不同的参赛方案?
4.由2,3,5,7组成没有重复数字的4位数.
(1)求这些数字的和;(2)按从小到大顺序排列,5372是第几个数?
5.由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的数共有多少个?
6.7个人按下列要求站成一排,分别有多少种不同的站法?
(1)甲不站在左端;
(2)甲、乙都不能站在两端;
(3)甲、乙不相邻;
(4)甲、乙之间相隔二人.
7.8个人站成一排,其中甲不站在中间两个位置,乙不站在两端两个位置,有多少种不同的站法?
8.从8名运动员中选出4人参加4×100m 接力比赛,分别求满足下列条件的安排方法的种数:(1)甲、乙二人都不跑中间两棒;(2)甲、乙二人不都跑中间两棒。
9.在一块并排10垄的田地中,选择2垄分别种值A ,B 两种作物,每种作物种植一垄,为有利于作物生长,要求A ,B 两种作物间隔不小于6垄,则不同的选垄方法共有多少种?
10.某城市马路呈棋盘形,南北向马路6条,东西向马路5条,一辆汽车要从西南角行驶到东北角不绕道的走法有多少种?
参考答案:
1.∵()()()22!2!2!1!2++=+++++k k k k k k k ,()()()!
21!11!21+-+=++=k k k k . ∴()()()!2121!21!11!41!31!31!21+-=⎥⎦
⎤⎢⎣⎡+-+++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=n n n 原式 2.(1)两端的两个位置,女生任意排,中间的五个位置男生任意排;2405522=⋅A A (种);
(2)中间的五个位置任选两个排女生,其余五个位置任意排男生;2400
5525=⋅A A
(种);
(3)把两名女生当作一个元素,于是对六个元素任意排,然后解决两个女生的任意排列;14002266=⋅A A (种);(4)把男生任意全排列,然后在六个空中(包括两端)有顺序
地插入两名女生;36002655=⋅A A (种);(5)七个位置中任选五个排男生问题就已解决,
因为留下两个位置女生排法是既定的;252057=A (种);(6)采用排除法,在七个人的全
排列中,去掉女生甲在左端的66A 个,再去掉女生乙在右端的6
6A 个,但女生甲在左端同时女
生乙在右端的55A 种排除了两次,要找回来一次.37202556677=+-A A A (种).
3.240435=A 种
4.(1)113322)7532(111133=+++⨯⨯A 个;(2)第16个数. 5.300个
6.(1)43206616=⋅A A ;(2)24205525=⋅A A ;
(3)36002655=⋅A A ;(4)960442522=⋅⋅A A A .
7.23040
8.(1)9002626=⋅A A ;(2)1620262248=⋅-A A A
9.12种
10.12644
5599=⋅A A A 种。