傅里叶光学

合集下载

物理光学教程 第五章 傅里叶光学

物理光学教程 第五章  傅里叶光学
=
G( fξ , fη )
(5-66) 66)
ε ( fξ , fη )
G( fξ , fη )
ex { j Φε ( fξ , fη ) Φg ( fξ , fη ) } p
[
]
3. 相干传递函数与光瞳函数的关系
相干传递函数在空间频率坐标(f ξ,fη)的值 相干传递函数在空间频率坐标 (fξ,fη) 的值 , 与光瞳函数在空间坐标 (f 的值, (ξ=-λdf η=-λdfη)处的取值相等 处的取值相等. (ξ=-λdfξ,η=-λdfη)处的取值相等.
上一页 下一页 目录
5.1.1 薄透镜的位相变换因子
按照波动光学的观点,透镜的作用只不过是一个位相变换器, 按照波动光学的观点,透镜的作用只不过是一个位相变换器,它通过位相延迟 位相延迟的大小正比于透镜孔径内各点的光学厚度. 改变入射光波的波前 ,位相延迟的大小正比于透镜孔径内各点的光学厚度. 透镜的位相变换因子为: 透镜的位相变换因子为:
2. 线性系统与叠加积分
对于均匀各向同性媒质的近轴光学系统,在微扰原理成立的前提下, 对于均匀各向同性媒质的近轴光学系统,在微扰原理成立的前提下, 均可看做是线性系统. 均可看做是线性系统. 线性系统的最显著特征是,它对任意复杂函数的响应, 线性系统的最显著特征是,它对任意复杂函数的响应,能够表示为对 一系列"基元"函数响应的线性叠加. 一系列"基元"函数响应的线性叠加.系统对基元函数的输入输出性 质清楚了,它对任意复杂输入的响应特性也就清楚了, 质清楚了,它对任意复杂输入的响应特性也就清楚了,这是线性系统 分析的基本方法. 分析的基本方法. 对于光学系统,无论是相干光系统还是非相干光系统, 对于光学系统,无论是相干光系统还是非相干光系统,也不论系统是 否用于成像的目的, 否用于成像的目的,最直接的方法是将输入面上的光场分布分解为一 系列点光源的线性叠加. 系列点光源的线性叠加.

傅里叶光学简介

傅里叶光学简介

L1
O
F S+1
A B
S0
C
S-1
阿贝成象原理
I’
1
C’
通过衍射屏的光发生夫
琅禾费衍射,在透镜后
B’
焦平面上得到傅里叶频
A’
2
谱 (S+1, S0, S-1)
虚物
2 频谱图上各发光点发出的球面波在象平面上相干叠
加而形成象A’,B’,C’ 。
第一步是信息分解 第二步是信息合成
频 ❖ 第一步夫琅禾费衍射起分频作用将各 谱 语 种空间频率的平面波分开在L后焦面上形 言 成频谱 描 述 ❖ 第二步干涉起综合作用
傅里叶光学的应用
(1)光学信息处理的特点
✓ 高速 处理 并行传输 并行处理 响应 光开关 10-15s 光传输速度 3×108 m/s 电开关 10-9s 电传输速度 105 m/s
✓ 抗干扰能力强 ✓ 大容量 传输容量大 光纤
存储容量大 全息存储
(2)信息光学的应用
✓ 新型成像系统
✓ 图像处理、图像识别
傅里叶变换+线性系统理论
➢空间频率
照片的二维平面 上光振幅有一定 的强弱分布
➢空间频率
空间频率:单位长度光振幅变化的次数。 反映了光强分布随空间变量作周期性变化的频繁程 度,它同光振动本身的时间频率完全是两回事。时 间是一维的,空间可以是一维、二维、三维。
➢ 数学上的傅立叶变换
数学上可以将一个复杂的周期性函数作 傅立叶级数展开,这一点在光学中体现 为:一幅复杂的图像可以被分解为一系 列不同空间频率的单频信息的合成,即, 一个复杂的图像可以看作是一系列不同 频率不同取向的余弦光栅之和。
✓透镜的发明 ✓望远镜、显微镜的发明 ✓Snell折射定律、费马原理 ✓微粒说、波动说

傅里叶光学解析

傅里叶光学解析
公元前4世纪 公元前3世纪到公元17世 纪中叶 17世纪初至19世纪末 19世纪60年代 19世纪80年代
20世纪上半叶
20世纪40年代至 60年代 20世纪60年代以来
1、傅里叶光学的发展历史
5)现代光学发展的三件大事
✓ 1948年,全息术的诞生,物理学家第一次精确地拍摄下一张立体的物体 像,它几乎记录了光波所携带的全部信息 (这正是“全息”名称的来历)! ✓ 1955年,科学家第一次提出“光学传递函数”的新概念,并用它来评价 光学镜头的质量。 ✓ 1960年,一种全新的光源-激光器诞生了,它的出现极大地推动了相关学 科的发展。
2、傅里叶光学的研究内容和研究方法
1)傅里叶光学基于傅里叶变换的方法研究光学信息在线性系统中的 传递、处理、变换与存储等。 2)傅里叶光学主要的研究内容包括: ✓光在空间的传播(衍射和干涉问题) ✓光学成像(相干与非相干成像系统) ✓全息术(包括计算全息) ✓光学信息处理(相干滤波、相关识别等) ✓光学变换、光计算、光学传感等 3)傅里叶光学主要的研究方法:
傅里叶光学 Fourier Optics
薛常喜 光电工程学院
1、傅里叶光学的发展历史
1)光学是一门古老的学科,主要研究光波的本性、光 波
的传播以及光与物质的相互作用。 2)光学的发展历史可以追溯到公元前5世纪,到目前 已经
有2000多年的历史,并逐渐在物理学中形成了一门 独立
的基础学科。 3)光学的发展历史可以看成是人们对光本性认识的历
史,以及人们利用光学技术推动社会不断进步的历 史。 4)在整个发展历史中,光学也从经典光学发展到现代
光学的发展历程
第一阶段:17世纪 中叶之前
经典光学的早期发 展阶段
【几何光学】

傅里叶光学的实验报告(3篇)

傅里叶光学的实验报告(3篇)

第1篇一、实验目的1. 深入理解傅里叶光学的基本原理和概念。

2. 通过实验验证傅里叶变换在光学系统中的应用。

3. 掌握光学信息处理的基本方法,如空间滤波和图像重建。

4. 理解透镜的成像过程及其与傅里叶变换的关系。

二、实验原理傅里叶光学是利用傅里叶变换来描述和分析光学系统的一种方法。

根据傅里叶变换原理,任何光场都可以分解为一系列不同频率的平面波。

透镜可以将这些平面波聚焦成一个点,从而实现成像。

本实验主要涉及以下原理:1. 傅里叶变换:将空间域中的函数转换为频域中的函数。

2. 光学系统:利用透镜实现傅里叶变换。

3. 空间滤波:在频域中去除不需要的频率成分。

4. 图像重建:根据傅里叶变换的结果恢复原始图像。

三、实验仪器1. 光具座2. 氦氖激光器3. 白色像屏4. 一维、二维光栅5. 傅里叶透镜6. 小透镜四、实验内容1. 测量小透镜的焦距实验步骤:(1)打开氦氖激光器,调整光路使激光束成为平行光。

(2)将小透镜放置在光具座上,调节光屏的位置,观察光斑的会聚情况。

(3)当屏上亮斑达到最小时,即屏处于小透镜的焦点位置,测量出此时屏与小透镜的距离,即为小透镜的焦距。

2. 利用夫琅和费衍射测光栅的光栅常数实验步骤:(1)调整光路,使激光束通过光栅后形成衍射图样。

(2)测量衍射图样的间距,根据dsinθ = kλ 的关系式,计算出光栅常数 d。

3. 傅里叶变换光学系统实验实验步骤:(1)将光栅放置在光具座上,调整光路使激光束通过光栅。

(2)在光栅后放置傅里叶透镜,将光栅的频谱图像投影到屏幕上。

(3)在傅里叶透镜后放置小透镜,将频谱图像聚焦成一个点。

(4)观察频谱图像的变化,分析透镜的成像过程。

4. 空间滤波实验实验步骤:(1)将光栅放置在光具座上,调整光路使激光束通过光栅。

(2)在傅里叶透镜后放置空间滤波器,选择不同的滤波器进行实验。

(3)观察滤波后的频谱图像,分析滤波器对图像的影响。

五、实验结果与分析1. 通过测量小透镜的焦距,验证了透镜的成像原理。

第十四章傅里叶光学-文档资料

第十四章傅里叶光学-文档资料
22 H u , v exp j d u v 0

u
x y 1 v 1 d0 d0
~ x E 2, y 2
Ex ,y 1 1
~ Ex, y

t x ,y l 2 2
t x ,y 1 1
~ 而 FT E x ,y 1 1 A FT tx ,y A T u , v 1 1


2 f


~ ~ x E ,y 1 1 E x ,y 1 1
~ Ex, y


f
f
表明:透镜后焦面上的光场分布正比于 tl x ,y 衍射物体平面上复振幅的傅里叶变换。 tx 1 1 f ,y 1 1
jk 2 2 exp 2f x y ,后焦面上的位相分布与物体频谱的位相分布不
tx, y
tl x, y f
~ 2)紧靠透镜之后的平面上的复振幅分布E x ,y 1 1
~ 3)后焦面上的复振幅分布 Ex, y
,y 物体的复振幅透过率为tx ,则物体与透镜之间的平面上的 1 1 复振幅分布为 ~ E x , y A t x , y 1 1 1 1





k 2 2 代入上式得到 ~ 将 E x , y A t x , y exp j x y 1 1 1 1 1 1
jk 2 1 2 Ex, y exp x y j f 2f ~ x y FTEx 1, y 1 u 1 v 1
但是这种FT关系不是准确的。由于变换式前存在位相因子


一样,但他对观察平面上的强度分布没有影响,其光强为
A x y I x , y T , f f f f

物理光学-6傅里叶光学

物理光学-6傅里叶光学
在X方向上单位长度内重复的次数, 即在x方向上的空间频率: 1 cos u dx
y方向上
v 1 0 dy
( x) A exp i2 ux E
u
cos

为锐角, cos 0
u cos
xy平面 z=z0或z 0平面
为正值
上的位相值沿x正向增加
这一强度分布具有空间周期性, 在x方向和y方向的空间周期分别为: dx

cos 2 cos 1
,
dy

cos 2 cos 1
空间频率为 cos 2 cos 1 u ,

v
cos 2 cos 1

3. 衍射光波的空间频率 (Spatial frequency of diffraction Lightwave )
为钝角, cos 0
u cos
xy平面 z=z0或z 0平面
为负值
上的位相值沿x正向减小
空间频率的正负,仅表示平 面波的传播方向不同
2.平面波传播方向余弦为cos ,cos 的情况
( x, y ) A exp i 2 z cos exp i 2 x cos y cos E 0 2 A exp i x cos y cos
x

2

y
cos

2

1 u dx 1 dy

cos sin y

sin x
平面波矢量在xz平面内时,
u
sin x
0

空间周期的物理意义:(在z=0平面内讨论) 1)平面波沿k方向的空间周期;平面波沿任意方向 r 的空间周期。

《傅里叶光学基础》课件

《傅里叶光学基础》课件
《傅里叶光学基础》PPT 课件
傅里叶光学是光学领域的重要基础知识,本课程将介绍傅里叶光学的基本原 理和应用领域,包括光通信、计算机技术和医疗影像。
傅里叶光学基础知识
1 传输函数
了解传输函数的概念以及在傅里叶光学中的作用。
2 光学变换
学习傅里叶变换和反变换,以及它们在光学领域的应用。
3 频谱分析
掌握频谱分析的方法和技巧,以及如何应用于光学系统的研究。
总结与展望
本课程回顾了傅里叶光学的基础知识和应用,介绍了其在光通信、计算机技 术和医疗影像中的重要性。希望通过本课程的学习,您能深入了解傅里叶光 学的原理和应用,并在相关领域取得更好的成就。
数据压缩
了解傅里叶光学在数据压缩领域的应用,如JPEG图像压缩算法。
频谱分析
学习傅里叶光学在信号处理和频谱分析中的作用。
傅里叶光学在现代医疗影像中的应用
1
CT扫描
掌握傅里叶光学在CT扫描中的重建算法和图
磁共振成像
2
像重建技术。
了解傅里叶光学在磁共振成像中的采样技术
和图像重建方法。
3
超声成像
学习傅里叶光学在超声成像中的频域分析和
傅里叶光学在光通信中的应用
高速数据传输
了解傅里叶光学在光通信中的高 速数据传输方案和技术。
光纤通信系统
探索调制与解调
学习傅里叶光学在光调制和解调 中的原理和技术。
傅里叶光学在现代计算机技术中的应 用
图像处理
探索傅里叶光学在图像处理中的应用,如图像滤波和频域图像增强。
分子影像学
4
图像增强技术。
探索傅里叶光学在分子影像学中的应用,如 光学断层成像和荧光成像技术。
傅里叶光学的发展现状

第1章 傅里叶光学基础

第1章 傅里叶光学基础

(21)
(8) 矩 (moment) g(x,y)的(k,l g(x,y)的(k,l )阶矩定义为 M k, l = ∫∫∞- ∞ g(x,y)xk yl dxdy 将逆变换表达式( 代入上式, 将逆变换表达式(2)代入上式,得到
M k, l=∫∫∞-∞G(u,v)dudv∫∫∞-∞xkylexp[i2π(ux+vy)]dxdy G(u,v)du [i2π x+v
傅里叶-贝塞尔变换 傅里叶 贝塞尔变换 设函数g(r,θ) = g(r) 具有圆对称, 具有圆对称, 函数 θ 傅里叶-贝塞尔变换为 傅里叶 贝塞尔变换为 G(ρ) = B {g(r)} ρ = 2π ∫∞org(r)Jo(2πρr)dr g(r)J π r)dr π 其中 Jo 为第一类零阶贝塞尔函数 傅里叶-贝塞尔逆变换为 傅里叶 贝塞尔逆变换为 g(r) = B-1 {G(ρ)} ρ = 2π ∫∞o ρ G(ρ)Jo(2πρr)dρ π ρ J π r)dρ
第一章
傅里叶光学基础
第一章 傅里叶光学基础
1.1 二维傅里叶分析 1.2 空间带宽积和测不准关系式 1.3 平面波的角谱和角谱的衍射 1.4 透镜系统的傅里叶变换性质
1.1 二维傅里叶分析
1.1.1 定义及存在条件 傅里叶变换可表为 复变函数器 g(x,y) 的傅里叶变换可表为 G(u,v) = F {g(x,y)} = ∫∫∞- ∞g(x,y)exp[-i2π(ux+vy)]dxdy g(x,y)exp[x+vy)]dxdy (1) 为变换函数或像函数 称g(x,y)为原函数,G(u,v)为变换函数或像函数。 为原函数, 为变换函数或像函数。 (1)式的逆变换为 式的逆变换 式的逆变换为 g(x,y) = F -1{G(u,v) } = ∫∫∞- ∞G(u,v)exp[i2π(ux+vy)]dudv (2) exp[i2 x+vy)]du
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点物-----像 斑
传统光学显 微镜分辨率 Rayleigh 准则
1.22λ ∆x ≥ 2n sin θ
增大N.A.
减小照明波长
几何光学可认为是波动光学短波(λ→0)的近似 ----有何启示 ? ? What′λ
如何在光频,压缩波长?
把光灌入高折射率介质(空气--水) ω ph = ω? k ph + [?] = k ? any other way ?

Fourier Spectrum
从干涉强度的空间频谱中,提取光源辐射小论文)+60%考试
小论文(40%): 课程进行中间要求大家完成1篇小论文。自由组合, 5人为一小组,充分讨论合作完成。论文的格式要规范。论文的结 尾要说明各人在论文完成过程的分工。严禁抄袭!!届时答辩
“衍射光学元件(DOE)设计及其应用” “超衍射极限的光操控(光刻、成像)研究”
考试(60%): 闭卷, 期末考。(允许“裸” 考)
Reference

J. W. Goodman,《傅里叶光学导论》,科学出版社,1976 J. W. Goodman, 《傅里叶光学导论》( 第三版)(秦克诚,刘培森等, 译),电子工业出版社,2006 羊国光,宋菲君,《高等物理光学》,中国科学技术大学出版社, 1991 谢建平,明海,王沛, 近代光学基础,高等教育出版社,2006
Fourier Optics
主讲人: 王 沛
中国科学技术大学物理学院光学与光学工程系 安徽省光电子科学与技术重点实验室
2011-09-05
HTTP://WWW……
How To The Position://WWW.
? Who Where When Why What How
思考有益于生活
位置
为学 为道
波 处理 理 波阵 阵面 面处
场 加 场叠 叠加
特点 特点
多少 多少
位相 位相
偏振 偏振
振幅 振幅
偏 振 态 偏 振 态 偏振态 平 平面 面 球 球面 面 离 离散 散求 求和 和 无 无限 限积 积分 分
尔 公 式 菲 涅 菲 涅 尔 公 式
傅立叶光学初 步
干涉
应 用 应用
衍射
波动---爱里斑
责任
增加积极的知识 提高心灵的境界
与 “你” 有缘
感兴趣研究方向:
非线性光学 表面等离子体亚波长光学 微纳光学
绪论

傅里叶光学简介 课程内容 课程目的 傅里叶光学特点 参考书目
“光学”学习中的要点
“一个中心两个基本点三个代表”
惠更斯-菲涅尔原理
干涉 衍射
振幅、偏振、位相
涅 尔原 理 -菲 惠 更 斯
离的更近,看的更清? “管窥之见” “瞎子摸象”
0.3mm笔芯; 40-60小时; A2纸大小(420×594)
耗时、易碎→ ???
傅里叶光学简介
课程内容
绪论 光波及其衍射基础 二维线性系统分析 标量衍射理论基础 菲涅耳衍射与夫琅禾费衍射 透镜的傅立叶变换性质及成像性质 光学成像系统的频谱分析


ftp://202.38.68.155 帐号: gstudent 密码: foptics
课程目的

了解傅里叶光学的基本原理:
如何用傅里叶变换的数学工具讨论光的传输、成像问 题以及光学中傅里叶变换的物理含义等

傅里叶光学典型应用:
光全息:全息防伪,全息存储 光学滤波:光学图像识别与处理 激光散斑:散斑照像,散斑干涉 光学系统频谱分析
傅里叶光学特点

Fourier Transform
用改变空间谱的办法来处理相干成像系统中的光信息
相关文档
最新文档