傅里叶光学解析

合集下载

2-1衍射和傅里叶光学基础详解

2-1衍射和傅里叶光学基础详解

2.1.1 标准形式的一维非初等函数
(1) 矩形函数
又称为门函数,表示为
rect(x)
rect x 或 x
1
1 rect(x) 1/ 2
0
x 1/ 2 x 1/ 2 x 1/ 2
x -1/2 O 1/2
rect( x)dx 1
曲线下面积为1,表示矩形光源、狭缝或矩形孔的透射率
(2)sinc 函数
与某函数相乘使其极性翻转
sgn(x)
1 x
0 -1
(5)阶跃函数
• 定义:
1 step(x) 1/ 2
0
x0 x0 x0
step(x )
1 x
0
表示刀口或直边衍射物体或开关信号等
(6)圆柱函数
1 circ(r) 1/ 2
0
r 1 r 1 r 1
Circ (r)
1
y
x
O
1
circ(
x2 a
y2
22
1、直角坐标系中的二维非初等函数
(1)二维矩形函数,定义式为:
1
rect(x, y) rect(x)rect( y) 1/ 2
0
————可分离变量函数
| x | 1/ 2and | y | 1/ 2 | x || y | 1/ 2
| x | 1/ 2and | y | 1/ 2
rect(x, y)
1
在光学问题中,常用来描述一个均匀 照明方形小孔的振幅透射系数。
二维矩形函数的一般表达式为:
1
1
2

rect( x x0 , y y0 ) rect( x x0 )rect( y y0 )
图11
ab

傅里叶光学的实验报告(3篇)

傅里叶光学的实验报告(3篇)

第1篇一、实验目的1. 深入理解傅里叶光学的基本原理和概念。

2. 通过实验验证傅里叶变换在光学系统中的应用。

3. 掌握光学信息处理的基本方法,如空间滤波和图像重建。

4. 理解透镜的成像过程及其与傅里叶变换的关系。

二、实验原理傅里叶光学是利用傅里叶变换来描述和分析光学系统的一种方法。

根据傅里叶变换原理,任何光场都可以分解为一系列不同频率的平面波。

透镜可以将这些平面波聚焦成一个点,从而实现成像。

本实验主要涉及以下原理:1. 傅里叶变换:将空间域中的函数转换为频域中的函数。

2. 光学系统:利用透镜实现傅里叶变换。

3. 空间滤波:在频域中去除不需要的频率成分。

4. 图像重建:根据傅里叶变换的结果恢复原始图像。

三、实验仪器1. 光具座2. 氦氖激光器3. 白色像屏4. 一维、二维光栅5. 傅里叶透镜6. 小透镜四、实验内容1. 测量小透镜的焦距实验步骤:(1)打开氦氖激光器,调整光路使激光束成为平行光。

(2)将小透镜放置在光具座上,调节光屏的位置,观察光斑的会聚情况。

(3)当屏上亮斑达到最小时,即屏处于小透镜的焦点位置,测量出此时屏与小透镜的距离,即为小透镜的焦距。

2. 利用夫琅和费衍射测光栅的光栅常数实验步骤:(1)调整光路,使激光束通过光栅后形成衍射图样。

(2)测量衍射图样的间距,根据dsinθ = kλ 的关系式,计算出光栅常数 d。

3. 傅里叶变换光学系统实验实验步骤:(1)将光栅放置在光具座上,调整光路使激光束通过光栅。

(2)在光栅后放置傅里叶透镜,将光栅的频谱图像投影到屏幕上。

(3)在傅里叶透镜后放置小透镜,将频谱图像聚焦成一个点。

(4)观察频谱图像的变化,分析透镜的成像过程。

4. 空间滤波实验实验步骤:(1)将光栅放置在光具座上,调整光路使激光束通过光栅。

(2)在傅里叶透镜后放置空间滤波器,选择不同的滤波器进行实验。

(3)观察滤波后的频谱图像,分析滤波器对图像的影响。

五、实验结果与分析1. 通过测量小透镜的焦距,验证了透镜的成像原理。

傅里叶光学第1章 傅里叶分析

傅里叶光学第1章 傅里叶分析

x, y x, ydxdy 0,0
x, y 是检验函数;要求检验函数是连续的、在一个有限区间
外为零,并具有所有阶的连续导数。
1、一些常用函数
✓ 函数的常用性质
a) 筛选性质

x x0, y y0 x, y dxdy x0, y0
b) 对称性
(x) (x)
c) 比例变化性质 d) 与其他函数的乘积

(x

x0 )

1
|

|
(x

x0

)

(
x
x0 b
)

b
(x

x0 )
f (x, y) (x x0, y y0 ) f (x0, y0 ) (x x0, y y0 )
1、一些常用函数
1、一些常用函数
✓二维情况
Байду номын сангаас
(x n, y m) comb xcomb y
n m

n


m
(x

na,
y

mb)

1 ab
comb

x a

comb

y b

应用
常用二维梳状函数表示点 光源阵列或小孔阵列的透 过率函数。
9)梳状函数( Comb function)
✓一维情况 沿x轴间隔为1的无穷个脉冲函数的和 沿x轴间隔为的无穷个脉冲函数的和

Comb(x) (x n)
n
Comb(x

n
)

第十四章傅里叶光学-文档资料

第十四章傅里叶光学-文档资料
22 H u , v exp j d u v 0

u
x y 1 v 1 d0 d0
~ x E 2, y 2
Ex ,y 1 1
~ Ex, y

t x ,y l 2 2
t x ,y 1 1
~ 而 FT E x ,y 1 1 A FT tx ,y A T u , v 1 1


2 f


~ ~ x E ,y 1 1 E x ,y 1 1
~ Ex, y


f
f
表明:透镜后焦面上的光场分布正比于 tl x ,y 衍射物体平面上复振幅的傅里叶变换。 tx 1 1 f ,y 1 1
jk 2 2 exp 2f x y ,后焦面上的位相分布与物体频谱的位相分布不
tx, y
tl x, y f
~ 2)紧靠透镜之后的平面上的复振幅分布E x ,y 1 1
~ 3)后焦面上的复振幅分布 Ex, y
,y 物体的复振幅透过率为tx ,则物体与透镜之间的平面上的 1 1 复振幅分布为 ~ E x , y A t x , y 1 1 1 1





k 2 2 代入上式得到 ~ 将 E x , y A t x , y exp j x y 1 1 1 1 1 1
jk 2 1 2 Ex, y exp x y j f 2f ~ x y FTEx 1, y 1 u 1 v 1
但是这种FT关系不是准确的。由于变换式前存在位相因子


一样,但他对观察平面上的强度分布没有影响,其光强为
A x y I x , y T , f f f f

光学成像的傅里叶光学解析

光学成像的傅里叶光学解析

光学成像的傅里叶光学解析光学成像是一种利用光学原理来获取目标物体的图像或信息的技术。

傅里叶光学解析是与光学成像密切相关的一种数学分析方法,它可以帮助我们理解光学成像的原理和性能。

傅里叶光学解析是基于傅里叶变换的数学理论,该理论指出任何波形都可以分解成一系列不同频率的正弦波或余弦波的叠加。

在光学中,傅里叶光学解析将光波分解成不同的频率组成部分,并分析它们对成像的贡献。

在光学成像中,光线从物体表面反射或透过物体后进入成像系统,然后被透镜或其他光学元件聚焦成像。

而傅里叶光学解析则通过对光场的傅里叶变换,计算光场的频谱分布,进而解析出图像的信息。

傅里叶光学解析在光学成像中的应用广泛。

首先,它可以用于评估成像系统的成像性能。

通过分析光波的频谱分布,我们可以了解光学系统在不同频率上的传输特性,从而评估系统的分辨率和失真程度。

这可以帮助我们设计和优化成像系统,以获得更好的图像质量。

其次,傅里叶光学解析可以用于图像复原和重建。

在实际成像过程中,光波会受到各种因素的影响,如散射、衍射、干涉等,并且会产生噪声和畸变。

通过对光场进行傅里叶变换,我们可以在频域上对图像进行修复和重建,减少噪声和畸变的影响,提高图像的质量和清晰度。

此外,傅里叶光学解析还可以用于图像处理和分析。

光学成像获得的图像往往包含大量的信息,通过傅里叶光学解析,我们可以将不同频率的信息分离出来,进一步分析和处理图像。

例如,可以通过滤波的方法去除图像中的某些频率成分,突出图像中的某些特征或结构。

最后,傅里叶光学解析还可以用于其他光学应用,如光学显微镜、光学干涉仪、光学测量等。

通过应用傅里叶光学解析,我们可以获得更多的图像信息,并进一步深入理解和研究光学现象。

综上所述,傅里叶光学解析作为光学成像的数学分析方法,对于理解光学成像的原理和性能非常重要。

它可以帮助我们评估成像系统的性能,修复和重建图像,进行图像处理和分析,以及应用于其他光学领域。

通过深入研究和应用傅里叶光学解析,我们可以进一步推动光学成像技术的发展和创新。

物理光学-6傅里叶光学

物理光学-6傅里叶光学
在X方向上单位长度内重复的次数, 即在x方向上的空间频率: 1 cos u dx
y方向上
v 1 0 dy
( x) A exp i2 ux E
u
cos

为锐角, cos 0
u cos
xy平面 z=z0或z 0平面
为正值
上的位相值沿x正向增加
这一强度分布具有空间周期性, 在x方向和y方向的空间周期分别为: dx

cos 2 cos 1
,
dy

cos 2 cos 1
空间频率为 cos 2 cos 1 u ,

v
cos 2 cos 1

3. 衍射光波的空间频率 (Spatial frequency of diffraction Lightwave )
为钝角, cos 0
u cos
xy平面 z=z0或z 0平面
为负值
上的位相值沿x正向减小
空间频率的正负,仅表示平 面波的传播方向不同
2.平面波传播方向余弦为cos ,cos 的情况
( x, y ) A exp i 2 z cos exp i 2 x cos y cos E 0 2 A exp i x cos y cos
x

2

y
cos

2

1 u dx 1 dy

cos sin y

sin x
平面波矢量在xz平面内时,
u
sin x
0

空间周期的物理意义:(在z=0平面内讨论) 1)平面波沿k方向的空间周期;平面波沿任意方向 r 的空间周期。

光学经典理论傅里叶变换

光学经典理论|傅里叶光学基础2018-02-24 17:00今天的光学经典理论为大家带来的是傅里叶光学基础,傅里叶光学是现代光学的一个分支,将电信理论中使用的傅里叶分析方法移植到光学领域而形成的新学科。

光学人们可以看看!在电信理论中,要研究线性网络怎样收集和传输电信号,一般采用线性理论和傅里叶频谱分析方法。

在光学领域里,光学系统是一个线性系统,也可采用线性理论和傅里叶变换理论,研究光怎样在光学系统中的传播。

两者的区别在于,电信理论处理的是电信号,是时间的一维函数,频率是时间频率,只涉及时间的一维函数的傅里叶变换;在光学领域,处理的是光信号,它是空间的三维函数,不同方向传播的光用空间频率来表征,需用空间的三维函数的傅里叶变换。

包含内容60年代发明了激光器,使人们获得了新的相干光源后,傅里叶光学无论在理论和应用领域均得到了迅速发展。

傅里叶光学运用傅里叶频谱分析方法和线性系统理论对广泛的光学现象作了新的诠释。

其主要内容包括标量衍射理论、透镜成像规律以及用频谱分析方法分析光学系统性质等。

推导演示一个光学信息系统和一个电学信息系统有许多相同之处,它们都是收集信息和传递信息,它们都有共同的数学工具──线性系统理论和傅里叶分析。

从信息论角度,关心的是信息在系统中传递过程;同样,对一个光学系统来讲,物和像的关系,也可以根据标量衍射理论由系统中光场的传播来确定,因此光学系统可以看成一个通信信道。

这样,通信理论中已经成熟的线性系统理论可以用来描述大部分光学系统。

当物体用非相干光照射时,在系统像平面上强度分布与物体上强度分布成线性(正比)关系。

而用来描述电学系统的脉冲响应h(t,τ)概念,即系统对一窄脉冲δ(t)(狄喇克δ函数)的响应,也可以用来描述光学系统,即用光学系统对点光源δ(x,y)的响应(点光源的像)h(x,y;ξ,η)来描述系统的性质,两者的区别仅仅在于电学系统的脉冲响应是时间一维函数,光学系统的脉冲函数是空间二维函数,另外两者都具有位移不变性,前者分布不随时间位移而变,后者分布不随空间位移而变(即等晕条件)。

第十四章傅里叶光学

1 1
E ( x1 , y1 )
2、点物在距透镜有限远的光轴上 、 设点物S位于距透镜为 l 的光轴上, 设点物 位于距透镜为 的光轴上, 则投射到透镜上的光波就是从S点 则投射到透镜上的光波就是从 点 发出的发散球面波。在傍轴近似下, 发出的发散球面波。在傍轴近似下, 它在透镜前平面上的场分布为
x12 + y12 ~ E ( x1 , y1 ) = A exp ik 2l
由于不考虑透镜的有限孔径大小, 由于不考虑透镜的有限孔径大小,则透镜的复振幅透过率为
2 2 x1 + y1 tl (x1 , y1 ) = exp − ik 2f
则紧靠透镜之后的平面上的复振幅分布为
E ′(x1 , y1 ) = tl ( x1 , y1 ) ⋅ E ( x1 , y1 ) k 2 2 = A ⋅ t (x1 , y1 ) exp− j x1 + y1 2f
(
)
{
}
所以
~ (x , y ) = A exp jk E jλ f 2 f
x y d0 2 2 1 − x + y ⋅ T , λf λf f
(
)
可见后焦面上的复振幅分布仍然正比于物体的傅里叶变换, 可见后焦面上的复振幅分布仍然正比于物体的傅里叶变换,到 有一个位相弯曲。 物体紧靠透镜结论与前面一致, 有一个位相弯曲。当 d 0 = 0 时,物体紧靠透镜结论与前面一致, 当 时 d 0 = f,式子变为 x y
tl ( x1 , y1 ) f
但是这种FT关系不是准确的。 但是这种 关系不是准确的。由于变换式前存在位相因子 关系不是准确的
jk 2 exp x + y2 2 f

光学_郭永康_第六章1.傅里叶变换


2. 空间频谱(spatial frequency spectrum) 简谐振动是最简单的周期性运动,几个简谐运动可合 成一个较复杂的周期性运动。 傅里叶分析:已知一周期性运动,求组成它的各个简 谐运动频率及相应振幅的方法。 所得的频率及相应振幅的集合为该周期性运动的频谱。 注意:频谱取一系列分立的值。
原函数
缝函数
x rect ( ) a 0
1
频谱函数
a 2 a x 2 x
asinc ( af )
absinc (af x )sinc (bf x )
aJ 1 ( 2a f x f y )
2 2
傅 里 叶 变 换 对
二维矩形函数 1 x y rect( )rect( ) a b 0
1 2
1 2
g ( x) exp (ax )
(x)
1
1
2f 2 exp( ) a a
函数
常数
( f )
函数 定义:
( x) 0
x0 x0



( x) dx 1
单缝函数在缝宽趋于零时的极限
函数---点光源
T ( x)
{0
1
md x (2m 1)d / 2, m 0,1,2
其他
展开为傅里叶级数
1 2 2 2 T ( x) sin( 0 x) sin( 3 0 x) sin( 5 0 x) 2 3 5 v0 0 / 2 1 / d 0 2 / d
Contents
chapter 6
傅里叶变换 Fourier transformation 衍射理论中的傅里叶方法 the method of Fourier in diffraction theory 理想薄透镜的傅里叶变换作用 Fourier transform in the thin lens 阿贝成像原理 Abbe imaging principle 空间频谱滤波 spatial frequency filtering 光全息术 holography

光学第六篇傅里叶变换光学简介

平面波和典型球面波的波前相因子
复杂波场: 分解为一系列平面波或球面波成分
波的类型和特性 波前相因子
波前相因子
方向角的余角
线性相因子
系数(cosx,cosy)或 (sin1,sin2)与平面 波的传播方向一一对应。
U2 U1
ik x2 y2
e 2fBiblioteka 凹透镜和凸透镜的情况相同,
只是焦距一个为负,一个为正。
相位型
例题:求薄透镜傍轴成像公式:
在傍轴条件下:U1 ( x,
y)
ik x2 y2
A1e 2s
ik x2 y2
透镜函数:tL (x, y) e 2 f
s
s’
ik x2 y2
ik x2 y2
U2 (x, y) tL (x, y)U1(x, y) e 2 f
二维 tP ( x, y) eik (n1() 1x+2 y)
例题:推导棱镜傍轴成像公式:
傍轴条件:
ik x2 y2
s
U1(x, y) A1e 2s
ik x2 y2 ik (n1) x
U2 (x, y) tP (x, y) U1(x, y) A1e 2s
(n1)s 2 x(n1)s 2 y2
第六章 傅里叶变换光学简介
第六章 傅里叶变换光学简介
1、衍射系统 波前变换 2、相位衍射元件 3、波前相因子分析法 4、余弦光栅的衍射场 5、傅里叶变换 6、超精细结构的衍射 隐失波 7、阿贝成像原理与空间滤波 8、光学信息处理列举 9、泽尼克的相衬法
惠更斯-菲涅耳原理 光波衍射
菲涅耳衍射 夫琅禾费衍射
二维波前 决定 三维波场
二维波前 决定 三维波场
Double-helix Point Spread Function (DH-PSF) DH-PSF transfer function obtained from the iterative obtimization procedure, and its GL modal plane decomposition, which forms a cloud around the GL modal plane line. The DH-PSF transfer function does not have any amplitude component, and consequently is not absorptive.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公元前4世纪 公元前3世纪到公元17世 纪中叶 17世纪初至19世纪末 19世纪60年代 19世纪80年代
20世纪上半叶
20世纪40年代至 60年代 20世纪60年代以来
1、傅里叶光学的发展历史
5)现代光学发展的三件大事
✓ 1948年,全息术的诞生,物理学家第一次精确地拍摄下一张立体的物体 像,它几乎记录了光波所携带的全部信息 (这正是“全息”名称的来历)! ✓ 1955年,科学家第一次提出“光学传递函数”的新概念,并用它来评价 光学镜头的质量。 ✓ 1960年,一种全新的光源-激光器诞生了,它的出现极大地推动了相关学 科的发展。
2、傅里叶光学的研究内容和研究方法
1)傅里叶光学基于傅里叶变换的方法研究光学信息在线性系统中的 传递、处理、变换与存储等。 2)傅里叶光学主要的研究内容包括: ✓光在空间的传播(衍射和干涉问题) ✓光学成像(相干与非相干成像系统) ✓全息术(包括计算全息) ✓光学信息处理(相干滤波、相关识别等) ✓光学变换、光计算、光学传感等 3)傅里叶光学主要的研究方法:
傅里叶光学 Fourier Optics
薛常喜 光电工程学院
1、傅里叶光学的发展历史
1)光学是一门古老的学科,主要研究光波的本性、光 波
的传播以及光与物质的相互作用。 2)光学的发展历史可以追溯到公元前5世纪,到目前 已经
有2000多年的历史,并逐渐在物理学中形成了一门 独立
的基础学科。 3)光学的发展历史可以看成是人们对光本性认识的历
史,以及人们利用光学技术推动社会不断进步的历 史。 4)在整个发展历史中,光学也从经典光学发展到现代
光学的发展历程
第一阶段:17世纪 中叶之前
经典光学的早期发 展阶段
【几何光学】
第二阶段:17世纪中 叶至19世纪
经典光学的快速发展 阶段【波动光学】
✓触觉论、发射论 ✓直线传播、小孔成像、光 的反射和凹凸面镜反射成像 ✓Snell折射定律、费马原理
✓波动学说和粒子学说之争 ✓Maxwell电磁波理论 ✓迈克尔逊-莫雷以太实验
第三阶段:20世纪
现代光学的诞生及 发展阶段
✓量子力学、相对论、波粒 二像性、物质波理论
✓全息术、光学传递函数 及激光器的诞生
✓量子光学、傅里叶光学、 薄膜光学、集成光学、非线 性光学、光纤光学等现代光 学分支的诞生
公元前5世纪
6)20世纪50年代
✓数学、电子技术、通信理论与光学相结合,给光学引入了频谱、空间 滤波、载波、线性变换及相关运算等概念,从而形成了一门新的光学学 科—傅里叶光学!
✓傅里叶变换和通信中的线性系统理论使光学与通信在信息学领域统一起来,从 “空域” 走向“频域”。 ✓ 光学不再仅限于用光强、振幅和透过率的空间分布描述光学图像,也用空间频 率的分布变化描述光学图像。
傅里叶变换+线性系统理论
3、本课程的主要内容
课程内容安排
第一章 傅里叶变换 第二章 二维线性系统 第三章 标量衍射理论 第四章 透镜的位相调制和傅里叶变换性质 第五章 光学成像系统的频率特性 第六章 部分相干理论 第七章 光学全息 第八章 光学信息处理 第九章 激光散斑及其应用
从信息光学角度进一步阐述傅里叶光学
兴科学的发展,与应用光学相互渗透,相互交叉,产生了 一系列光学学科中新的生长点。
现代应用光学与光学工程就其范围来说,分为: ①光能量技术 ②光信息技术 1.光能量技术主要包括:照明工程;激光武器;激光加工; 太阳能利用等
2.光信息技术主要包括: A.光学量测试技术
它以光强、位相、波长、频率、旋光度等光信息的空间 分布和随时间的变化作为测试对象,或者将非光量信息转 换为光信息加以测量,如光谱分析、光度测量干涉计量、 莫尔条纹测量等等 B.光信息处理
它以信息光学为基础,用付里叶分析的方法研究光学成 像和光学变换的理论和技术;实现图像的改善和增强,图 像识别,图像的几何畸变与光度的规整和纠正,光信息的 编码、存储和成图技术,三维图象显示和记录,仿生视觉 系统,以及电、声等非光信号的光信息处理等等。 C.光纤通信
1、傅里叶光学的发展历史
6)20世纪60年代以来
✓ 由于激光器的应用,全息术获得了新的生命; ✓ 全息术和光学传递函数的概念结合,光学研究的内容和方法发生了改变
传统上,用光强、振幅的 空间分布来描述光学图像
现在,则把图像看作是由缓慢变化的背景、粗 的轮廓等比较低的“空间频率”成分和急剧 变化的细节等比较高的“空间频率”成分构成 的,用频率的分布和变化来描述光学图像。
信息分为两种类型:
1.能量传递和转换为特征
18世纪60年代的工业革命,以纺纱机和蒸汽机的发明为 先导。
2.信息科学的形成
20世纪中叶以来,随着自动控制,通讯,电子计算机的 迅猛发展。
从而认识到信息运动是物质运动总体的一个方面,它与 能量运动存在于统一的物质运动中。
信息的表现形式多种多样 例如:①人的语言是社会信息
②遗传密码是生物信息 ③计算机程序是技术信息 信息借助一定的物质作为载体才能存在、传递或变换, 同时必须伴有一定的能量。 信息的变换过程包括信息的接受,存、光的产生、传输、接收及光与物
质相互作用规律和特性的一门科学。 人们主要是从光的能量和信息两个侧面加以研究。 随着电子技术、半导体技术、计算机技术、信息论等新
“空域”
“频域”
✓ 傅里叶光学(又称信息光学)最终形成一个重要的学科分支。
7)随着计算机技术的发展,信息光学也获得了巨大发展,信息光学逐 渐发展成为集光学、计算机和信息科学相结合的一门技术,成为信息科 学的一个重要组成部分和现代光学的核心之一。
3、本课程的主要内容
1)课程将从三个方面介绍傅里叶光学的基本内容 一、信息光学的基础理论,包括傅里叶变换、线性系统 理论、标量衍射理论、传递函数理论等; 二、信息光学的主要应用,包括光学全息、计算全息、 空间滤波、光学相干和非相干处理等; 三、信息光学的最新发展动态,如激光散斑、分数傅里 叶变换等。 2)具体安排见下页
主要内容
1.引言——信息 2.光学信息光信息处理的优势 3.光信息处理发现的历史 4.光信息处理作为一个新的技术科学分支还远远没有达到成 熟和广泛实用阶段。 5.具体体现: 6.课程学习要求达到目的
一.引言——信息
科学技术是组成社会生产力的一个重要因素,社会生产 水平最终决定人类改造自然的能力和范围,也就决定了科 学技术工作的任务,性质和规模。
相关文档
最新文档