有理数_数轴_基础巩固练习题附答案
有理数_数轴训练

有理数数轴同步练习基础巩固题:1.在数轴上表示的两个数中,的数总比的数大。
2.在数轴上,表示-5的数在原点的侧,它到原点的距离是个单位长度3.在数轴上,表示+2的点在原点的侧,距原点个单位;表示-7的点在原点的侧,距原点个单位;两点之间的距离为个单位长度。
4.在数轴上,把表示3的点沿着数轴向负方向移动5个单位,则与此位置相对应的数是。
5.与原点距离为2.5个单位长度的点有个,它们表示的有理数是。
6.到原点的距离不大于3的整数有个,它们是:。
7.下列说法错误的是()A.没有最大的正数,却有最大的负数B.数轴上离原点越远,表示数越大C.0大于一切非负数D.在原点左边离原点越远,数就越小8.下列结论正确的有()个:①规定了原点,正方向和单位长度的直线叫数轴②最小的整数是0 ③正数,负数和零统称有理数④数轴上的点都表示有理数A.0B.1C.2D.39.在数轴上,A点和B点所表示的数分别为-2和1,若使A点表示的数是B点表示的数的3倍,应把A点()A.向左移动5个单位B.向右移动5个单位C.向右移动4个单位D.向左移动1个单位或向右移动5个单位10在数轴上画出下列各点,它们分别表示,并把它们用“<”连接起来。
+3, 0,-314,112,-3,-1.25应用与提高11.小明的家(记为A)与他上学的学校(记为B),书店(记为C)依次座落在一条东西走向的大街上,小明家位于学校西边30米处,书店位于学校东边100米处,小明从学校沿这条街向东走40米,接着又向西走了70米到达D处,试用数轴表示上述A、、B、C、D的位置。
12.在数轴上,老师不小心把一滴墨水滴在画好的数轴上,如图所示,试根据图中标出的数值判断被墨水盖住的整数,并把它写出来。
中考链接 13.如图,数轴上的点A 所表示的数是a ,则A 点到原点的距离是 。
14.在数轴上,离原点距离等于3的数是 。
15.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B 时,点B 所表示的实数是 ( )A.1B.-6 C.2或-6 D.不同于以上答案参考答案:1.右边,左边2.左边,53.右边,2,左,7,9 4.—25.2个,±2.56.7个,±1,±2,±3,0 7.D8.C9.B10.-314<-3<-1.25<0<112<311.12.-12,-11,-10,-9,-8,11,12,13,14,15,16,17 13.∣a∣14.±315.C。
人教版七年级数学上册《有理数分类、数轴、相反数及绝对值》专题训练-附带答案

人教版七年级数学上册《有理数分类、数轴、相反数及绝对值》专题训练-附带答案满分:100分时间:90分钟一、选择题(每小题3分共36分)1.(2022春•沙依巴克区校级期中)下列各数中是负数的为()A.﹣1B.0C.0.2D.【答案】A【解答】解:﹣1是负数;0既不是正数也不是负数;0.2是正数;是正数.故选:A.2.(2022春•明水县期末)一种食品包装袋上标着:净含量200g(±3g)表示这种食品的标准质量是200g这种食品净含量最少()g为合格.A.200B.198C.197D.196【答案】C【解答】解:∵200﹣3=197(g)∴这种食品净含量最少197g为合格故选:C.3.(2022•牡丹区三模)中国人很早开始使用负数中国古代数学著作《九章算术》的“方程”一章在世界数学史上首次正式引入负数用正、负数来表示具有相反意义的量.一次数学测试以80分为基准简记90分记作+10分那么70分应记作()A.+10分B.0分C.﹣10分D.﹣20分【答案】C【解答】解:以80分为基准简记90分记作+10分那么70分应记作:70﹣80=﹣10分故选:C.4.(2022春•朝阳区期中)某机器零件的实物图如图所示在数轴上表示该零件长度(L)合格尺寸正确的是()A.B.C.D.【答案】C【解答】解:已知图可知L的取值范围是9.8≤L≤10.2A选项表示的是L≤9.8 不正确;B选项表示的是L≥10.2 不正确;C选项表示的是9.8≤L≤10.2 正确;D选项表示的是L≥10.2或L≤9.8 不正确;故选:C.5.(2022春•杨浦区校级期中)下列说法正确的是()A.有理数都可以化成有限小数B.若a+b=0 则a与b互为相反数C.在数轴上表示数的点离原点越远这个数越大D.两个数中较大的那个数的绝对值较大【答案】B【解答】解:A、有理数是有限小数和无限循环小数所以此选项错误;B、a+b=0 两个数的和为零则这两个数互为相反数此选项正确;C、在数轴上右边的数离原点越远这个数越大左边的数离原点越远这个数越小此选项错误;D、特殊值法2>﹣3 但|2|<|﹣3| 此选项错误.故选:B.6.(2021秋•荷塘区期末)有理数a在数轴上的位置如图所示则|a﹣5|=()A.a﹣5B.5﹣a C.a+5D.﹣a﹣5【答案】B【解答】解:∵a<5∴|a﹣5|=﹣(a﹣5)=5﹣a.故选:B.7.(2022•玉屏县二模)数轴上表示数m和m+2的点到原点的距离相等则m为()A.﹣2B.2C.1D.﹣1【答案】D【解答】解:由题意得:|m|=|m+2|∴m=m+2或m=﹣(m+2)∴m=﹣1.故选:D.8.(2021秋•渑池县期末)若|a﹣1|与|b﹣2|互为相反数则a+b的值为()A.3B.﹣3C.0D.3或﹣3【答案】A【解答】解:∵|a﹣1|与|b﹣2|互为相反数∴|a﹣1|+|b﹣2|=0又∵|a﹣1|≥0 |b﹣2|≥0∴a﹣1=0 b﹣2=0解得a=1 b=2a+b=1+2=3.故选:A.9.(2021秋•房县期末)已知:有理数a b满足ab≠0 则的值为()A.±2B.±1C.±2或0D.±1或0【答案】C【解答】解:∵ab≠0∴a>0 b<0 此时原式=1﹣1=0;a>0 b>0 此时原式=1+1=2;a<0 b<0 此时原式=﹣1﹣1=﹣2;a<0 b>0 此时原式=﹣1+1=0故选:C.10.(2021秋•镇平县校级期末)若|a|=8 |b|=5 且a>0 b<0 a﹣b的值是()A.3B.﹣3C.13D.﹣13【答案】C【解答】解:∵|a|=8 |b|=5 且a>0 b<0∴a=8 b=﹣5∴a﹣b=13故选:C.11.有理数a b在数轴上的对应点的位置如图所示.把﹣a b0按照从小到大的顺序排列正确的是()A.0<﹣a<b B.﹣a<0<b C.b<0<﹣a D.b<﹣a<0【答案】A【解答】解:由数轴可知a<0<b|a|<|b|∴0<﹣a<b故选:A.12.(2021秋•勃利县期末)有理数a b在数轴上的对应点如图所示则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④【答案】B【解答】解:∵从数轴可知:b<0<a|b|>|a|∴①正确;②错误∵a>0 b<0∴ab<0 ∴③错误;∵b<0<a|b|>|a|∴a﹣b>0 a+b<0∴a﹣b>a+b∴④正确;即正确的有①④故选:B.二、填空题(每小题2分共10分)13.(2022春•南岗区校级期中)如果向东走6米记作+6米那么向西走5米记作米.【答案】-5【解答】解:向东走6米记作+6米则向西走5米记作﹣5米故答案为:﹣5.14.(2022春•崇明区校级期中)小明在小卖部买了一袋洗衣粉发现包装袋上标有这样一段字样:“净重800±5克”请说明这段字样的含义.【答案】一袋洗衣粉的重量在795克与805克之间.【解答】解:“净重800±5克”意思是标准为800克最多为800+5=805克最少为800﹣5=795克.故答案为一袋洗衣粉的重量在795克与805克之间.15.(2022春•嘉定区校级期中)数轴上的A点与表示﹣2的点距离3个单位长度则A点表示的数为.【答案】﹣5或1【解答】解:设A点表示的数为x则|x﹣(﹣2)|=3∴x+2=±3∴x=﹣5或x=1.故答案为:﹣5或1.16.(2021秋•许昌期末)如果a的相反数是2 那么(a+1)2022的值为.【答案】1【解答】解:∵a的相反数是2∴a=﹣2∴(a+1)2022=(﹣2+1)2022=1.故答案为:1.17.(2022•宽城县一模)如图在数轴原点O的右侧一质点P从距原点10个单位的点A处向原点方向跳动第一次跳动到OA的中点A1处则点A1表示的数为;第二次从A1点跳动到OA1的中点A2处第三次从A2点跳动到OA2的中点A3处如此跳动下去则第四次跳动后该质点到原点O的距离为.【答案】5;.【解答】解:根据题意A1是OA的中点而OA=10所以A1表示的数是10×=5;A2表示的数是10××=10×;A3表示的数是10×;A4表示的数是10×=10×=;故答案为:5;.三.解答题(共54分)18.(8分)(2021秋•荣成市期中)把下列各数填在相应的集合中:15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 π﹣1..正数集合{…};负分数集合{…};非负整数集合{…};有理数集合{…}.【解答】解:正数集合{15 0.81 171 3.14 π…};负分数集合{﹣﹣3.1 ﹣1.…};非负整数集合{15 171 0…};有理数集合{15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 ﹣1.…}.故答案为:15 0.81 171 3.14 π;﹣﹣3.1 ﹣1.;15 171 0;15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 ﹣1..19.(8分)(昌平区校级期中)画出数轴并把这四个数﹣2 4 0 在数轴上表示出来.【解答】解:在数轴上表示出来如下:20.(8分)(2021秋•太康县期末)已知|x|=3 |y|=7.(1)若x<y求x+y的值;(2)若xy<0 求x﹣y的值.【解答】解:由题意知:x=±3 y=±7(1)∵x<y∴x=±3 y=7∴x+y=10或4(2)∵xy<0∴x=3 y=﹣7或x=﹣3 y=7∴x﹣y=±1021.(10分)(2021秋•安居区期末)小虫从某点O出发在一直线上来回爬行假定向右爬行路程记为正向左爬行的路程记为负爬过的路程依次为(单位:厘米):+5 ﹣3 +10 ﹣8 ﹣6 +12 ﹣10.问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中如果每爬行1厘米奖励一粒芝麻则小虫共可得到多少粒芝麻?【解答】解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=27+(﹣27)=0所以小虫最后能回到出发点O;(2)根据记录小虫离开出发点O的距离分别为5cm、2cm、12cm、4cm、2cm、10cm、0cm所以小虫离开出发点的O最远为12cm;(3)根据记录小虫共爬行的距离为:5+3+10+8+6+12+10=54(cm)所以小虫共可得到54粒芝麻.22.(10分)(2021秋•常宁市期末)超市购进8筐白菜以每筐25kg为准超过的千克数记作正数不足的千克数记作负数称后的记录如下:1.5 ﹣3 2 ﹣0.5 1 ﹣2 ﹣2 ﹣2.5.(1)这8筐白菜总计超过或不足多少千克?(2)这8筐白菜一共多少千克?(3)超市计划这8筐白菜按每千克3元销售为促销超市决定打九折销售求这8筐白菜现价比原价便宜了多少钱?【解答】解:(1)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克)答:以每筐25千克为标准这8筐白菜总计不足5.5千克;(2)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克)25×8﹣5.5=194.5(千克)答:这8筐白菜一共194.5千克;(3)194.5×3=583.5(元)583.5×(1﹣0.9)=58.35(元).答:这8筐白菜现价比原价便宜了58.35元.23.(10分)(2021秋•高新区校级期末)新华文具用品店最近购进了一批钢笔进价为每支6元为了合理定价在销售前五天试行机动价格卖出时每支以10元为标准超过10元的部分记为正不足10元的部分记为负.文具店记录了这五天该钢笔的售价情况和售出情况如表所示:第1天第2天第3天第4天第5天每支价格相对标准价格(元)+3+2+1﹣1﹣2售出支数(支)712153234(1)这五天中赚钱最多的是第天这天赚钱元.(2)新华文具用品店这五天出售这种钢笔一共赚了多少钱?【解答】解:(1)第1天到第5天的每支钢笔的相对标准价格(元)分别为+3 +2 +1﹣1 ﹣2则每支钢笔的实际价格(元)分别为13 12 11 9 8第1天的利润为:(13﹣6)×7=49(元);第2天的利润为:(12﹣6)×12=72(元);第3天的利润为:(11﹣6)×15=75(元);第4天的利润为:(9﹣6)×32=96(元);第5天的利润为:(8﹣6)×34=68(元);49<68<72<75<96故这五天中赚钱最多的是第4天这天赚钱96元.(2)49+72+75+96+68=360(元)故新华文具用品店这五天出售这种钢笔一共赚了360元钱.。
1.2.2 人教版七年级上册数学 第一章《有理数》数轴 专题训练含答案及解析

简单1、在数轴上,一点从原点开始,先向右移动2个单位,再向左移动3个单位后到达终点,这个终点表示的数是()A.-1 B.1 C.5 D.-5 【分析】根据向右移动用加,向左移动用减进行计算,列式求解即可.【解答】根据题意,0+2-3=-1,∴这个终点表示的数是-1.故选A.2、在数轴上表示数-3,0,2.5,0.4的点中,不在原点右边的有()A.0个B.1个C.2个D.3个【分析】根据2.5,0.4是正数,在原点右边,-3是负数,在原点左边,0在在原点,即可求得答案.【解答】∵2.5,0.4是正数,在原点右边,-3是负数,在原点左边,0在在原点,∴不在原点右边的有:-3和0.故选C.3、如图所示,数轴上A、B两点所表示的有理数的和是()A.3 B.2 C.1 D.-1 【分析】根据图示找出点A、B所表示的有理数,然后求它们的和即可.【解答】根据图示知,数轴上A、B两点所表示的有理数是-3和2,所以它们的和为:(-3)+2=-1;故选C.4、已知数轴上的A点到原点的距离是2,那么在数轴上到A点的距离是3的点所表示的数有()A.1个B.2个C.3个D.4个【分析】本题要先对A点所在的位置进行讨论,得出A点表示的数,然后分别讨论所求点在A的左右两边的两种情况,即可得出答案.【解答】∵数轴上的A点到原点的距离是2,∴点A可以表示2或-2.(1)当A表示的数是2时,在数轴上到A点的距离是3的点所表示的数有2-3=-1,2+3=5;(2)当A表示的数是-2时,在数轴上到A点的距离是3的点所表示的数有-2-3=-5,-2+3=1.故选D.5、在数轴上,点M表示的数是-2,将它先向右移动4.5个单位,再向左移5个单位到达点N,则点N表示的数是___________.【分析】根据数轴上左加右减的原则进行解答即可.【解答】数轴上表示-2的点先向右移动4.5个单位的点为:-2+4.5=2.5;再向左移动5个单位的点为:2.5-5=-2.5.故答案为:-2.5.6、如果数轴上点A所对应的有理数是−112,那么数轴上距A点5个单位长度单位的点所对应的有理数是多少?【分析】设距A点5个单位长度单位的点所对应的有理数是x,再根据数轴上两点间的距离公式求出x的值即可.【解答】设距A点5个单位长度单位的点所对应的有理数是x,则1152x+=,解得72x=或132x=-.答:数轴上距A点5个单位长度单位的点所对应的有理数是72或132-.简单题1.如图:下面给出的四条数轴中画得正确的是()A.B.C.D.【分析】根据数轴的三要素来判断数轴是否正确.数轴三要素:原点,正方向,单位长度.【解答】A、没有原点,故错误;B、三要素完整,故正确;C、0的左边应该是负数,右边是正数,故错误;D、单位长度不一致,故错误.故选B.2. 下列说法正确的是()A.有原点、正方向的直线是数轴B.数轴上两个不同的点可以表示同一个有理数C.有些有理数不能在数轴上表示出来D.任何一个有理数都可以用数轴上的点表示【分析】根据数轴的定义及意义,依次分析选项可得答案.【解答】根据题意,依次分析选项可得,A、根据数轴的概念,有原点、正方向且规定了单位的直线是数轴,A错误;又由实数与数轴上的点是一一对应的,故B、C均错误;D、实数与数轴上的点是一一对应的,即任何一个有理数都可以用数轴上的点表示,正确;故选D.3. 在数轴上,原点右边的点表示()A.正数B.负数C.整数D.非负数【分析】在数轴上,原点右边的数是正数,原点左边的数是负数,原点表示0,根据以上内容选出即可.【解答】在数轴上,原点右边的数是正数,故选A.4. 设a是一个负数,则数轴上表示数-a的点在()A.原点的左边B.原点的右边C.原点的左边和原点的右边D.无法确定【分析】根据数轴的相关概念解题.【解答】因为a是一个负数,则-a是一个正数,二者互为相反数,-a在原点的右边.故选B.5.数轴上找不到既不表示正数也不表示负数的点.A.正确B.错误解答:原点既不表示正数,也不表示负数,它表示0.故选B.6.所有的有理数都可以用数轴上的点来表示.A.正确B.错误解答:有理数与数轴上的点是一一对应的.故选A.7.数轴上表示—a的点一定在原点的左边.A.正确B.错误解答:当a为负数时,—a就是正数,这时表示的点就在原点的右边.故选B.难题1. 数轴上,对原点性质表述正确的是()A.表示0的点B.开始的一个点C.数轴中间的一个点D.它是数轴上的一个端点【分析】理解原点是表示0的点,由此分析即可得出正确选项.【解答】在数轴上,我们把原点定义为表示0的点.故选A.2. 下列结论正确的个数是()①规定了原点、正方向和单位长度的直线叫数轴;②同一数轴上的单位长度都必须一致;③有理数都可以表示在数轴上;④数轴上的点都表示有理数.A.0 B.1 C.2 D.3【分析】根据数轴的定义对各小题进行逐一判断即可.【解答】①符合数轴的定义,故本小题正确;②同一数轴上的单位长度都必须一致是数轴的特点,故本小题正确;③有理数都可以表示在数轴上,故本小题正确;④数轴上的点都表示实数,故本小题错误.故选D.3. 数轴上原点及原点左边的点表示的数是()A.负整数B.正整数C.负数D.负数和0 【分析】根据数轴的特点进行解答即可.【解答】∵数轴上右边的数总比左边的大,∴原点左边的点表示的数都小于0,∴原点左边的点表示的数是负数;∴数轴上原点及原点左边的点表示的数是负数和0;故选D.4.下列语句:1.数轴上的点只能表示整数;2.数轴是一条线段;3.数轴上的一个点只能表示一个数;4.数轴上找不到既不表示正数又不表示负数的点。
有理数与数轴(知识解读+真题演练+课后巩固)2023-2024学年七年级数学上册(人教版)(解析版)

z!"#$#%&!"#$%&'()*+,-./0+123445"6$&60+12-7.890:;<=344>"6$0?+**********?C-D0?EFG0344H"IJ0?K&60L'MNO+-PQRSTU0TVWXYZ 4知识点1 :正数和负数(1)概念正数:大于0的数叫做正数。
负数:在正数前面加上负号“—”的数叫做负数。
注:0既不是正数也不是负数,是正数和负数的分界线,是整数,自然数,有理数。
(不是带“—”号的数都是负数,而是在正数前加“—”的数。
) (2)意义:在同一个问题上,用正数和负数表示具有相反意义的量。
知识点2: 有理数(1)概念整 数:正整数、0、负整数统称为整数。
分 数:正分数、负分数统称分数。
(有限小数与无限循环小数都是有理数。
) 注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
(2)分类:两种⑴按正、负性质分类: ⑵按整数、分数分类:正有理数 正整数 正整数 有理数 正分数 整数 0 零 有理数 负整数 负有理数 负整数 分数 正分数 负分数 负分数z知识点3:数轴(1)概念:规定了原点、正方向、单位长度的直线叫做数轴。
三要素:原点、正方向、单位长度(2)对应关系:数轴上的点和有理数是一一对应的。
比较大小:在数轴上,右边的数总比左边的数大 。
(3)应用 求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。
(注意不带“+”“—”号)【题型 1 正数与负数】【典例1】(2023•西乡塘区二模)在﹣2,0,0.5,3四个数中,是负数的是( ) A .﹣2 B .0 C .0.5 D .3【答案】A【解答】解:在﹣2,0,0.5,3四个数中,是负数的是﹣2. 故选:A .【变式1-1】(2023•安徽模拟)数1,,0,﹣2,﹣3中正数有( )个. A .2 B .3C .4D .5【答案】A【解答】解:在:1,,0,﹣2,﹣3中, 正数有:1,,共2个. 故选:A .【变式1-2】(2022秋•防城港期末)下列各数中,是负数的是( ) A .0 B .﹣C .πD .3【答案】B【解答】解:A .0既不是正数,也不是负数,故选项不符合题意; B .﹣是负数,故选项符合题意; C .π是正数,故选项不符合题意;D.3是正数,故选项不符合题意;故选:B.【变式1-3】(2022秋•石楼县期末)下列各数:﹣2,0.8,﹣5,0,﹣3.14,8.3,﹣11,其中负数的有( )个.A.2B.3C.4D.5【答案】C【解答】解:负数有﹣2,﹣5,﹣3.14,﹣11,共4个,故选:C.【题型 2 相反意义的量表示】【典例2】(2023•船营区一模)中国是最早采用正负数表示相反意义的量并进行负数运算的国家.若气温上升7℃记作:+7℃,那么气温下降10℃可记作( )A.7℃B.10℃C.﹣10℃D.﹣7℃【答案】C【解答】解:若气温上升7℃记作:+7℃,那么气温下降10℃可记作﹣10℃.故选:C.【变式2-1】(2023•吉林一模)中国是世界上最早使用负数的国家,战国时期李悝所著的《法经》中已使用负数.如果公元前500年记作﹣500年,那么公元2023年应记作( )A.﹣2023年B.+1523年C.+2023年D.+2523年【答案】C【解答】解:∵公元前500年记作﹣500年,∴公元前为“﹣”,∴公元后为“+”,∴公元2023年就是公元后2023年,∴公元2023年应记作+2023年.故选:C.【变式2-2】(2022秋•佛山期末)下列四组量中,不具有相反意义的是( )A.海拔“上升200米”与“下降400米”B.温度计上“零上15℃”与“零下5℃”C.盈利100元与亏本25元D.长3米与重10千克【答案】D【解答】解:上升于下降具有相反意义,故A不符合题意;零上于零下具有相反意义,故B不符合题意;盈利于亏本具有相反意义,故C不符合题意;长度于质量步具有相反意义,故D符合题意;故选:D.【变式2-3】(2023•衡水二模)某日,四个城市的日平均气温如表所示:城市石家庄邢台保定张家口日平均气温/℃﹣110﹣6则日平均气温最低的是( )A.石家庄B.邢台C.保定D.张家口【答案】D【解答】解:∵﹣6<﹣1<0<1,∴日平均气温最低的城市是张家口,故选:D.【典例3】(2023•长春模拟)班级组织了一次跳远比赛,若成绩以250cm为标准,小明跳出了253cm,记做+3cm,则小亮跳出了246cm应记作( )A.+4cm B.﹣4cm C.+6cm D.﹣6cm【答案】B【解答】解:246﹣250=﹣4(cm),故选:B.【变式3-1】(2023•衡水二模)某品牌米线的包装袋上写着“300克±4%”,则下列不可能是米线的重量的是( )A.285克B.295克C.304克D.310克【答案】A【解答】解:∵300克±4%,即300×(1+4%)=312,300×(1﹣4%)=288z∴米线的重量为288~312克, 故选:A .【变式3-2】(2022秋•武陵区期末)一实验室检测A 、B 、C 、D 四个元件的质量(单位:克),超过标准质量的克数记为正数,不是标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是( )A .B .C .D .【答案】D【解答】解:|﹣1.2|=1.2;|﹣2.3|=2.3;|0.9|=0.9;|﹣0.8|=0.8, ∵0.8<0.9<1.2<2.3, ∴0.8最小. 故选:D【变式3-3】(2022秋•德州期末)某中学进行立定跳远测试,男生成绩合格标准定为1.85米,体育老师记录了甲、乙、丙、丁四位男生成绩如下表:(超出标准的部分记为“+”,不足标准的部分记为“﹣”),你认为立定跳远成绩最好的是( ) 学生 甲 乙 丙丁成绩/米 +0.25+0.45 ﹣0.10 ﹣0.25A .甲B .乙C .丙D .丁【答案】B【解答】解:∵﹣0.25<﹣0.10<+0.25<+0.45, ∴四位男同学成绩最好的是乙; 故选:Bz【题型 3 相反意义的应用】【典例4】(2022秋•社旗县期末)有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的纪录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重 千克. (2)这8筐白菜中最重的重 千克;最轻的重 千克. (3)若白菜每千克售价2元,则出售这8筐白菜可卖多少元? 【答案】(1)24.5; (2)27;22; (3)389.【解答】解:(1)最接近标准重量的是纪录中绝对值最小的数,因而是25﹣0.5=24.5(千克), 故答案为:24.5;(2)∵记录中最大的数为2,最小的数为﹣3 ∴25+2=27(千克),25﹣3=22(千克) ∴这8筐白菜中最重的重27克;最轻的22千克,故答案为:27;22.(3)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.525×8+(﹣5.5)=194.5(千克)194.5×2=389(元),答:出售这8筐白菜可卖389元.【变式4-1】(2022秋•绥德县期末)某登山队5名队员以大本营为基地,向距离大本营500米的顶峰发起登顶冲击,假设向上走为正,向下走为负,行程记录如下:(单位:米)+115,﹣30,﹣45,+180,+25,﹣20,+30,+110,﹣25,+100 (1)他们有没有登上顶峰?如果没有登上顶峰,他们距离顶峰多少米? (2)登山时,5名队员在行进中全程均消耗了氧气,每人每100米消耗氧气0.5升,求共使用了多少升氧气?【答案】(1)没有登上顶峰,他们距离顶峰60米;(2)他们共消耗了17 升氧气.【解答】解:(1)500﹣(115﹣30﹣45+180+25﹣20+30+110﹣25+100)=60(米).答:没有登上顶峰,他们距离顶峰60米;(2)115+30+45+180+25+20+30+110+25+100=680(米),因为每人每100米消耗氧气0.5升,所以680×5÷100×0.5=17(升),答:他们共消耗了17 升氧气.【变式4-2】(2022秋•枣阳市期末)某校积极开展劳动教育活动,七年级(2)班利用劳动课举行包饺子比赛,以小组为单位(共分7个小组),以包100个饺子为基准,将这7个小组所包饺子的数量(单位:个)记录如下:﹣8,+5,+3,﹣2,+3,+7,+6.(超过100个的部分记为“+”,不足100个的部分记为“﹣”)(1)包饺子数量最多的小组与数量最少的小组相差多少个?(2)本次活动该班共包饺子多少个?【答案】(1)包饺子数量最多的小组与数量最少的小组相差15个;(2)本次活动该班共包饺子714个.【解答】解:(1)由题意,得:包的最多的小组比基准多7个,包的最少的小组比基准少8个;+7﹣(﹣8)=15(个);答:包饺子数量最多的小组与数量最少的小组相差15个;(2)(﹣8+5+3﹣2+3+7+6)+7×100=714(个);答:本次活动该班共包饺子714个.【变式4-3】(2022秋•慈溪市期末)2022年足球世界杯在卡塔尔举行.某工厂设计了某款足球纪念品并进行生产,原计划每天生产10000个该款足球纪念品,但由于种种原因,实际每天的生产量与计划量相比有出入,下表是某一周的生产情况(超出记为正,不足记为负,单位:个):星期一二三四五六日与计划量的差值+43﹣35﹣50+142﹣82+21﹣29(1)根据记录的数据可知,本周生产量最多的一天比生产量最少的一天多生产多少个?(2)本周实际生产总量是否达到了计划数量?说明理由.(3)若该款足球纪念品每个生产成本25元,并按每个30元出售,则该工厂本周的生产总利润是多少元?【答案】(1)本周生产量最多的一天比生产量最少的一天多生产224个;(2)本周实际生产总量达到了计划数量,理由见解析;(3)350050.【解答】(1)解:由表可知:因为本周生产量最多的一天是周四,最少的一天是周五,∴142﹣(﹣82)=224(个).答:本周生产量最多的一天比生产量最少的一天多生产224个.(2)∵43+(﹣35)+(﹣50)+(+142)+(﹣82)+(+21)+(﹣29)=43﹣35﹣50+142﹣82+21﹣29=10.∵10>0,∴本周实际生产总量达到了计划数量.(3)由利润=总量×(单价﹣成本)有:(10000×7+10)×(30﹣25)=70010×5=350050(元).答:该工厂本周的生产总利润是350050元.【题型 4 有理数的概念辨析】【典例5】(2022秋•朝阳区期末)下面的说法中,正确的是( )A.正有理数和负有理数统称有理数B.整数和小数统称有理数C.整数和分数统称有理数D.整数、零和分数统称有理数【答案】C【解答】解:A.正有理数、0和负有理数统称为有理数,故不符合题意;B.无限不循环小数是无理数,故不符合题意;C.整数和分数统称为有理数,故符合题意;D.整数包括零,故不符合题意.z故选:C .【变式5-1】(2022秋•长沙期末)在﹣3.5,,0.3070809,0,中,有理数有( )个. A .1 B .2C .3D .4【答案】D【解答】解:在﹣3.5,,0.3070809,0,中,有理数有﹣3.5,,0.3070809,0,共4个,故选:D .【变式5-2】(2022秋•南宫市期末)若有理数的分类表示为:,则“”表示的是( )A .正有理数B .负有理数C .0D .非负数【答案】C【解答】解:有理数包括:整数与分数,整数包括:正整数,0和负整数, 则“”表示的是0. 故选:C .【变式5-3】(2022秋•颍州区期末)下列说法正确的是( ) A .3.14不是分数B .不带“﹣”号的数都是正数C .0是自然数也是正数D .整数和分数统称为有理数 【答案】 Dz【解答】解:A 、3.14是分数,属于有理数,故A 不符合题意; B 、0不带“﹣”号,但不是正数,故B 不符合题意;C 、0是自然数,但既不是正数,也不是负数,故C 不符合题意;D 、整数和分数统称为有理数,说法正确,故D 符合题意. 故选:D .【题型 5 有理数的分类】【典例6】(2022秋•宁陕县校级期中)把下列各数填入相应的大括号里: ﹣3,3.14,﹣0.1,80,﹣25%,0,正数集合:{ }; 整数集合:{ }; 负数集合:{ }; 正分数集合:{ }. 【答案】3.14,80,;﹣3,80,0;﹣3,﹣0.1,﹣25%;3.14,.【解答】解:﹣3,3.14,﹣0.1,80,﹣25%,0,,正数集合:{3.14,80,,};整数集合:{﹣3,80,0,}; 负数集合:{﹣3,﹣0.1,﹣25%,}; 正分数集合:{3.14,,}.故答案为:3.14,80,;﹣3,80,0;﹣3,﹣0.1,﹣25%;3.14,.【变式6-1】把下列各数填入相应的集合里:﹣3.14,4.3,+72,0,,﹣6,﹣7.3,﹣12,0.4,﹣,,26.(1)正数集合:{ …}; (2)负数集合:{ …}; (3)正整数集合:{ …}; (4)负整数集合:{ …};(5)非负数集合:{ …}. 【答案】(1)4.3,+72,,0.4,,26;(2)﹣3.14,﹣6,﹣7.3,﹣12,﹣;(3)+72,26;(4)﹣6,﹣12;(5)4.3,+72,0,,0.4,,26.【解答】解:(1)正数集合:{4.3,+72,,0.4,,26…};故答案为:4.3,+72,,0.4,,26;(2)负数集合:{﹣3.14,﹣6,﹣7.3,﹣12,﹣…};故答案为:﹣3.14,﹣6,﹣7.3,﹣12,﹣;(3)正整数集合:{+72,26…};故答案为:+72,26;(4)负整数集合:{﹣6,﹣12…};故答案为:﹣6,﹣12;(5)非负数集合:{4.3,+72,0,,0.4,,26…}.故答案为:4.3,+72,0,,0.4,,26.【变式6-2】(2022秋•雁塔区校级月考)把下列各数填在相应的横线上:5%,z﹣,﹣12,0,0.,﹣3.14,+6,0.101101110,.整数集合:{…};正数集合:{…};负分数集合:{…};非负整数集合:{…}.【答案】﹣12,0,+6;5%,0.,+6,0.101101110,;﹣,﹣3.14;0,+6.【解答】解:整数集合:{﹣12,0,+6…};z正数集合:{5%,0.,+6,0.101101110,…};负分数集合:{﹣,﹣3.14…}; 非负整数集合:{0,+6…}; 故答案为:﹣12,0,+6; 5%,0.,+6,0.101101110,;﹣,﹣3.14; 0,+6.【题型 6 数轴的画法及应用】【典例7】(2022•苏州模拟)以下是四位同学画的数轴,其中正确的是( ) A . B .C .D .【答案】D【解答】解:∵数轴要有三要素:单位长度,原点,正方向,并且数轴上表示的数从左到右增大,∴四个选项中只有选项D 符合题意, 故选:D .【变式7-1】(2022•杭州模拟)下列说法中正确的是( )A .数轴是一条射线B .数轴上离开原点距离越远的点表示的数越大C .数轴上的点所表示的数从左到右依次减小D .任何一个有理数都可以用数轴上的一个点表示 【答案】D【解答】解:数轴是一条直线,A 说法错误;在数轴的负半轴上,到原点距离越远的点所表示的数一定越小,B 说法错误; 数轴上的点所表示的数从左到右依次增大,C 说法错误; 任何一个有理数都可以用数轴上的一个点表示,D 说法正确. 故选:D .【变式7-2】(2021秋•凉州区校级期末)判断下列图中所画的数轴正确的个数是( )个.A.0B.1C.2D.3【答案】B【解答】解:数轴的三要素是:原点、正方向、单位长度,图(1)没有原点,故(1)不正确;图(2)满足数轴的定义,故(2)正确;图(3)所画负半轴上的数字排列顺序不对,故(3)错误;图(4)所画单位长度不一致,故(4)不正确.故选:B.【典例8】(2022秋•自贡期末)a,b为有理数,它们在数轴上对应点的位置如z图所示.则下列关系式正确的是( )A.﹣a<﹣b<b<a B.﹣a<b<﹣b<aC.﹣b<b<﹣a<a D.a<﹣b<b<﹣a【答案】B【解答】解:如图,由数轴可得,﹣a<b<﹣b<a,故选:B.【变式8-1】(2023•贵阳模拟)有理数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是( )zA .a +b >0B .a ﹣b >0C .ab >0D .【答案】D【解答】解:由数轴可知b >0>a ,且b <|a|, ∴a+b <0,故A 错误,不符合题意; a ﹣b <0,故B 错误,不符合题意; ab <0,故C 错误,不符合题意;,故D 正确,符合题意.故选:D .【变式8-2】(2022秋•鼓楼区校级期末)如图,A ,B ,C ,D 是数轴上的四个点,已知a ,b 均为有理数,且a +b =0,则它们在数轴上的位置不可能落在( )A .线段AB 上 B .线段BC 上 C .线段BD 上 D .线段AD 上【答案】A【解答】解:∵a ,b 均为有理数,且a+b =0, ∴a ,b 位于原点两侧,∴a ,b 在数轴上的位置不可能落在线段AB 上.故选:A .【变式8-3】(2022秋•江阴市期末)如图,数轴上的点A ,B 分别对应有理数a ,b ,下列结论正确的是( )A .a +b >0B .a ﹣b >0C .ab >0D .以上都不正确【答案】C【解答】解:由数轴可知,a <b <0, ∴a+b <0,故A 不符合题意; a ﹣b <0,故B 不符合题意;ab >0,故C 符合题意,D 不符合题意.【题型 7 数轴上的点所表示的数】【典例9】(2022秋•天津期末)已知数轴上点A到点B的距离是4,且点B所表示的数是2,则点A所表示的数是( )A.4或﹣4B.6或﹣2C.6或2D.﹣6或﹣2【答案】B【解答】解:∵点B到点A的距离是4.∵B表示2,∴A表示为2﹣4=﹣2或2+4=6.故选:B.【变式9-1】(2022秋•武冈市期末)点A为数轴上表示﹣2的点,当点A沿数轴移动5个单位长度到点B时,点B所表示的数为( )A.7或﹣3B.3或﹣7C.3或﹣3D.7或﹣7【答案】B【解答】解:向左移动5个单位长度对应的点表示﹣2﹣5=﹣7,向右移动5个单位长度对应的点表示﹣2+5=3,故选:B.【变式9-2】(2023•义乌市校级开学)如图,小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是( )A.﹣1B.0C.1D.2【答案】C【解答】解:由图可知,被墨水盖住的整数为:﹣3,﹣2,1,2,3,相加为﹣3+(﹣2)+1+2+3=1;故选:C【变式9-3】(2023•新邵县校级一模)在数轴上表示数﹣1和2021的两个点之间的距离为( )个单位长度.A.2022B.2021C.2020D.2019z【解答】解:|﹣1﹣2021|=2022, 故选:A .【题型 8 数轴中点规律问题】【典例10】(2023•新华区校级二模)如图,不完整的数轴上有A ,B 两点,原点在A 、B 之间,沿原点将负半轴折叠到正半轴上,点A 落在点B 左侧4个单位长度处,则线段AB 的中点表示的数为( )A .2B .﹣2C .4D .﹣4【答案】A【解答】解:根据题意可设点A 表示的数为a ,则折叠后的点A 的对称点为﹣a , 因为点A 落在点B 左侧4个单位长度处,所以点B 表示的数为﹣a+4, 则AB =﹣a+4﹣a =4﹣2a , 线段AB 的一半为2﹣a ,所以AB 中点为:﹣a+4﹣(2﹣a )=2, 故选:A .【变式10-1】(2022秋•公安县期末)在数轴上,若点A ,B 表示的数分别是﹣3和5,点M 是线段AB 的中点,则M 表示的数为( ) A .1 B .2C .4D .﹣4【答案】A【解答】解:∵点A ,B 表示的数分别是﹣3和5, ∴AB =5﹣(﹣3)=8, ∵点M 是线段AB 的中点, ∴,∴点M 表示的数为:5﹣4=1; 故选:A .【变式10-2】(2022秋•江岸区期末)如图,在数轴上,点A 、B 表示的数分别是﹣19和3.点C 为线段AD 的中点,且BC =6BD ,则点C 表示的数为( )zA .﹣9B .﹣9.5C .﹣10D .﹣10.5【答案】A【解答】解:∵数轴上A ,B 两点所表示的数分别是﹣19和3, ∴AB =3+19=22, 设BD =x , ∵BC =6BD , ∴BC =6x , ∴CD =5x ,∵点C 为线段AD 的中点, ∴AD =2CD =10x , ∴AB =11x =22, ∴x =2, ∴AC =5x =10,∴点C 所表示的数是﹣19+10=﹣9. 故选:A .1.(2022•襄阳)若气温上升2℃记作+2℃,则气温下降3℃记作( ) A .﹣2℃ B .+2℃C .﹣3℃D .+3℃【答案】C【解答】解:∵气温上升2℃记作+2℃, ∴气温下降3℃记作﹣3℃. 故选:C .2.(2022•益阳)四个实数﹣,1,2,中,比0小的数是( )A .﹣B .1C .2D .【答案】A【解答】解:根据负数都小于零可得,﹣<0.故选:A.3.(2022•河池)如果将“收入50元”记作“+50元”,那么“支出20元”记作( )A.+20元B.﹣20元C.+30元D.﹣30元【答案】B【解答】解:∵收入50元,记作“+50元”.且收入跟支出意义互为相反.∴支出20元,记作“﹣20元”.故选:B.4.(2021•南京)北京与莫斯科的时差为5小时,例如,北京时间13:00,同一时刻的莫斯科时间是8:00.小丽和小红分别在北京和莫斯科,她们相约在各自当地时间9:00~17:00之间选择一个时刻开始通话,这个时刻可以是北京时间( )A.10:00B.12:00C.15:00D.18:00【答案】C【解答】解:由题意得,北京时间应该比莫斯科时间早5小时,当莫斯科时间为9:00,则北京时间为14:00;当北京时间为17:00,则莫斯科时间为12:00;所以这个时刻可以是14:00到17:00之间,所以这个时刻可以是北京时间15:00.故选:C.5.(2021•滨州)在数轴上,点A表示﹣2.若从点A出发,沿数轴的正方向移动4个单位长度到达点B,则点B表示的数是( )A.﹣6B.﹣4C.2D.4【答案】C【解答】解:由题意可得,点B表示的数为﹣2+4=2,故选:C.z6.(2021•广州)如图,在数轴上,点A 、B 分别表示a 、b ,且a +b =0,若AB =6,则点A 表示的数为( )A .﹣3B .0C .3D .﹣6【答案】A【解答】解:∵a+b =0, ∴a =﹣b ,即a 与b 互为相反数. 又∵AB =6, ∴b ﹣a =6. ∴2b =6. ∴b =3.∴a =﹣3,即点A 表示的数为﹣3. 故选:A .7.(2021•凉山州)下列数轴表示正确的是( ) A . B .C .D .【答案】D【解答】解:A 选项,应该正数在右边,负数在左边,故该选项错误;B 选项,负数的大小顺序不对,故该选项错误;C 选项,没有原点,故该选项错误;D 选项,有原点,正方向,单位长度,故该选项正确; 故选:D .8.(2020•乐山)数轴上点A 表示的数是﹣3,将点A 在数轴上平移7个单位长度得到点B ,则点B 表示的数是( ) A .4 B .﹣4或10C .4或﹣10D .﹣10【答案】C【解答】解:如果A 向右平移得到,点B 表示的数是:﹣3+7=4, 如果A 向左平移得到,点B 表示的数是:﹣3﹣7=﹣10,z故点B 表示的数是4或﹣10. 故选:C .9.(2020•临沂)如图,数轴上点A 对应的数是,将点A 沿数轴向左移动2个单位至点B ,则点B 对应的数是( )A .﹣B .﹣2C .D .【答案】A【解答】解:点A 向左移动2个单位, 点B 对应的数为:﹣2=﹣. 故选:A .10.(2020•湘潭)在数轴上到原点的距离小于4的整数可以为 .(任意写出一个即可) 【答案】见试题解答内容【解答】解:在数轴上到原点的距离小于4的整数有:﹣3,3,﹣2,2,﹣1,1,0从中任选一个即可故答案为:3(答案不唯一,3,2,1,0,﹣1,﹣2,﹣3任意一个均可);1.(2023•河北模拟)向东走2m ,记为+2m ,那么走﹣7m ,表示( ) A .向南走7m B .向东走7mC .向西走7mD .向北走7m【答案】C【解答】解:向东走2m ,记为+2m ,那么走﹣7m ,表示向西走7m . 故选:C .2.(2022秋•河池期末)下列说法错误的是( ) A .0既不是正数,也不是负数B .零上4摄氏度可以写成+4°C ,也可以写成4°CzC .若盈利100元记作+100元,则﹣20元表示亏损20元D .向正北走一定用正数表示,向正南走一定用负数表示 【答案】D【解答】解:A .0既不是正数,也不是负数,正确,故不符合题意; B .零上4摄氏度可以写成+4°C ,也可以写成4°C ,正确,故不符合题意; C .若盈利100元记作+100元,则﹣20元表示亏损20元,正确,故不符合题意; D .规定向正北走用正数表示,则向正南走才用负数表示,原说法错误,故符合题意. 故选:D .3.(2023•海安市一模)手机移动支付给生活带来便捷.如图是小颖某天微伯账单的收支明细(正数表示收入,负数表示支出,单位:元),小颖当天微信收支的最终结果是( )A .收入18元B .收入6元C .支出6元D .支出12元【答案】B【解答】解:+18+(﹣12)=6(元),即小颖当天微信收支的最终结果是收入6元.故选:B .4.(2023•官渡区校级模拟)检查四个篮球的质量,把超过标准的克数记为正数,不足标准质量的克数记为负数,结果如下表: 其中质量最好的是( )篮球编号 甲 乙 丙 丁与标准质量的差(g ) +4+7﹣3﹣8A .甲B .乙C .丙D .丁【答案】C【解答】解:根据题意可得:超过标准质量的克数记为正数,不足标准质量的克z数记为负数;观察图表,找绝对值最小的.易得|﹣3|=3最小, 故3号球最接近标准质量,质量最好, 故选:C .5.(2022秋•广西期末)在,﹣4,0,这四个数中,属于负整数的是( ) A .B .C .0D .﹣4【答案】D【解答】解:∵﹣,都是分数, ∴选项A ,B 不符合题意; ∵0既不是正数,也不是负数, ∴选项C 不符合题意; ∵﹣4是负整数, ∴选项D 符合题意, 故选:D .6.(2022秋•红河县期末)下列说法正确的是( ) A .0不是正数,不是负数,也不是整数 B .正整数与负整数包括所有的整数C .﹣0.6是分数,负数,也是有理数D .没有最小的有理数,也没有最小的自然数【答案】C【解答】解:A 0不是正数也不是负数,0是整数,故A 错误; B 正整数于负整数不包括0,故B 错误; C ﹣0.6是分数,负数,有理数,故C 正确; D 0是最小的自然数,故D 错误; 故选:C .7.(2023•晋安区校级模拟)如图,数轴的单位长度是1,若点A 表示的数是﹣1,则点B 表示的数是( )zA .1B .2C .3D .4【答案】D【解答】解:∵数轴的单位长度为1,如果点A 表示的数是﹣1, ∴点B 表示的数是:﹣1+5=4,故D 正确. 故选:D .8.(2022秋•惠阳区期末)有理数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .a >﹣1B .﹣a <bC .a +b <0D .a ﹣b >0【答案】B【解答】解:观察数轴得:﹣2<a <﹣1,2<b <3, ∴A 选项错误,不符合题意; ∴1<﹣a <2,∴﹣a <b ,故B 选项正确,符合题意; ∴|a|<|b|,∴a+b >0,故C 选项错误,不符合题意; ∴a ﹣b <0,故D 选项错误,不符合题意; 故选:B .9.(2022秋•沈丘县月考)已知数轴上A ,B 两点到原点的距离分别是3和9,则A ,B 两点间的距离是( ) A .6 B .9或12C .12D .6或12【答案】D【解答】解:A 、B 两点表示的数同号时,A ,B 两点间的距离是9﹣3=6或﹣3﹣(﹣9)=6,A 、B 两点表示的数异号时,A ,B 两点间的距离是9﹣(﹣3)=12或3﹣(﹣9)=12,∴A ,B 两点间的距离是6或12. 故选:D .10.(2022秋•文成县期中)点A、B在同一条数轴上,其中点A表示的数为1,若点B到点A的距离为4,则点B表示的数是( )A.3B.5C.3或﹣3D.5或﹣3【答案】D【解答】解:∵1+4=5,1﹣4=﹣3,∴点B表示的数是5或﹣3,故选:D.11.(2022秋•济南期中)如图,一条数轴上有点A、B、C,其中点A、B表示的数分别是﹣14,10,现以点C为折点,将数轴向右对折,若点A落在射线CB上且到点B的距离为6,则C点表示的数是( )A.1B.﹣3C.1或﹣5D.1或﹣4【答案】C【解答】解:10+6=16,10﹣6=4,当A落在16对应的点时,C表示的数为:(16﹣14)=1,z当A落在4对应的点时,C表示的数为:(4﹣14)=﹣5,故选:C.12.(2023春•荣县月考)观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是(结果需化简).【答案】见试题解答内容【解答】解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1)n+1,∴第16个答案为:.故答案为:.13.(2022秋•武侯区校级月考)把下列各数分别填入相应的集合里.0,,5,3.14,π,﹣3,0.1.(1)整数集合:{…};(2)分数集合:{…};(3)有理数集合:{…};(4)非负数集合:{…}.【答案】(1)0,5,﹣3;(2),3.14,0.1;(3)0,,5,3.14,﹣3,0.1;(4)0,5,3.14,π,0.1.【解答】解:0,,5,3.14,π,﹣3,0.1.(1)整数集合:{0,5,﹣3,…};故答案为:0,5,﹣3;(2)分数集合:{,3.14,0.1,…};、故答案为:,3.14,0.1;z(3)有理数集合:{0,,5,3.14,﹣3,0.1,…};故答案为:0,,5,3.14,﹣3,0.1;(4)非负数集合:{0,5,3.14,π,0.1,…}.故答案为:0,5,3.14,π,0.1.14.(2023•泰山区校级开学)自行车厂要生产一批相同型号的自行车,计划每天生产200辆.但由于各种原因,实际每天的生产量与计划量相比会有所差异.下表是工人在某周的生产情况:(超过200辆记为正,不足200辆记为负)星期一二三四五六日增减(辆)+5﹣3﹣4+13﹣10+15﹣9(1)根据记录可知,前三天共生产了辆;(2)生产量最多的一天比生产量最少的一天多生产了辆;(3)该厂实行计件工资制,每生产一辆得100元,对于每天的计划生产量,若每多生产一辆再额外奖20元,若每少生产一辆则要扣20元,求工人这一周的工资总额是多少元.【答案】(1)598;(2)25;(3)工人这一周的工资总额是140840元.【解答】解:(1)由表格可得,(200+5)+(200﹣3)+(200﹣4)=205+197+196=598(辆),即前三天共生产了598辆,故答案为:598;(2)由表格可得,生产量最多的一天比生产量最少的一天多生产了15﹣(﹣10)=15+10=25(辆),故答案为:25;(3)200×7×100+[5+(﹣3)+(﹣4)+13+(﹣10)+15+(﹣9)]×120=140000+7×120=140000+840=140840(元),答:工人这一周的工资总额是140840元.15.(2022秋•长安区校级期末)某食品厂在产品中抽出20袋样品,检查其质量是否达标,超过标准的部分用正数表示,不足的部分用负数表示:﹣3﹣2﹣1.501 1.5 2.5与标准质量的差/克袋数1434323(1)这批样品的总质量比标准总质量多还是少?多或少几克?(2)若每袋的标准质量为200克,求这批样品平均每袋的质量是多少克?【答案】(1)这批样品的总质量比标准总质量少,少2克;(2)这批样品平均每袋的质量是199.9克.【解答】解:(1)(﹣3)×1+(﹣2)×4+(﹣1.5)×3+0×4+1×3+1.5×2+2.5×3=﹣3﹣8﹣4.5+0+3+3+7.5=﹣2(克),即这批样品的总质量比标准总质量少,少2克;(2)200×20﹣2=4000﹣2=3998(克),3998÷20=199.9(克),即这批样品平均每袋的质量是199.9克.。
新人教版数学七年级上册第1章有理数基础巩固与训练(含解析答案)

新人教版数学七年级上册第一章有理数基础巩固与训练总分数分时长:题型单选题填空题简答题综合题题量8 6 1 5总分一、选择题(共8题 ,总计0分)1.- 的倒数是()A. -4B. 4C.D. -2.下列说法正确的是()A. 一个数的绝对值一定比0大B. 一个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D. 最小的正整数是13.计算(-3)3+52-(-2)2=()A. 2B. 5C. -3D. -64.点A为数轴上表示-2的动点,当点A沿数轴移动4个单位长度到B时,点B所表示的数是()A. 1B. -6C. 2或-6D. 不同于以上答案5.下面各数是负数的是()A. 0B. -2017C.D.6.如图,a,b两个数在数轴上的位置如图所示,则下列各式正确的是()A. a+b<0B. ab<0C. b-a<0D. >07.某日,北京、上海、重庆、银川的最低气温分别是-4 ℃,5 ℃,6 ℃,-8 ℃.这四个城市中,气温最低的是()A. 北京B. 上海C. 重庆D. 银川8.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140 000 m3.140 000用科学记数法表示为()A. 14×104B. 1.4×105C. 1.4×106D. 0.14×106二、填空题(共6题 ,总计0分)9.如果把增产10%记作+10%,那么减产50%记作____1____,-12%表示____2____.10.若(a+3)2+|b-2|=0,则(a+b)2015=____1____.11.若x2=16,则x=____1____;若x3=-8,则x=____2____.12.一个数的相反数是它本身,这个数是____1____;一个数的倒数是它本身,这个数是____2____;一个数的绝对值是它本身,这个数是____3____;最大的负整数是____4____. 13.观察下列一组数:,….根据该组数的排列规律,可推出第10个数是____1____.14.一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.一个给定集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的.如一组数1,1,2,3,4就可以构成一个集合,记为A={1,2,3,4}.类比实数有加法运算,集合也可以“相加”.定义:集合A与集合B中的所有元素组成的集合称为集合A与集合B的和,记为A+B.若A={-2,0,1,5,7},B={-3,0,1,3,5},则A+B=____1____.三、解答题(共6题 ,总计0分)15.把下列各数按要求分类.-4,10%,-1,-2,101,2,-1.5,0,,0.,7.(1).负整数集合:{____1____},(2).正分数集合:{____1____},(3).负分数集合:{____1____},(4).整数集合:{____1____}.16.计算:(1). ×××;(2).(-3.2)×(-4.8)-6.8×(-4.8);(3).×(-36);(4).9×15-12×(-8).17.小明和小红都想参加学校组织的数学兴趣小组,根据学校分配的名额,他们两人只能有一人参加,数学老师想出了一个主意,如图,给他们六张卡片,每张卡片上都有一些数,将化简后的数在数轴上表示出来,再用“<”连接起来,谁先按照要求做对,谁就参加兴趣小组.你也一起来试一试吧!18.综合(1).填空:①(2×3)2=____1____,22×32=____2____;=____3____,=____4____;=____5____,____6____.(2).想一想:(1)中每组中的两个算式的结果是否相等?(3).猜一猜:当n为正整数时,(ab)n等于什么?(4).试一试:结果是多少?19.观察下面的点阵图形和与之相对应的等式,探究其中的规律:(1).请你在④和⑤后面的横线上分别写出相对应的等式:(2).通过猜想,写出与第n个图形相对应的等式.20.某自行车厂计划一周生产自行车1 400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正,减产记为负).一二三四五六日星期+5 -2 -4 +13 -10 +16 -9 生产辆数(1).根据记录的数据可知该厂星期五生产自行车辆.(2).根据记录的数据可知该厂本周实际生产自行车辆.(3).该厂实行每日计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;若没有完成计划产量,少生产一辆扣20元.那么该厂工人这一周的工资总额是多少元?(4).若将上面第(3)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,在此方式下这一周工人的工资与按日计件的工资哪一个更多?请说明理由.第1章基础巩固与训练参考答案与试题解析一、选择题(共8题 ,总计0分)1.- 的倒数是()A. -4B. 4C.D. -【解析】略【答案】A2.下列说法正确的是()A. 一个数的绝对值一定比0大B. 一个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D. 最小的正整数是1【解析】一个数的绝对值不一定比0大,有可能等于0,故选项A错误;负数的相反数比它本身大,0的相反数是0,故选项B错误;0的绝对值等于其本身,故选项C错误.【答案】D3.计算(-3)3+52-(-2)2=()A. 2B. 5C. -3D. -6【解析】原式=-27+25-4=-6.【答案】D4.点A为数轴上表示-2的动点,当点A沿数轴移动4个单位长度到B时,点B所表示的数是()A. 1B. -6C. 2或-6D. 不同于以上答案【解析】向右移动时,点B表示的数是2;向左移动时,点B表示的数是-6.【答案】C5.下面各数是负数的是()A. 0B. -2017C.D.【解析】|-2017|=2017,只有-2017为负数.【答案】B6.如图,a,b两个数在数轴上的位置如图所示,则下列各式正确的是()A. a+b<0B. ab<0C. b-a<0D. >0【解析】由题图知a<0,b>0,|a|<|b|,所以a+b>0,ab<0,b-a>0,<0.只有选项B正确.【答案】B7.某日,北京、上海、重庆、银川的最低气温分别是-4 ℃,5 ℃,6 ℃,-8 ℃.这四个城市中,气温最低的是()A. 北京B. 上海C. 重庆D. 银川【解析】本题考查实数的大小比较.-4,5,6,-8这四个数中,按大小顺序排列为6>5>-4>-8,因此最小的数是-8,所以银川的气温最低.【答案】D8.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140 000 m3.140000用科学记数法表示为()A. 14×104B. 1.4×105C. 1.4×106D. 0.14×106【解析】略【答案】B二、填空题(共6题 ,总计0分)9.如果把增产10%记作+10%,那么减产50%记作____1____,-12%表示____2____.【解析】略【答案】-50%减产12%10.若(a+3)2+|b-2|=0,则(a+b)2015=____1____.【解析】由题意得a+3=0,b-2=0,得a=-3,b=2,所以(a+b)2015=(-3+2)2015=(-1)2015=-1.【答案】-111.若x2=16,则x=____1____;若x3=-8,则x=____2____.【解析】略【答案】±4-212.一个数的相反数是它本身,这个数是____1____;一个数的倒数是它本身,这个数是____2____;一个数的绝对值是它本身,这个数是____3____;最大的负整数是____4____. 【解析】略【答案】0±1非负数-113.观察下列一组数:,….根据该组数的排列规律,可推出第10个数是____1____.【解析】分母为奇数,分子为自然数,所以它的规律用含n的代数式表示为,则n=10时可得结果为.【答案】14.一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.一个给定集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的.如一组数1,1,2,3,4就可以构成一个集合,记为A={1,2,3,4}.类比实数有加法运算,集合也可以“相加”.定义:集合A与集合B中的所有元素组成的集合称为集合A与集合B的和,记为A+B.若A={-2,0,1,5,7},B={-3,0,1,3,5},则A+B=____1____.【解析】由定义可得将集合A与集合B的所有元素放一起但必须删除重复的那部分元素0,1,5.【答案】{-3,-2,0,1,3,5,7}三、解答题(共6题 ,总计0分)15.把下列各数按要求分类.-4,10%,-1,-2,101,2,-1.5,0,,0.,7.(1).负整数集合:{____1____},(2).正分数集合:{____1____},(3).负分数集合:{____1____},(4).整数集合:{____1____}.【解析】(1)略(2)略(3)略(4)略【答案】(1)-4,-2(2)10%,,(3) -1,-1.5(4)-4,-2,101,2,0,716.计算:(1). ×××;(2).(-3.2)×(-4.8)-6.8×(-4.8);(3).×(-36);(4).9×15-12×(-8).【解析】(1)略(2)略(3)略(4)略【答案】(1)×××=-×××=-.(2)(-3.2)×(-4.8)-6.8×(-4.8)=-4.8×(-3.2-6.8)=-4.8×(-10)=48.(3)×(-36)=-×36+×36-×36+×36=-28+30-21+120=101.(4)9×15-12×(-8)=×15-×(-8)=150-+104-2=251.17.小明和小红都想参加学校组织的数学兴趣小组,根据学校分配的名额,他们两人只能有一人参加,数学老师想出了一个主意,如图,给他们六张卡片,每张卡片上都有一些数,将化简后的数在数轴上表示出来,再用“<”连接起来,谁先按照要求做对,谁就参加兴趣小组.你也一起来试一试吧!【解析】略【答案】解:①-(-2)=2;②(-1)3=-1;③-|-3|=-3;④0的相反数是0;⑤-0.4的倒数是- ;⑥比-1大的数是.在数轴上表示如下:用“<”连接起来为:③<⑤<②<④<⑥<①.18.综合(1).填空:①(2×3)2=____1____,22×32=____2____;=____3____,=____4____;=____5____,____6____.(2).想一想:(1)中每组中的两个算式的结果是否相等?(3).猜一猜:当n为正整数时,(ab)n等于什么?(4).试一试:结果是多少?【解析】(1)略(2)略(3)略(4)略【答案】(1)36361616-1-1(2)由上面的计算结果可知,(1)中每组中的两个算式的结果相等.(3)(ab)n=a n b n.(4)==119.观察下面的点阵图形和与之相对应的等式,探究其中的规律:(1).请你在④和⑤后面的横线上分别写出相对应的等式:(2).通过猜想,写出与第n个图形相对应的等式.【解析】(1)略(2)略【答案】(1)④4×3+1=4×4-3⑤4×4+1=4×5-3(2)4(n-1)+1=4n-3.20.某自行车厂计划一周生产自行车1 400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正,减产记为负).一二三四五六日星期生产+5 -2 -4 +13 -10 +16 -9(1).根据记录的数据可知该厂星期五生产自行车辆.(2).根据记录的数据可知该厂本周实际生产自行车辆.(3).该厂实行每日计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;若没有完成计划产量,少生产一辆扣20元.那么该厂工人这一周的工资总额是多少元?(4).若将上面第(3)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,在此方式下这一周工人的工资与按日计件的工资哪一个更多?请说明理由.【解析】(1)略(2)略(3)略(4)略【答案】(1)周五生产自行车减产10辆,实际生产200+(-10)=190(辆).(2)本周生产自行车为1400+(+5-2-4+13-10+16-9)=1400+9=1409(辆).(3)1409×60+15(5+13+16)+20(-2-4-10-9)=84540+510-500=84550(元).(4)周计工资更多,因为实行每周计件工资制,总工资为1409×60+15(5+13+16-2-4-10-9)=84540+15×9=84675(元).84675>84550,所以按周计件工资更多.。
最新北师大版七年级上册有理数+数轴+绝对值练习试题以及答案

七年级上册有理数+数轴+绝对值练习试题认识有理数1、在CCTV“开心辞典”栏目中,主持人问这样一道题目:“a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,请问:a,b,c三数分别是。
2、下列说法不正确的是()A、0既不是正数,也不是负数B、1是绝对值最小的数C、一个有理数不是整数就是分数D、0的绝对值是03、大米包装袋上(10±0.1)kg的标识表示此袋大米重()A.(9.9~10.1)kgB.10.1kgC.9.9kgD.10kg4、2019年1月1日零点,北京、上海、重庆、银川的气温分别是-4℃,5℃,6℃,-8℃,当时这四个城市中,气温最低的是()A.北京B.上海C.重庆D.银川6、在1,0,2,-3这四个数中,最大的数是:( )A.1B.0C.2D.-37、比-2大3的数是:()A.1B.-1C.-5D.-68、如果温度上升3℃记作+3℃,那么下降3℃记作____________.9、观察下列依次排列的一列数:-2,4,-6,8,-10……按它的排列规律,则第10个数为.10、符号“f”表示一种运算,它对一些数的运算结果如下:11、整数:{…}分数:{…}正数:{…}负数:{…}数轴1、在数轴上与-3距离4个单位的点表示的数是。
2、已知有理数在数轴上对应的点如图所示,则a,-a,-1,1的大小关系是()A.a<-1<1<-aB.-a<-1<a<1C.a<-1<-a<1D.-a<-1<13、有理数a、b在数轴上的位置如图所示,则下列各式正确的是()A.a>bB.a>-bC.a<bD.-a<-b1个单位长度,且位于原点左侧,则点A表示4、点A在数轴上距原点2的数是()A.-2B.21C、-21D.25、数轴上点A,B表示的数分别是5、-3,它们之间的距离可以表示为。
6、A为数轴上表示-1的点,将点A在数轴上向右平移3个单位长度到点B,则点B所表示的实数为()A.3B.2C、-4D.2或-47、下列表示数轴的图形中正确的是()8、把下列各数在数轴上表示出来,并用">"号连结起来.-3,-1.5,-1, 2.5,4.9、某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+8,-3,+12,-7,-10,-3,-8,+1,0,+10.(1)这10名同学中最高分是多少?最低分是多少?(2)10名同学的平均成绩是多少?绝对值1、绝对值等于其相反数的数一定是( )A. 正数B. 负数C. 正数和零D.负数和零2、A 、B 是数轴上两点,线段AB 上的点表示的数中,有互为相反数的是( ) A. B. C. D.3、﹣5的绝对值是( )4、5、绝对值等于5的有理数是__________.绝对值最小的数是_____.6、21﹣的绝对值的相反数是 。
有理数-数轴的概念以及习题大全

【有理数】➢数轴概念:规定了原点、正方向、单位长度的直线,叫数轴。
【基础练习】1.数轴是()A.一条直线B.有原点、正方向的一条直线C.有长度单位的直线 D.规定了原点、正方向和单位长度的直线2.如图所示的图形为四位同学画的数轴,其中正确的是()3.下面表示数轴的图中,画得正确的是()A. B.C. D.4.下列给出的四条数轴,错误的是()A. (1)(2)B. (2)(3)(4)C. (1)(2)(3)D. (1)(2)(3)(4)5.下列说法正确的是()A. 有原点、正方向的直线是数轴B. 数轴上两个不同的点可以表示同一个有理数C. 有些有理数不能在数轴上表示出来D. 任何一个有理数都可以用数轴上的点表示6. 下列说法错误的是( )A.没有最大的正数,却有最大的负数B.数轴上离原点越远,表示数越大C.0大于一切非负数D.在原点左边离原点越远,数就越小7. 在数轴上表示1206.35 ,,,的点中,在原点右边的点有( )A. 0个B. 1个C. 2个D. 3个 年 8. 如果点A 、B 、C 、D 所对应的数为a 、b 、c 、d ,则a 、b 、c 、d 的大小关系为( )A.a <c <d <bB.b <d <a <cC.b <d <c <aD.d <b <c <a9. 4. 下列说法中,错误的是( )A. 数轴上表示-5的点距离原点5个单位长度B. 规定了原点、正方向和单位长度的直线叫做数轴C. 有理数0在数轴上表示的点是原点D. 表示百万分之一的点在数轴上不存在10. 数轴具有的三个要素是 _______ 、 ________ 、 _________ 。
11. 在数轴上表示的两个数中, 的数总比 的数大。
12. 在数轴上,表示-5的数在原点的 侧,它到原点的距离是 个单位长度。
13. 在数轴上,表示+2的点在原点的 侧,距原点 个单位;表示-7的点在原点的侧,距原点 个单位;两点之间的距离为 个单位长度。
(600)初中数学有理数之数轴专项练习30题 (有答案) 20页

初中数学有理数之数轴专项练习30题(有答案)1.点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是.2.点A是数轴上表示4的点,与点A距离为5.5的点B所表示的数为.3.如图,数轴上的A,B,C三点所表示的数分别是a,b,c,其中AB=BC,若|a|>|b|>|c|,则该数轴的原点O的位置应该在.4.数轴上点A先向左移动3个单位长度,再向右移动5个单位长度,正好是﹣8这个点,那么原来点A对应的数是.5.在数轴上,点A表示的数是﹣3,点B表示x,且A与B的距离是6,那么x表示的数是.6.利用数轴回答:(1)写出所有不大于4且大于﹣3的整数有;(2)比﹣2大的数是.7.一质点P从距原点1个单位的A点处向原点方向跳动,第一次跳动到OA的中点A1处,第二次从A1点跳动到OA1的中点A2处,第三次从A2点跳动到OA2的中点A3处,如此不断跳动下去,则第5次跳动后,该质点到原点O的距离为.8.有理数a,b在数轴上的位置如图所示,下列各式:①b﹣a>0,②﹣b>0,③a>﹣b,④﹣ab<0,正确的个数是.9.已知有理数a,b在数轴上的位置如图所示,若|a|>|b|,则a+b 0,a﹣b 0,ab 0.10.如图,数轴上有四点A,B,C,D,它们表示的数分别为2,x,﹣3,﹣4.(1)A、D两点间的距离是;(2)若将数轴对折,使得点A与点C重合,则折叠点恰好为点B,写出点B表示的数x是,折叠后与点D重合的点表示的数是;(3)若点B从题(2)中的位置出发沿数轴先向右移动,到达A点后,随即折返一直向左移动,移动过程中,将数轴对折,使得折叠点为点B,设与点A重合的点为A′,当A′、D两点的距离为是A′、A两点间距离的时,点B移动的距离为.11.如下图,一个点从数轴上的原点开始,先向右移动了3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2.已知点A、B是数轴上的点,完成下列各题:(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是,A、B两点间的距离是.(2)如果点A表示数是3,将点A向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A、B两点间的距离是.(3)一般地,如果点A表示数为a,将点A向右移动b个单位长度,再向左移动c个单位长度,那么请你猜想终点B表示的数是,A、B两点间的距离是.12.已知在纸面上有一数轴(如图),折叠纸面.(1)若表示数1的点与表示数﹣1的点重合,则表示﹣2的点与表示数的点重合;(2)若表示数﹣1的点与表示数3的点重合,回答以下两个问题:①表示数5的点与表示数的点重合;②若数轴上A、B两点之间的距离为m(A在B的左侧),且A、B两点经折叠后重合,直接写出A、B两点表示的数(用含m的式子表示)是多少?13.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.请利用数轴回答下列问题:①如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是,A、B 两点间的距离是;②如果点A表示数3,将A点先向左移动4个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A、B两点间的距离是;③一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动P个单位长度,请你猜想终点B表示的数是,A、B两点间的距离是.14.如图,先在数轴上画出表示2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,求点B,C表示的数,以及B,C两点间的距离.15.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油1.5升,那么这辆货车此次送货共耗油多少升?16.如图,一只蚂蚁从原点O出发,它先向右爬了2个单位长度到达点A,再向右爬了3个单位长度到达点B,然后向左爬了9个单位长度到达点C.(1)写出A,B,C三点表示的数;(2)根据C点在数轴上的位置回答蚂蚁实际上是从原点出发,向什么方向爬行了几个单位长度?17.在数轴上表示下列各数:0,﹣4.2,,﹣2,+7,,并用“<”号连接.18.如图所示,一个点从数轴上的原点开始,先向右移动2个单位长度,再向左移动5个单位长度,可以看到终点表示是﹣3,已知A、B是数轴上的点,请参照如图并思考,完成下列各题.(1)如果点A表示的数﹣1,将点A向右移动4个单位长度,那么终点B表示的数是.A、B两点间的距离是.(2)如果点A表示的数2,将点A向左移动6个单位长度,再向右移动3个单位长度,那么终点B表示的数是.A、B两点间的距离是.(3)如果点A表示的数m,将点A向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示的数是.A、B两点间的距离是.19.一辆货车从货场A出发,向东走了4千米到达批发部B,继续向东走1.5千米到达商场C,又向西走了8.5千米到达超市D,最后回到货场.(1)用一个单位长度表示1千米,以东为正方向,以货场为原点,画出数轴并在数轴上标明货场A,批发部B,商场C,超市D的位置.(2)超市D距货场A多远?(3)货车一共行驶了多少千米?20.在数轴上有三个点A、B、C(如图).请回答:(1)写出数轴上距点B三个单位的点所表示的数;(2)将点C向左移动6个单位到达点D,用“<”号把A、B、D三点所表示的数连接起来;(3)怎样移动A、B、C中的两个点才能使三个点所表示的数相同(写出一种移动方法即可)21.如图一根木棒放在数轴上,木棒的左端与数轴上的点A重合,右端与点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到B点时,它的右端在数轴上所对应的数为20;若将木棒沿数轴向左水平移动,则当它的右端移动到A点时,则它的左端在数轴上所对应的数为5(单位:cm),由此可得到木棒长为cm.(2)由题(1)的启发,请你能借助“数轴”这个工具帮助小红解决下列问题:问题:一天,小红去问曾当过数学老师现在退休在家的爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生;你若是我现在这么大,我已经125岁,是老寿星了,哈哈!”,请求出爷爷现在多少岁了?22.数轴是一个非常重要的数学工具,通过它把数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.请利用数轴回答下列问题:(1)如果点A表示数﹣2,将点A向右移动5个单位长度到达点B,那么点B表示的数是,A、B两点间的距离是;(2)如果点A表示数5,将点A先向左移动4个单位长度,再向右移动7个单位长度到达点B,那么点B表示的数是,A、B两点间的距离是;(3)一般的,如果点A表示的数为a,将点A先向左移动b个单位长度,再向右移动c个单位长度到达点B,那么点B表示的数是.23.一点A从数轴上表示+2的A点开始连续移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位…求:(1)写出第一次移动后这个点在数轴上表示的数;(2)写出第二次移动结果这个点在数轴上表示的数;(3)写出第五次移动后这个点在数轴上表示的数;(4)写出第n次移动结果这个点在数轴上表示的数.24.小李在做题时,画了一个数轴,在数轴上原有一点A,其表示的数是﹣3,由于粗心,把数轴的原点标错了位置,使点A正好落在﹣3的相反数的位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?25.电子跳蚤落在数轴上(向右为正方向)上某点K.第一步从K0向左跳1个单位到K1,第二部由K1向右跳2个单位到K2,第三步有K2向左跳3个单位到K3,第四步由K3向右跳4个单位到K5…按以上规律跳了100步时,电子跳蚤落在数轴上点K100表示的实数为2008.电子跳蚤的初始位置K表示的数是多少?26.在下面的数轴中,把下列各数在数轴上表示出来,并按从小到大的顺序,用“<”号连接起来..27.如图所示,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C点.(1)求动点A所走过的路程及A、C之间的距离.(2)若C表示的数为1,则点A表示的数为.28.一个小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程为负数,爬行的路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)小虫最后是否能回到出发点O?(2)小虫离开出发点O最远时是多少厘米?(直接写出结果即可.)(3)在爬行过程中,如果每爬1厘米奖励两粒芝麻,则小虫共可得多少粒芝麻?29.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒.(1)数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q时出发.求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?30.已知A、B两地相距50米,小乌龟从A地出发前往B地,第一次它前进1米,第二次它后退2米,第三次再前进3米,第四次又向后退4米…,按此规律行进,如果A地在数轴上表示的数为﹣16.(1)求出B地在数轴上表示的数;(2)若B地在原点的右侧,经过第七次行进后小乌龟到达点P,第八次行进后到达点Q,点P、点Q到A地的距离相等吗?说明理由?(3)若B地在原点的右侧,那么经过100次行进后,小乌龟到达的点与点B之间的距离是多少?初中数学有理数之数轴30题答案:1.【分析】此题可借助数轴用数形结合的方法求解.【解答】解:设点A表示的数是x.依题意,有x+7﹣4=0,解得x=﹣3.故答案为:﹣32.【分析】根据数轴上到一点距离相等的点有两个,可得所求点表示的数.【解答】解:∵4+5.5=9.5,4﹣5.5=﹣1.5,∴与点A距离为5.5的点B所表示的数为﹣1.5,9.5,故答案为:﹣1.5,9.5.3.【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.【解答】解:∵|a|>|b|>|c|,∴点A到原点的距离最大,点B其次,点C最小,又∵AB=BC,∴原点O的位置应该在点C的右边或者在点B与点C之间(且靠近点C)的地方.故答案为:点C的右边或者在点B与点C之间(且靠近点C)的地方.4.【分析】原来点A对应的数为x,再根据左减右加的法则求出x的值即可.【解答】解:原来点A对应的数为x,则x﹣3+5=﹣8,解得x=﹣10.故答案为:﹣10.5.【分析】根据数轴上的点到一点的距离相等的点有两个,可得B点有两个,根据AB的距离等于6,可得x的值.【解答】解:∵AB=6,=6,x=﹣9,或x=3,故答案为:﹣9,3.6.【分析】(1)设这个数为x,则﹣3<x≤4,在数轴上表示出不等式组的解集,即可得出答案;(2)根据题意在数轴上把符合条件的数表示出来,即可得出答案.【解答】解:(1)设这个数为x,则﹣3<x≤4,在数轴上表示为:,根据数轴可以看出所有不大于4且大于﹣3的整数有﹣2、﹣1、0、1、2、3、4,故答案为:﹣2、﹣1、0、1、2、3、4;(2)在数轴上表示为:则比﹣2大的数是﹣1.5,故答案为:﹣1.5.7.【分析】根据题意,得第一次跳动到OA的中点A1处,即在离原点的处,第二次从A1点跳动到A2处,即在离原点的()2处,则跳动n次后,即跳到了离原点的处,依此即可求解.【解答】解:第一次跳动到OA的中点A1处,即在离原点的处,第二次从A1点跳动到A2处,即在离原点的()2处,…则跳动n次后,即跳到了离原点的处,则第5次跳动后,该质点到原点O的距离为.故答案为:.8.【分析】观察数轴a、b位置,a<0,b>0,在数轴上找出a、b的相反数并分析得出正确答案.【解答】解:a<0,b>0,b﹣a>0,故①b﹣a>0正确,b>0,﹣b<0,故②﹣b>0错误,a<0,b>0,|a|>|b|,a<﹣b,故③a>﹣b错误,a<0,b>0,﹣ab>0,故④﹣ab<0错误,故只有①正确.故答案为:1.9.【分析】根据数轴上点的排列判断出a、b的符号,再根据有理数的加减运算法则计算.【解答】解:∵a<0,b>0,∴ab<0,a﹣b<0,又∵|a|>|b|,∴a+b<0.故答案为<,<,<.10.【分析】(1)直接利用两点间距离公式计算;(2)先由轴对称的性质求x的值,再利用轴对称求出结果;(3)先设点B向左移动后与点A的距离为m,则AB=A′B=m,A′D=AD﹣2m=6﹣2m,根据当A′、D两点的距离为是A′、A两点间距离的时列式得出m的值,最后计算点B的总距离.【解答】解:(1)2﹣(﹣4)=6,所以A、D两点间的距离是6;(2)由折叠得:AB=BC,则2﹣x=x﹣(﹣3),x=﹣,设折叠后与点D重合的点表示的数是a,则﹣﹣(﹣4)=a﹣(﹣)∴a=3,∴折叠后与点D重合的点表示的数是3,(3)设点B向左移动后与点A的距离为m,由题意得:6﹣2m=×2m,m=,+2﹣(﹣)=,∴点B移动的距离为,故答案为:(1)6,(2)﹣,3,(3).11.【分析】(1)(2)根据图形可直接的得出结论;(3)先求出B点表示的数,然后由数轴上两点间的距离公式:两点间的距离是两点所表示的数差的绝对值,计算即可.【解答】解:(1)由图可知,点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是4,A、B两点间的距离是|﹣3﹣4|=7;故答案为:4,7;(2)如果点A表示数3,将点A向左移动7个单位长度,则点A表示3﹣7=﹣4,再向右移动5个单位长度,那么终点B表示的数是﹣4+5=1,A、B两点间的距离是|3﹣1|=2;故答案为:1,2;(3)点A表示数为a,将点A向右移动b个单位长度,则点A表示a+b,再向左移动c个单位长度,那么终点B表示的数是a+b﹣c,A、B两点间的距离是|a+b﹣c﹣a|=|b﹣c|.故答案为:a+b﹣c,|b﹣c|.12.【分析】(1)根据对称的知识,若1表示的点与﹣1表示的点重合,则对称中心是原点,从而找到﹣2的对称点;(2)①若﹣1表示的点与3表示的点重合,则对称中心是1表示的点,从而找到5的对称点;②根据对应点连线被对称中心平分,则点A和点B到1的距离都是,从而求解.【解答】解::(1)根据题意,得对称中心是原点,则﹣2表示的点与数2表示的点重合;(2)∵﹣1表示的点与3表示的点重合,∴对称中心是1表示的点.∴①5表示的点与数﹣3表示的点重合;②若数轴上A、B两点之间的距离为m(A在B的左侧),则点A表示的数是1﹣,点B表示的数是1+.故填空中的答案为(1)2,(2)①﹣3,②1﹣,1+13.【分析】①根据“左减右加”进行计算,此题中两点间的距离即为移动的单位长度;②根据“左减右加”进行计算,两点间的距离即为两点对应的数的差的绝对值;③根据“左减右加”进行计算,两点间的距离即为两点对应的数的差的绝对值.【解答】解:①﹣3+7=4,7;②3﹣4+5=4;4﹣3=1;③m+n﹣p;|m+n﹣p﹣m|=|n﹣p|.故答案为4,7;4,1;m+n﹣p,|n﹣p|.14.【分析】根据题目的叙述即可作出图形,从而解决本题.【解答】解:点B,C表示的数分别是﹣2.5,1,B,C两点间的距离是3.5.15.【分析】(1)根据已知,以百货大楼为原点,以向东为正方向,用1个单位长度表示1千米一辆货车从百货大楼出发,向东走了4千米,到达小明家,继续向东走了1.5千米到达小红家,然后西走了8.5千米,到达小刚家,最后返回百货大楼,则小明家、小红家和小刚家在数轴上的位置可知.(2)用小明家的坐标减去与小刚家的坐标即可.(3)这辆货车一共行走的路程,实际上就是4+1.5+8.5+3=17(千米),货车从出发到结束行程共耗油量=货车行驶每千米耗油量×货车行驶所走的总路程.【解答】解:(1)如图所示:(2)小明家与小刚家相距:4﹣(﹣3)=7(千米);(3)这辆货车此次送货共耗油:(4+1.5+8.5+3)×1.5=25.5(升).答:小明家与小刚家相距7千米,这辆货车此次送货共耗油25.5升.16.【分析】(1)根据题中所给图形即可写出答案;(2)根据所给图形,向右为正,向左为负,继而得出答案.【解答】解:根据所给图形可知:(1)A点表示2,B点表示5,C点表示﹣4,O点表示0;(2)蚂蚁实际上是从原点出发,向原点左侧爬行了4个单位.17.【分析】先分别把各数化简为0,﹣4.2,,﹣2,7,,再在数轴上找出对应的点,注意在数轴上标数时要用原数,最后比较大小的结果也要用化简的原数.【解答】解:这些数分别为0,﹣4.2,,﹣2,7,,在数轴上表示出来如图所示,根据这些点在数轴上的排列顺序,从左至右分别用“<”连接为:﹣4.2<﹣2<0<<+7.18.【分析】(1)根据数轴的特点向右移动加,A、B两点间的距离等于移动的距离求解即可;(2)(3)根据数轴的特点向左移动减,向右移动加,A、B两点间的距离等于移动的距离求解即可.【解答】解:(1)终点B表示:﹣1+4=3,A、B间的距离是4;(2)终点B表示:2﹣6+3=﹣1,A、B间的距离是2﹣(﹣1)=2+1=3;(3)终点B表示:m+n﹣p,A、B两点间的距离是|m+n﹣p﹣m|=|n﹣p|.故答案为:(1)3,4;(2)﹣1,3;(3)m+n﹣p,|n﹣p|.19.【分析】(1)根据题意画出数轴,并在数轴上表示出各点即可;(2)根据(1)中数轴上D点的位置即可得出结论;(3)把各数相加即可得出货车行驶的距离.【解答】解:(1)如图所示:;(2)由图可知,超市D距货场A3千米;(3)4+1.5+8.5+3=17(千米).答:货车一共行驶了17千米.20.【分析】(1)本题可直接根据数轴观察出A、B、C三点所对应的数;(2)根据移动的方向,得D所表示的数是3﹣6=﹣3.比较负数的时候,绝对值大的反而小;(3)根据点的移动和数的大小变化规律即可回答.此题方法不唯一,移动其中任意两个点均可.【解答】解:(1)因为点B所表示的数是﹣2,则距点B三个单位的点所表示的数有﹣2﹣3=﹣5,﹣2+3=1;(2)点C向左移动6个单位到达点D,则点D表示的数为﹣3,所以﹣4<﹣3<﹣2.(3)把A点向右移动2个单位,C点向左移动5个单位.(答案不唯一)21.【分析】(1)此题关键是正确识图,由数轴观察知三根木棒长是20﹣5=15(cm),则此木棒长为5cm,(2)在求爷爷年龄时,借助数轴,把小红与爷爷的年龄差看做木棒AB,类似爷爷比小红大时看做当A点移动到B点时,此时B点所对应的数为﹣40,小红比爷爷大时看做当B点移动到A点时,此时A点所对应的数为125,所以可知爷爷比小红大[125﹣(﹣40)]÷3=55,可知爷爷的年龄.【解答】解:(1)由数轴观察知三根木棒长是20﹣5=15(cm),则此木棒长为:15÷3=5cm,故答案为:5.(2)借助数轴,把小红与爷爷的年龄差看做木棒AB,类似爷爷比小红大时看做当A点移动到B点时,此时B点所对应的数为﹣40,小红比爷爷大时看做当B点移动到A点时,此时A点所对应的数为125,∴可知爷爷比小红大[125﹣(﹣40)]÷3=55,可知爷爷的年龄为125﹣55=70.答:爷爷的年龄是70岁.22.【分析】充分运用相反数表示两个相反意义的量,列式计算.【解答】解:规定向右为正,向左为负,根据正负数的意义得(1)点B表示的数是﹣2+5=3,A、B两点间的距离是3﹣(﹣2)=5;(2)点B表示的数是5﹣4+7=8,A、B两点间的距离是8﹣5=3;(3)点B表示的数是a﹣b+c.23.【分析】数轴上点的移动规律是“左减右加”.依据规律计算即可.【解答】解:(1)第一次移动后这个点在数轴上表示的数:+2﹣1+2=+3;(2)第二次移动结果这个点在数轴上表示的数:+3﹣3+4=+4;(3)第五次移动后这个点在数轴上表示的数:+3+1+1+1+1=7;(4)第n次移动结果这个点在数轴上表示的数:+3+n﹣1=n+2.24.【分析】先根据题意画出数轴,便可直观解答,点A的相反数是3,可得出原点需要向右移动.【解答】解:如图所示,可得应向右移动6个单位,故答案为原点应向右移动6个单位.表示的数为x,可25.【分析】规定向左跳为负数,向右跳为正数,设电子跳蚤的初始位置K以列方程求解.表示的数是x,则【解答】解:设电子跳蚤的初始位置Kx﹣1+2﹣3+4﹣5+…+100=2008,x+50=2008,解得x=1958.答:电子跳蚤的初始位置K表示的数是1958.26.【分析】将各点在数轴上表示出来,再由数轴上的点从左至右依次减小可得出正确的排序.【解答】解:在数轴上表示各点如下:大小排序如下:﹣5<﹣3<0<<2.27.【分析】(1)根据题意列出算式2+5,求出即可得出动点A所走过的路程,求出5﹣2即可得出A、C之间的距离;(2)设点A表示的数十x,根据题意得出算式x+(﹣2)+(+5)=1,求出x即可.【解答】解:(1)动点A所走过的路程2+5=7,A、C之间的距离是AC=5﹣2=3;(2)设点A表示的数十x,则x+(﹣2)+(+5)=1,x=﹣2,故答案为:﹣2.28.【分析】(1)由于向右爬行的路程记为正数,向左爬行的路程为负数,所以要计算出它爬行所有数的和,而(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=0,于是可判断回到出发点;(2)依次往后计算看哪个数最大即可得到离O点的最远距离;(3)计算所有数的绝对值得到小虫爬行的路程,再把路程乘以2得到小虫共得的芝麻.【解答】解:(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10),=5﹣3+10﹣8﹣6+12﹣10,=5+10+12﹣3﹣8﹣6﹣10,=27﹣27,=0,∴小虫最后可以回到出发点;(2)+5+(﹣3)=2,(+5)+(﹣3)+(+10)=12,(+5)+(﹣3)+(+10)+(﹣8)=4,(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)=﹣2,(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+12=10;所以,小虫离开出发点O最远时是12厘米;(3)(|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|)×2,=(5+3+10+8+6+12+10)×2,=54×2,=108,所以小虫共可得108粒芝麻.29.【分析】(1)由已知得OA=6,则OB=AB﹣OA=4,因为点B在原点左边,从而写出数轴上点B所表示的数;动点P从点A出发,运动时间为t(t>0)秒,所以运动的单位长度为6t,因为沿数轴向左匀速运动,所以点P所表示的数是6﹣6t;(2)①点P运动t秒时追上点Q,由于点P要多运动10个单位才能追上点Q,则6t=10+4t,然后解方程得到t=5;②分两种情况:当点P运动a秒时,不超过Q,则10+4a﹣6a=8;超过Q,则10+4a+8=6a;由此求得答案解即可.【解答】解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为6t,∵动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣6t;(2)①点P运动t秒时追上点R,根据题意得6t=10+4t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+4a﹣6a=8,解得a=1;当P超过Q,则10+4a+8=6a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.30.【分析】(1)在数轴上表示﹣16的点移动50个单位后,所得的点表示为﹣16﹣50=﹣66或﹣16+50=34;(2)数轴上点的移动规律是“左减右加”.依据规律计算即可;(3)根据100为偶数可得在数轴上表示的数,再根据两点间的距离公式即可求解.【解答】解:(1)﹣16+50=34,﹣16﹣50=﹣66.答:B地在数轴上表示的数是34或﹣66.(2)第七次行进后:1﹣2+3﹣4+5﹣6+7=4,第八次行进后:1﹣2+3﹣4+5﹣6+7﹣8=﹣4,因为点P、Q与A点的距离都是4米,所以点P、点Q到A地的距离相等;(3)当n为100时,它在数轴上表示的数为:﹣16+1﹣2+3﹣4+…+(100﹣1)﹣100==﹣66,34﹣(﹣66)=100(米).答:小乌龟到达的点与点B之间的距离是100米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.在数轴上表示的两个数中,的数总比的数大。
2.在数轴上,表示-5的数在原点的侧,它到原点的距离是个单位长度。
3.在数轴上,表示+2的点在原点的侧,距原点个单位;表示-7的点在原点的
侧,距原点个单位;两点之间的距离为个单位长度。
4.在数轴上,把表示3的点沿着数轴向负方向移动5个单位,则与此位置相对应的数是。
5.与原点距离为2.5个单位长度的点有个,它们表示的有理数是。
6.到原点的距离不大于3的整数有个,它们是:。
7.下列说法错误的是()
A.没有最大的正数,却有最大的负数
B.数轴上离原点越远,表示数越大
C.0大于一切非负数
D.在原点左边离原点越远,数就越小
8.下列结论正确的有()个:
①规定了原点,正方向和单位长度的直线叫数轴②最小的整数是0 ③正数,负数和零统称有理数④数轴上的点都表示有理数
A.0
B.1
C.2
D.3
9.在数轴上,A点和B点所表示的数分别为-2和1,若使A点表示的数是B 点表示的数的3倍,应把A点()
A.向左移动5个单位
B.向右移动5个单位
C.向右移动4个单位
D.向左移动1个单位或向右移动5个单位
10.在数轴上画出下列各点,它们分别表示:+3, 0,-31
4
, 1
1
2
,-
3,-1.25
并把它们用“<”连接起来。
11.小明的家(记为A)与他上学的学校(记为B),书店(记为C)依次座落在
一条东西走向的大街上,小明家位于学校西边30米处,书店位于学校东边100米处,小明从学校沿这条街向东走40米,接着又向西走了70米到达D处,试用数轴表示上述A、、B、C、D的位置。
12.在数轴上,老师不小心把一滴墨水滴在画好的数轴上,如图所示,试根据图中标出的数值判断被墨水盖住的整数,并把它写出来。
13.如图,数轴上的点A所表示的数是a,则A点到原点的距离是。
14.在数轴上,离原点距离等于3的数是。
15.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B 时,点B所表示的实数是()
A.1
B.-6C.2或-6D.不同于以上答
16.数轴上A,B两点分别表示数—1,2,点C是AB的中点,则点C 表示的数是
17.数轴上从—256到380共有()个奇数
18从数轴上观察大于—3且不大于3的整数是()。