初一有理数练习题

合集下载

有理数练习题及答案

有理数练习题及答案

有理数练习题及答案有理数是数学中的一种数,它包括整数和分数。

在学习有理数的过程中,练习题是必不可少的一部分。

通过解答练习题,可以巩固对有理数的理解和运算技巧。

下面,我将为大家提供一些有理数练习题及其答案,希望对大家的学习有所帮助。

1. 计算:(-3/4) + (-1/2) = ?答案:(-3/4) + (-1/2) = -6/8 - 4/8 = -10/8 = -5/42. 计算:(-5/6) - (1/3) = ?答案:(-5/6) - (1/3) = -10/12 - 4/12 = -14/12 = -7/63. 计算:(-2/3) × (-3/4) = ?答案:(-2/3) × (-3/4) = 6/12 = 1/24. 计算:(2/5) ÷ (3/4) = ?答案:(2/5) ÷ (3/4) = 8/15 ÷ 3/4 = 8/15 × 4/3 = 32/455. 计算:(-3/4) + 2/3 - 1/2 = ?答案:(-3/4) + 2/3 - 1/2 = -6/8 + 16/24 - 12/24 = -6/8 + 4/24 = -24/32 +4/32 = -20/32 = -5/86. 计算:(-2/5) - 1/3 + 1/4 = ?答案:(-2/5) - 1/3 + 1/4 = -8/20 - 20/60 + 15/60 = -24/60 - 20/60 + 15/60 = -29/60通过以上练习题,我们可以看到有理数的运算并不复杂,只需要熟练掌握分数的加减乘除运算规则即可。

在进行加减运算时,需要找到相同的分母,然后按照分数的加减法规则进行计算。

在进行乘除运算时,直接对分子和分母进行相应的运算即可。

有理数的运算规则是数学中的基础知识,掌握好这些规则对于解决实际问题和提高数学能力都非常重要。

因此,我们需要多做一些有理数的练习题,加深对有理数的理解和运算技巧。

人教版七年级上册数学 第一章《有理数》练习题(附答案)

人教版七年级上册数学 第一章《有理数》练习题(附答案)

1 2
,

3
48.食品店一周中的盈亏情况如下 ( 盈余为正 ) : 132 元, −12.5 元, −10.5 元,127 元, −87 元, 136.5 元,98 元. 请通过计算说明这一周食品店的盈亏情况.
49.试比较 a 与﹣a 的大小.
50.把下列各数填在相应的表示集合的大括号内:
-3,-
(2)解:原式=
1 2
×(﹣24)+
5 6
×(﹣24)﹣
7 12
×(﹣24)=﹣12﹣20+14=﹣18.
40.【答案】 解:原式=2+2-1=3
四、解答题
41.【答案】
解:正数集合:{
1 10
,2014,20%,…}
负数集合:{-7,﹣
1 3

-0.75…}
整数集合:{0,2014…}
正分数集合:{
+
1
+
2

3+2×
3 2

2
2
=
13 4

2
2
37.【答案】 解:(+7)+(﹣4)﹣(﹣3)﹣(+14)=7﹣4+3﹣14=3+3-14=6-14=﹣8
38.【答案】 解:原式 = 3 × 2 − ( − 1)
39.【答案】 (1)解:原式=6.8﹣(﹣4.2)+ ( − 1)3 =6.8+4.2﹣1=10
A. -6
B.
−5
1 3
C.
−4
1 2
D.
−3
3 4
6.计算 18 − ( − 5) 的结果等于( )

初一数学有理数练习题(附答案)

初一数学有理数练习题(附答案)

初一数学有理数练习题(附答案)小编为大家整理了初一数学有理数练习题(附答案),希望能对大家的学习带来帮助!七年级数学有理数练习一、判断1、自然数是整数。

﹝﹞2、有理数包括正数和负数。

﹝﹞3、有理数只有正数和负数。

﹝﹞4、零是自然数。

﹝﹞5、正整数包括零和自然数。

﹝﹞6、正整数是自然数,﹝﹞7、任何分数都是有理数。

﹝﹞8、没有最大的有理数。

﹝﹞9、有最小的有理数。

﹝﹞二、填空1、某日,泰山的气温中午12点为5℃,到晚上8点下降了6℃.那么这天晚上8 点的气温为。

2 、如果零上28度记作280C,那么零下5度记作3、若上升 10m记作10m,那么-3m表示4、比海平面低20m的地方,它的高度记作海拔三、选择题5、在-3,-1 ,0,- ,2019各数中,是正数的有( )A、0个B、1个C、2个D、3个6、下列既不是正数又不是负数的是( )A、-1B、+3C、0.12D、07、飞机上升-30米,实际上就是( )A、上升30米B、下降30米C、下降- 30米D、先上升30米,再下降30米。

8、下列说法正确的是( )A、整数就是正整数和负整数B、分数包括正分数、负分数C、正有理数和负有理数组成全体有理数D、一个数不是正数就是负数。

9、下列一定是有理数的是( )A、 B、a C、a+2 D、四、把下列各数填在表示集合的相应大括号中:+6,-8,-0.4,25,0,- ,9. 15,1整数集合﹛﹜分数集合﹛﹜非负数集合﹛﹜正数集合﹛﹜负数集合﹛﹜五、解答题1 、博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了一台空调,又该怎样记录这笔支出呢?2 、周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表:单位:元日期周二周三周四周五开盘 +0.16 +0. 25 +0.78 +2.12收盘 -0.23 -1.32 -0.67 -0. 65当日收盘价试在表中填写周二到周五该股票的收盘价.3、春季某河流的河水因春雨先上涨了15cm,随后又下降了15cm.请你用合适的方法来表示这条河流河水的变化情况.六、探究创新1、一种零件的直径尺寸在图纸上是30 (单位:mm ),它表示这种零件的标准尺寸是30mm,加工要求尺寸最大不超过( )A、0.03B、0.02C、30.03D、29.982、甲潜水员在海平面-50米作业,乙潜水员在海平面-28米作业,哪个离海平面比较近?近多少?3、某水泥厂计划每月生产水泥1000t ,一月份实际生产了950t ,二月份实际生产了1000t ,三月份实际生产了1100t ,用正数和负数表示每月超额完成计划的吨数各是多少?参考答案:一、1、2、3、4、5、6、7、8、9、二、1、-1℃ 2、- 5度 3、下降3m 4、 20m三、5、B 6、D 7、B 8、B 9、D四、略五、1、收入4800元记作+4800元2、3略六、1、C 2、乙潜水员离海平面比较近,近 22 米。

七年级数学有理数练习题(附答案)

七年级数学有理数练习题(附答案)

七年级数学有理数练习题(附答案)七年级数学有理数练习题(附答案) 以下是查字典数学网为您推荐的七年级数学有理数练习题(附答案),希望本篇文章对您学习有所帮助。

七年级数学有理数练习题(附答案)一、判断1、自然数是整数。

﹝﹞2、有理数包括正数和负数。

﹝﹞3、有理数只有正数和负数。

﹝﹞4、零是自然数。

﹝﹞5、正整数包括零和自然数。

﹝﹞6、正整数是自然数,﹝﹞7、任何分数都是有理数。

﹝﹞8、没有最大的有理数。

﹝﹞9、有最小的有理数。

﹝﹞二、填空1、某日,泰山的气温中午12点为5℃,到晚上8点下降了6℃.那么这天晚上8 点的气温为。

2 、如果零上28度记作280C,那么零下5度记作3、若上升 10m记作10m,那么-3m表示4、比海平面低20m的地方,它的高度记作海拔三、选择题5、在-3,-1 ,0,- ,2019各数中,是正数的有( )一台空调,又该怎样记录这笔支出呢?2 、周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表:单位:元日期周二周三周四周五开盘 +0.16 +0. 25 +0.78 +2.12收盘 -0.23 -1.32 -0.67 -0. 65当日收盘价试在表中填写周二到周五该股票的收盘价.3、春季某河流的河水因春雨先上涨了15cm,随后又下降了15cm.请你用合适的方法来表示这条河流河水的变化情况.六、探究创新1、一种零件的直径尺寸在图纸上是30 (单位:mm ),它表示这种零件的标准尺寸是30mm,加工要求尺寸最大不超过( )A、0.03B、0.02C、30.03D、29.982、甲潜水员在海平面-50米作业,乙潜水员在海平面-28米作业,哪个离海平面比较近?近多少?3、某水泥厂计划每月生产水泥1000t ,一月份实际生产了950t ,二月份实际生产了1000t ,三月份实际生产了1100t ,用正数和负数表示每月超额完成计划的吨数各是多少?参考答案:一、1、2、3、4、5、6、7、8、9、二、1、-1℃ 2、- 5度 3、下降3m 4、 20m三、5、B 6、D 7、B 8、B 9、D四、略五、1、收入4800元记作+4800元2、3略六、1、C 2、乙潜水员离海平面比较近,近 22 米。

完整版)初一数学有理数专项练习题

完整版)初一数学有理数专项练习题

完整版)初一数学有理数专项练习题1.选择题(本题满分30分,每题2分)1.下列说法中,正确的个数是()选项:A.1个B.2个C.3个D.4个正确答案:C.3个解析:①一个有理数不是整数就是分数,错误;②一个有理数不是正的,就是负的,错误;③一个整数不是正的,就是负的,正确;④一个分数不是正的,就是负的,错误。

2.在有理数中,绝对值等于它本身的数有()选项:A.1个B.2个C.3个D.无穷多个正确答案:A.1个解析:只有0的绝对值等于它本身。

3.下列说法中正确的是()选项:A.π的相反数是314.B.符号不同的两个数一定是互为相反数C.若x和y互为相反数,则x yD.一个数的相反数一定是负数正确答案:C.若x和y互为相反数,则x+y=0解析:A错误,π的相反数是-π;B错误,符号相反的两个数互为相反数;C正确;D错误,0的相反数是0.4.下列正确的式子是()选项:A.-|﹣|>0 B.-(-4)=-|﹣4| C.-3>-π D.-3.14>-π正确答案:B.-(-4)=-|﹣4|解析:A错误,-|﹣|=-1;B正确;C错误,-3<0<-π;D 错误,-3.14<0<-π。

5.若a+b<0,ab>0,则()选项:A.a>0,b>0 B.a,b两数一正一负,且正数的绝对值大于负数的绝对值C.a,b两数一正一负,且负数的绝对值大于正数的绝对值 D.a<0,b<0正确答案:B.a,b两数一正一负,且正数的绝对值大于负数的绝对值解析:由ab>0可知,a和b符号相同,由a+b<0可知,a和b一正一负,又因为正数的绝对值大于负数的绝对值,故选B。

6.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()选项:A.0.8kg B.0.6kg C.0.5kg D.0.4kg正确答案:B.0.6kg解析:两袋面粉的质量相差的最大值为0.2+0.3=0.5kg,故选B。

数学有理数相关习题3篇

数学有理数相关习题3篇

数学有理数相关习题3篇当告别拉开窗帘,当回忆睡在胸前,要说再见真的很伤感,只有爱依旧辉煌!情谊万岁!考试顺利,共闯人生这一关!下面是小编给大家带来的数学有理数相关习题,欢迎大家阅读参考,我们一起来看看吧!初一数学有理数练习题一、耐心填一填,一锤定音(每小题3分,共30分)1、若太平洋最深处低于海平面11034米,记作-11034米,则珠穆朗玛峰高出海平面8848米,记作______。

2、+10千米表示王玲同学向南走了10千米,那么-9千米表示_______;0千米表示_____。

3、在月球表面上,白天阳光垂直照射的地方温度高达127℃,夜晚温度可降到-183℃,那么-183℃表示的意义为_______。

4、七(8)班数学兴趣小组在一次数学智力大比拼的竞赛中的平均分数为90分,张红得了85分,记作-5分,则小明同学行92分,可记为____,李聪得90分可记为____,程佳+8分,表示______。

5、有理数中,最小的正整数是____,最大的负整数是____。

6、数轴上表示正数的点在原点的___,原点左边的数表示___,____点表示零。

7、数轴上示-5的点离开原点的距离是___个单位长度,数轴上离开原点6个单位长度的点有____个,它们表示的数是____8、数轴上表示的点到原点的距离是_____9、在1.5-7.5之间的整数有_____,在-7.5与-1.5之间的整数有_____10、已知下列各数:-23、-3.14、,其中正整数有__________,整数有______,负分数有______,分数有_________。

二、精心选一选,慧眼识金!(每小题3分,共30分)1、把向东运动记作“+”,向西运动记作“_”,下列说法正确的是( )A、-3米表示向东运动了3米B、+3米表示向西运动了3米C、向西运动3米表示向东运动-3米D、向西运动3米,也可记作向西运动-3米。

2、下列用正数和负数表示相反意义的量,其中正确的是( )A、一天凌晨的气温是-5℃,中午比凌晨上升4℃,所以中午的气温是+4℃B、如果+3.2米表示比海平面高3.2米,那么-9米表示比海平面低5.8米C、如果生产成本增加5%,记作+5%,那么-5表示生产成本降低5%D、如果收入增加8元,记作+8元,那么-5表示支出减少5元。

人教版初中七年级数学上册第一章《有理数》经典习题(含答案解析)

人教版初中七年级数学上册第一章《有理数》经典习题(含答案解析)

1.若12a =,3b =,且0a b <,则+a b 的值为( ) A .52 B .52- C .25± D .52± D 解析:D【分析】 根据a b判断出a 和b 异号,然后化简绝对值,分两种情况求解即可. 【详解】 ∵0a b< ∴a 和b 异号又∵12a =,3b = ∴12a =,3b =-或12a =-,3b = 当12a =,3b =-时,15322+-=-a b = 当12a =-,3b =时,15322+-+=a b = 故选D .【点睛】 本题考查了绝对值,有理数的除法,和有理数的加法,关键是根据a b判断出a 和b 异号. 2.下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( )A .2个B .3个C .4个D .5个A解析:A【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可.【详解】①-a 不一定是负数,若a 为负数,则-a 就是正数,故说法不正确;②|-a|一定是非负数,故说法不正确;③倒数等于它本身的数为±1,说法正确;④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确.说法正确的有③、⑥,故选A .【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.3.丁丁做了4道计算题:① 2018(1)2018-=;② 0(1)1--=-;③ 1111326-+-=;④11()122÷-=-请你帮他检查一下,他一共做对了( )道 A .1道B .2道C .3道D .4道A 解析:A【分析】根据乘方的意义以及有理数的减法、乘法、除法法则,有理数加减混合运算法则即可判断.【详解】①2018(1)1-=,故本小题错误;②0(1)1--=,故本小题错误; ③1113267-+-=-,故本小题错误; ④11()122÷-=-,正确; 所以,他一共做对了1题.故选A .【点睛】本题考查了有理数的乘方、加法以及除法法则,熟练掌握运算法则是解题关键. 4.数轴上点A 和点B 表示的数分别为-4和2,若要使点A 到点B 的距离是2,则应将点A向右移动( )A .4个单位长度B .6个单位长度C .4个单位长度或8个单位长度D .6个单位长度或8个单位长度C解析:C【分析】A 点移动后可以在B 点左侧,或右侧,分两种情况讨论即可.【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C .本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.5.在-1,2,-3,4,这四个数中,任意三数之积的最大值是( )A .6B .12C .8D .24B解析:B【分析】三个数乘积最大时一定为正数,二2和4的积为8,因此一定要根据-1和-3相乘,积为3,然后和4相乘,此时三数积最大.【详解】∵乘积最大时一定为正数∴-1,-3,4的乘积最大为12故选B .【点睛】本题考查了有理数的乘法,两个负数相乘积为正数,先将两个负数化为正数是本题的关键.6.已知a 、b 在数轴上的位置如图所示,将a 、b 、-a 、-b 从小到排列正确的一组是( )A .-a <-b <a <bB .-b <-a <a <bC .-b <a <b <-aD .a <-b <b <-a D 解析:D【解析】【分析】根据数轴表示数的方法得到a <0<b ,且|a|>b ,则-a >b ,-b >a ,然后把a ,b ,-a ,-b 从大到小排列.【详解】∵a <0<b ,且|a|>b ,∴a <-b <b <-a ,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.7.若21(3)0a b -++=,则b a -=( )A .-412B .-212C .-4D .1C解析:C【解析】根据非负数的性质可得a-1=0,b+3=0,求出a 、b 后代入式子进行计算即可得.【详解】由题意得:a-1=0,b+3=0,解得:a=1,b=-3,所以b-a=-3-1=-4,故选C.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.8.若一个数的绝对值的相反数是17-,则这个数是( ) A .17- B .17+ C .17± D .7± C解析:C【分析】根据绝对值的代数意义和相反数的定义进行分析解答即可.【详解】∵相反数为17-的数是17,而17-或17的绝对值都是17, ∴这个数是17-或17. 故选C.【点睛】熟知“绝对值的代数意义和相反数的定义”是解答本题的关键.9.下列算式中,计算结果是负数的是( )A .3(2)⨯-B .|1|-C .(2)7-+D .2(1)- A 解析:A【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】解:3(2)6,故选项A 符合题意,|1|1-=,故选项B 不符合题意,(2)75-+=,故选项C 不符合题意,2(1)1-=,故选项D 不符合题意,故选:A .【点睛】题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.10.下列有理数大小关系判断正确的是( )A .11910⎛⎫-->-⎪⎝⎭ B .010>- C .33-<+D .10.01->- A 解析:A【分析】先化简各式,然后根据有理数大小比较的方法判断即可.【详解】 ∵1199⎛⎫--= ⎪⎝⎭,111010--=-,11910>-, ∴11910⎛⎫-->-- ⎪⎝⎭,故选项A 正确; ∵1010-=,010<, ∴010<-,故选项B 不正确; ∵33-=,33+=, ∴33-=+,故选项C 不正确; ∵11-=,0.010.01-=,10.01>,∴10.01-<-,故选项D 不正确.故选:A .【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.11.下列运算正确的是( )A .()22-2-21÷=B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=- D 解析:D【分析】 根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D .【详解】A 、()22-2-2441÷=-÷=-,该选项错误;B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误; C 、1335539355-÷⨯=-⨯⨯=-,该选项错误; D 、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确; 故选:D .【点睛】 本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化. 12.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >0C解析:C【解析】从数轴可知m 小于0,n 大于0,从而很容易判断四个选项的正误.解:由已知可得n 大于m ,并从数轴知m 小于0,n 大于0,所以mn 小于0,则A ,B ,D 均错误.故选C .13.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( ) A .18B .1-C .18-D .2C 解析:C【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解.【详解】∵一个数比10的相反数大2,∴这个数为1028-+=-.A 选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意;故选:C .【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.14.计算(-2)2018+(-2)2019等于( )A.-24037B.-2 C.-22018D.22018C 解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.15.下列计算结果正确的是()A.-3-7=-3+7=4B.4.5-6.8=6.8-4.5=2.3C.-2-13⎛⎫-⎪⎝⎭=-2+13=-213D.-3-12⎛⎫-⎪⎝⎭=-3+12=-212D解析:D【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误.【详解】A选项:3710--=-,故错误;B选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C选项:1122()21333---=-+=-,故错误;D选项运算正确.故选:D.【点睛】本题考查有理数的加减运算,按照对应法则仔细计算即可.1.若a、b、c、d、e都是大于1、且是不全相等的五个整数,它们的乘积2000abcde=,则它们的和a b c d e++++的最小值为__.【分析】先把abcde=2000化为abcde=2000=24×53的形式再根据整数abcde都大于1得到使a+b+c+d+e尽可能小时各未知数的取值求出最小值即可【详解】解:abcde=2000=解析:【分析】先把abcde=2000化为abcde=2000=24×53的形式,再根据整数a,b,c,d,e都大于1,得到使a+b+c+d+e尽可能小时各未知数的取值,求出最小值即可.【详解】解:abcde=2000=24×53,为使a+b+c+d+e尽可能小,显然应取a=23,b=2,c=d=e=5或a=22,b=22,c=d=e=5,前者S=8+2+15=25,后者S=4+4+15=23,故最小值S=23.故答案为:23.【点睛】本题考查的是质因数分解,能把原式化为abcde=2000=24×53的形式是解答此题的关键.2.已知四个互不相等的整数a,b,c,d满足abcd=77,则a+b+c+d=___________.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±4解析:4±【解析】77=7×11=1×1×7×11= -1×1×(-7)×11= -1×1×7×(-11),由题意知,a、b、c、d的取值为-1,1,-7,11或-1,1,7,-11,从而a+b+c+d=±4,故答案为±4.3.数轴上表示有理数-3.5与4.5两点的距离是___________.8【解析】试题分析:有理数-35与45两点的距离实为两数差的绝对值解:由题意得:有理数−35与45两点的距离为|−35−45|=8故答案为8解析:8【解析】试题分析:有理数-3.5与4.5两点的距离实为两数差的绝对值.解:由题意得:有理数−3.5与4.5两点的距离为|−3.5−4.5|=8.故答案为8.4.在数轴上,若点A与表示3-的点相距6个单位,则点A表示的数是__________.−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时当点在表示-3的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-3的点的左边时数为-3−6=−9;②当点在表示-3的点的解析:−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-3的点的左边时,数为-3−6=−9;②当点在表示-3的点的右边时,数为-3+6=3;故答案为:−9或3.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.5.全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是_____.【解析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值大于10时n是正数;当原数的绝对解析:71.610⨯【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.16000000 =71.610⨯.6.绝对值小于2018的所有整数之和为________.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2解析:0【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案.【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0,故答案为0.【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.7.运用加法运算律填空:212+1(3)3-+612+2(8)3-=1(22+____)+[ ____+2(8)3-].【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可【详解】解:2++6+=)++故答案为:;【点睛】本题考查了有理数的加法掌握加法法则和运算律是解题的关键解析:1621(3)3-【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可.【详解】解:212+1(3)3-+612+2(8)3-=1(22+162)+[1(3)3-+2(8)3-].故答案为:162;1(3)3-. 【点睛】本题考查了有理数的加法,掌握加法法则和运算律是解题的关键.8.填空:166-18-1800【分析】由有理数的乘法和除法运算法则进行计算即可得到答案【详解】解:根据题意则;;;;故答案为:1;1;6;6;18;18;0;0【点睛】本题考查了有理数的乘法和除法的运算法则解析:1 6 6 -18 -18 0 0【分析】由有理数的乘法和除法运算法则进行计算,即可得到答案.【详解】解:根据题意,则331÷=,1313⨯=; (12)(2)6-÷-=,1(12)()62-⨯-=; 1(9)182-÷=-,(9)218-⨯=-; 0( 2.3)0÷-=,100()023⨯-=; 故答案为:1;1;6;6;-18;-18;0;0.【点睛】本题考查了有理数的乘法和除法的运算法则,解题的关键是熟练掌握有理数乘法和除法的运算法则进行解题.9.在括号中填写题中每步的计算依据,并将空白处补充完整:(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125______=-(4×2.5)×(8×125)______=____×____=____.乘法交换律乘法结合律-101000-10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可【详解】(-4)×8×(-25)×(-125)=-4×8×25×125=-4×25×8×解析:乘法交换律乘法结合律 -10 1000 -10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可.【详解】(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125(乘法交换律)=-(4×2.5)×(8×125)(乘法结合律)=-10×1000=-10000.故答案为:乘法交换律,乘法结合律,-10,1000,-10000.【点睛】本题主要考查了有理数的乘法运算和乘法运算律,正确掌握运算法则和乘法运算律是解题的关键.++-+++-++++-=_____.【分析】第1 10.计算:(1)(2)(3)(4)(2019)(2020)个数与第2个数相结合第3个数与第4个数相结合……第2019个数与第2020个数相结合进行计算即可【详解】原式故答案为:【点睛】本题考查了加法的结合律根据加数的特点将从第一个开始的每相邻两-解析:1010【分析】第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可.【详解】=-+-++-=-----=-.原式(12)(34)(20192020)11111010-.故答案为:1010【点睛】本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.11.分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出0【分析】根据图表运算程序把输入的值-1-2分别代入进行计算即可得解【详解】当输入时输出的结果为;当输入时输出的结果为故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算是基础题读懂图表理解运解析:0【分析】根据图表运算程序,把输入的值-1,-2分别代入进行计算即可得解.【详解】当输入1-时,输出的结果为14(3)514351-+---=-++-=;当输入2-时,输出的结果为24(3)524350-+---=-++-=.故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算,是基础题,读懂图表理解运算程序是解题的关键. 1.计算:(1)2×(-3)3-4×(-3)(2)-22÷(12-13)×(-58) 解析:(1)-42;(2)15【分析】(1)先算乘方、乘法,再算加减法即可;(2)先算括号和乘方,再算乘除即可.【详解】(1)原式 =2(27)12⨯-+=-54+12= 42-.(2)原式 =154()68-÷⨯- =5468⨯⨯=15.【点睛】本题考查了有理数的运算,掌握运算法则及运算顺序是关键.2.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值; (2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).解析:(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-. 【分析】(1)根据平方数和绝对值的非负性计算即可;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解; (3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可;(4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可;【详解】 (1)∵()()22141268+++=----a b c d ,∴()()221412+6+80+++--=a b c d , ∴14a =-,12b =-,6c =,8d =;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==, 解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +,∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+,∵2BD AC =, ∴①2020t -≥时,()2022202t t +=-,解得:4t =; ②20-2t <0时,即t >10,()202220t t +=-,解得:20t =; ∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=;①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-; ∴A ,C 相遇时对应的数为:23-,223-,10-. 【点睛】本题主要考查了数轴的动点问题,准确分析计算是解题的关键.3.给出四个数:3,4--,2,6,计算“24点”,请列出四个符合要求的不同算式. (可运用加、减、乘、除、乘方运算,可用括号;注意:例如4(123)24⨯++=与(213)424++⨯=只是顺序不同,属同一个算式.)算式1:_________________;算式2_______________;算式3:_________________;算式4_______________;解析:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【分析】由241212,=+ 可得()342624,-⨯-+⨯=由()2438=-⨯-,可得()()342624,-⨯-+-=由()24124,=-⨯- 可得()()643224,⨯-⨯-+=由()2446=-⨯-,可得()()()()43624624-⨯--÷=-⨯-=,从而可得答案.【详解】解:算式1:()()3426121224,-⨯-+⨯=+=算式2:()()()()34263824,-⨯-+-=-⨯-=算式3:()()()()643224124,⨯-⨯-+=-⨯-=算式4:()()()()()()43624334624,-⨯--÷=-⨯--=-⨯-=故答案为:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法,注意本题答案不唯一,这是一道开放性的题目,同时考查了学生的逆向思维.4.计算:(1)13 |38|44⎛⎫--+- ⎪⎝⎭(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦解析:(1)4;(2)13;(3)14-;(4)26.【分析】(1)先把绝对值化简,再进一步计算可得答案;(2)先计算乘方、除法转化为乘法,再进一步计算即可;(4)先算括号里面的,再把除法化为乘法,进一步计算即可;(4)利用乘法分配律展开,再进一步计算即可.【详解】(1)13 |38|44⎛⎫--+- ⎪⎝⎭=13 544 --=5-1 =4;(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭=1 1269-+⨯⨯=-1+4 3=13;(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭=211 1()1 369⨯-÷=519() 3610⨯-⨯=14 -;(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦=157 (48)()(48)(48)2812 -⨯---⨯+-⨯=24+30-28=26.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.。

七年级有理数练习题集及答案(10套)

七年级有理数练习题集及答案(10套)

有理数单元检测001有理数及其运算(综合)(测试5)一、境空题(每空2分,共28分) 1、31-的倒数是____;321的相反数是____. 2、比–3小9的数是____;最小的正整数是____. 3、计算:._____59____;2123=--=+-4、在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是5、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.6、某旅游景点11月5日的最低气温为 2-,最高气温为8℃,那么该景点这天的温差是____. C7、计算:.______)1()1(101100=-+-8、平方得412的数是____;立方得–64的数是____. 9、用计算器计算:._________95=10、观察下面一列数的规律并填空:0,3,8,15,24,_______. 二、选择题(每小题3分,共24分)11、–5的绝对值是………………………………………………………( ) A 、5 B 、–5 C 、51 D 、51- 12、在–2,+3.5,0,32-,–0.7,11中.负分数有……………………( ) A 、l 个 B 、2个 C 、3个 D 、4个13、下列算式中,积为负数的是………………………………………………( ) A 、)5(0-⨯ B 、)10()5.0(4-⨯⨯ C 、)2()5.1(-⨯ D 、)32()51()2(-⨯-⨯-14、下列各组数中,相等的是…………………………………………………( ) A 、–1与(–4)+(–3) B 、3-与–(–3)C 、432与169 D 、2)4(-与–1615、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二 次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是…………( ) A 、90分 B 、75分 C 、91分 D 、81分16、l 米长的小棒,第1次截止一半,第2次截去剩下的一半,如此下去,第6次后剩下的小棒长为…………………………………………………………………( ) A 、121 B 、321 C 、641 D 、128117、不超过3)23(-的最大整数是………………………………………( )A 、–4B –3C 、3D 、418、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价………………………………………( ) A 、高12.8% B 、低12.8% C 、高40% D 、高28% 三、解答题(共48分) 19、(4分)把下面的直线补充成一条数轴,然后在数轴上标出下列各数: –3,+l ,212,-l.5,6.20、(4分)七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为+10,–15,0,+20,–2.问这五位同学的实际成绩分别是多少分? 21、(8分)比较下列各对数的大小. (1)54-与43- (2)54+-与54+- (3)25与52 (4)232⨯与2)32(⨯ 22、(8分)计算.(1)15783--+- (2))6141(21-- (3))4(2)3(623-⨯+-⨯- (4)61)3161(1⨯-÷23、(12分)计算.(l )51)2(423⨯-÷- (2)75.04.34353.075.053.1⨯-⨯+⨯- (3)[]2)4(231)5.01(-+⨯÷-- (4))411()2(32)53()5(23-⨯-÷+-⨯-24、(4分)已知水结成冰的温度是0C ,酒精冻结的温度是–117℃。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

雷亚教育有理数·易错题整理1.填空:(1)当a________时,a与-a必有一个是负数;(2)在数轴上,与原点0相距5个单位长度的点所表示的数是________;(3)在数轴上,A点表示+1,与A点距离3个单位长度的点所表示的数是________;(4)在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是________.解 (1)a为任何有理数;(2)+5;(3)+3;(4)-6.2.用“有”、“没有”填空:在有理数集合里,________最大的负数,________最小的正数,________绝对值最小的有理数.解有,有,没有.3.用“都是”、“都不是”、“不都是”填空:(1)所有的整数________负整数;(2)小学里学过的数________正数;(3)带有“+”号的数________正数;(4)有理数的绝对值________正数;(5)若|a|+|b|=0,则a,b________零;(6)比负数大的数________正数.解 (1)都不是;(2)都是;(3)都是;(4)都是;(5)不都是;(6)都是.4.用“一定”、“不一定”、“一定不”填空:雷亚教育(1)-a________是负数;(2)当a>b时,________有|a|>|b|;(3)在数轴上的任意两点,距原点较近的点所表示的数________大于距原点较远的点所表示的数;(4)|x|+|y|________是正数;(5)一个数________大于它的相反数;(6)一个数________小于或等于它的绝对值;解 (1)一定;(2)一定;(3)一定不;(4)一定;(5)一定;(6)不一定.5.把下列各数从小到大,用“<”号连接:并用“>”连接起来.8.填空:(1)如果-x=-(-11),那么x=________;(2)绝对值不大于4的负整数是________;雷亚教育(3)绝对值小于4.5而大于3的整数是________.解 (1)11;(2)-1,-2,-3;(3)4.9.根据所给的条件列出代数式:(1)a,b两数之和除a,b两数绝对值之和;(2)a与b的相反数的和乘以a,b两数差的绝对值;(3)一个分数的分母是x,分子比分母的相反数大6;(4)x,y两数和的相反数乘以x,y两数和的绝对值.10.代数式-|x|的意义是什么?解代数式-|x|的意义是:x的相反数的绝对值.11.用适当的符号(>、<、≥、≤)填空:(1)若a是负数,则a________-a;(2)若a是负数,则-a_______0;(3)如果a>0,且|a|>|b|,那么a________ b.解 (1)>;(2)<;(3)<.12.写出绝对值不大于2的整数.解绝对值不大2的整数有-1,1.13.由|x|=a能推出x=±a吗?解由|x|=a能推出x=±a.如由|x|=3得到x=±3,由|x|=5得到x=±5.14.由|a|=|b|一定能得出a=b吗?雷亚教育解一定能得出a=b.如由|6|=|6|得出6=6,由|-4|=|-4|得-4=-4.15.绝对值小于5的偶数是几?答绝对值小于5的偶数是2,4.16.用代数式表示:比a的相反数大11的数.解-a-11.17.用语言叙述代数式:-a-3.解代数式-a-3用语言叙述为:a与3的差的相反数.18.算式-3+5-7+2-9如何读?解算式-3+5-7+2-9读作:负三、正五、减七、正二、减九.19.把下列各式先改写成省略括号的和的形式,再求出各式的值.(1)(-7)-(-4)-(+9)+(+2)-(-5);(2)(-5)-(+7)-(-6)+4.解(1)(-7)-(-4)-(+9)+(+2)-(-5)=-7-4+9+2-5=-5;(2)(-5)-(+7)-(-6)+4=5-7+6-4=8.20.计算下列各题:雷亚教育(2)5-|-5|=10;21.用适当的符号(>、<、≥、≤)填空:(1)若b为负数,则a+b________a;(2)若a>0,b<0,则a-b________0;(3)若a为负数,则3-a________3.解 (1)>;(2)≥;(3)≥.22.若a为有理数,求a的相反数与a的绝对值的和.解-a+|a|=-a+a=0.23.若|a|=4,|b|=2,且|a+b|=a+b,求a-b的值.解由|a|=4,得a=±4;由|b|=2,得b=±2.当a=4,b=2时,a-b=2;当a=4,b=-2时,a-b=6;当a=-4,b=2时,a-b=-6;雷亚教育当a=-4,b=-2时,a-b=-2.24.列式并计算:-7与-15的绝对值的和.解 |-7|+|-15|=7+15=22.25.用简便方法计算:26.用“都”、“不都”、“都不”填空:(1)如果ab≠0,那么a,b________为零;(2)如果ab>0,且a+b>0,那么a,b________为正数;(3)如果ab<0,且a+b<0,那么a,b________为负数;(4)如果ab=0,且a+b=0,那么a,b________为零.解 (1)不都;(2)不都;(3)都;(4)不都.27.填空:(3)a,b为有理数,则-ab是_________;雷亚教育(4)a,b互为相反数,则(a+b)a是________.解 (1)负数;(2)正数;(3)负数;(4)正数.28.填空:(1)如果四个有理数相乘,积为负数,那么负因数个数是________;解 (1)3;(2)b>0.29.用简便方法计算:解30.比较4a和-4a的大小:雷亚教育解因为4a是正数,-4a是负数.而正数大于负数,所以4a>-4a.31.计算下列各题:(5)-15×12÷6×5.解=-48÷(-4)=12;雷亚教育(5)-15×12÷6×5解因为|a|=|b|,所以a=b.=1+1+1=3.34.下列叙述是否正确?若不正确,改正过来.(1)平方等于16的数是(±4)2;(2)(-2)3的相反数是-23;解 (1)正确;(2)正确;(3)正确.35.计算下列各题;雷亚教育(1)-0.752;(2)2×32.解36.已知n为自然数,用“一定”、“不一定”或“一定不”填空:(1)(-1)n+2________是负数;(2)(-1)2n+1________是负数;(3)(-1)n+(-1)n+1________是零.解 (1)一定不;(2)不一定;(3)一定不.37.下列各题中的横线处所填写的内容是否正确?若不正确,改正过来.(1)有理数a的四次幂是正数,那么a的奇数次幂是负数;(2)有理数a与它的立方相等,那么a=1;(3)有理数a的平方与它的立方相等,那么a=0;(4)若|a|=3,那么a3=9;(5)若x2=9,且x<0,那么x3=27.38.用“一定”、“不一定”或“一定不”填空:(1)有理数的平方________是正数;(2)一个负数的偶次幂________大于这个数的相反数;(3)小于1的数的平方________小于原数;(4)一个数的立方________小于它的平方.解 (1)一定;(2)一定;(3)一定;(4)一定不.39.计算下列各题:雷亚教育(1)(-3×2)3+3×23;(2)-24-(-2)4;(3)-2÷(-4)2;解(1)(-3×2)3+3×23=-3×23+3×23=0;(2)-24-(-2)4=0;40.用科学记数法记出下列各数:(1)314000000;(2)0.000034.解 (1)314000000=3.14×106;(2)0.000034=3.4×10-4.41.判断并改错(只改动横线上的部分):(1)用四舍五入得到的近似数0.0130有4个有效数字.雷亚教育(2)用四舍五入法,把0.63048精确到千分位的近似数是0.63.(3)由四舍五入得到的近似数3.70和3.7是一样的.(4)由四舍五入得到的近似数4.7万,它精确到十分位.42.改错(只改动横线上的部分):(1)已知5.0362=25.36,那么50.362=253.6,0.050362=0.02536;(2)已知7.4273=409.7,那么74.273=4097,0.074273=0.04097;(3)已知3.412=11.63,那么(34.1)2=116300;(4)近似数2.40×104精确到百分位,它的有效数字是2,4;(5)已知5.4953=165.9,x3=0.0001659,则x=0.5495.有理数·错解诊断练习答案1.(1)不等于0的有理数;(2)+5,-5;(3)-2,+4;(4)6.2.(1)没有;(2)没有;(3)有.3.(1)不都是;(2)不都是;(3)不都是;(4)不都是;(5)都是;(6)不都是.原解错在没有注意“0”这个特殊数(除(1)、(5)两小题外).4.(1)不一定;(2)不一定;(3)不一定;(4)不一定;(5)不一定;(6)一定.上面5,6,7题的原解错在没有掌握有理数特别是负数大小的比较.雷亚教育8.(1)-11;(2)-1,-2,-3,-4;(3)4,-4.10.x绝对值的相反数.11.(1)<;(2)>;(3)>.12.-2,-1,0,1,2.13.不一定能推出x=±a,例如,若|x|=-2.则x值不存在.14.不一定能得出a=b,如|4|=|-4|,但4≠-4.15.-2,-4,0,2,4.16.-a+11.17.a的相反数与3的差.18.读作:负三、正五、负七、正二、负九的和,或负三加五减七加二减九.19.(1)原式=-7+4-9+2+5=-5;(2)原式=-5-7+6+4=-2.21.<;>;>.22.当a≥0时,-a+|a|=0,当a<0时,-a+|a|=-2a.23.由|a+b|=a+b知a+b≥0,根据这一条件,得a=4,b=2,所以a-b=2;a=4,b=-2,所以a-b=6.24.-7+|-15|=-7+15=8.雷亚教育26.(1)都不;(2)都;(3)不都;(4)都.27.(1)正数、负数或零;(2)正数、负数或零;(3)正数、负数或零;(4)0.28.(1)3或1;(2)b≠0.30.当a>0时,4a>-4a;当a=0时,4a=-4a;当a<0时,4a<-4a.(5)-150.32.当b≠0时,由|a|=|b|得a=b或a=-b,33.由ab>0得a>0且b>0,或a<0且b<0,求得原式值为3或-1.34.(1)平方等于16的数是±4;(2)(-2)3的相反数是23;(3)(-5)100.36.(1)不一定;(2)一定;(3)一定.37.(1)负数或正数;(2)a=-1,0,1;(3)a=0,1;(4)a3=±27;(5)x3=-27.38.(1)不一定;(2)不一定;(3)不一定;(4)不一定.40.(1)3.14×108;(2)3.4×10-5.雷亚教育41.(1)有3个有效数字;(2)0.630;(3)不一样;(4)千位.42.(1)2536,0.002536;(2)409700,0.0004097;(3)341;(4)百位,有效数字2,4,0;(5)0.05495.。

相关文档
最新文档