2019-2020年初一有理数提高练习题及答案
最新2019-2020年度北师大版七年级数学上册《有理数》课时练习及解析-精品试题

北师大版数学七年级上册第二章第一节有理数课时练习一、选择题(共13题)1.如果气温上升3度记作+3度,下降5度记作-5度,那么下列(1)+5度;(2)-6度;各量分别表示什么?()A.上升5度;下降6度B.上升6度;下降6度C.上升5度;上升6度D.下降5度;下降6度答案:A解析:解答:根据正负数所表示的意义,可以判定答案为A.分析:考查正负数的定义,注意正负数表示意义相反的量2.向东走-8米的意义是()A.向东走8米B.向西走8米C.向西走-8米D.以上都不对答案:B解析:解答:根据正负数所表示的意义,向东走负数就是向西走正数.分析:考查正负数的定义,注意正负数表示意义相反的量3.下列说法正确的是()A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数答案:B解析:解答:零既不是正数也不是负数分析:考查正负数,0是正负数的分界点4.下列说法中,正确的是()(可以看第4页课本)A.正整数、负整数和零统称整数B.正分数、负分数统称有理数C.零既可以是正整数,也可以是负分数D.所有的分数都是有理数答案:A解析:解答:根据对整数的认识我们可以知道正整数和负整数统称整数;故答案为A;分数有的不是有理数所以B、D错误;零既不是正数也不是负数所以C错误.分析:考查对整数分类的掌握.5.如果水位下降了3m记着-3m,那么,水位上升4m记作()A.1m B.7m C.4m D.-7m答案:C解析:解答:正负数表示具有相反意义的量,下降为负,反过来上升为正,水位上升4m记作4m.分析:考查对正负数意义的理解.6.向东行进-30米表示的意义是()A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米答案:C解析:解答:正负数表示的是意义相反的量,故向东走负数米就表示向西走正数米,所以答案选择C.分析:考查正负数表示的意义7.下列说法正确的是()A.正数和负数统称有理数B.0是整数但不是正数C.0是最小的数D.0是最小的正数答案:B解析:解答:A选项应该是正数、负数和零统称为有理数;C选项0不是最小的数,负数比0还要小;D选项0既不是正数也不是负数;故答案为B选项分析:考查对基本概念的掌握.8.下列不是具有相反意义的量是()A.前进5米和后退5米B.节约3吨和消费10吨C.身高增加2厘米和体重减少2千克D.超过5克和不足2克答案:C解析:解答:C选项中的身高和体重不是同一个单位量,所以这两个量的变化不具有相反的意义.分析:注意相反意义的量应该是表示的同一个单位量.9.下列说法中不正确的是()A.0是自然数B.0是正数C.0是整数D.0是非负数答案:B解析:解答:通过分析我们可知0既不是正数也不是负数,故答案为B分析:考查对0这个数的分类.10.下列说法不正确的是()A.0不是正数也不是负数B.负数是带“—”的数,正数是带有“+”的数C.非负数是正数或0D.0是一个特殊的整数,它并不只是表示“没有”答案:B解析:解答:—(—1)表示的是正数,所以正数并不一定都带有“+”,所以B选项错误. 分析:注意对基本概念和定义的掌握.11.a一定表示()A.正数B.负数C.不是正数就是负数D.以上答案均不对答案:D解析:解答:a是一个字母,可以代表任何数,包括零,所以A、B、C选项错误,正确答案选D.分析:对字母表示的数如果没有限制条件那么就有可能代表所有的数.12.某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高()A.-10℃B.-6℃C.6℃D.10℃答案:D解析:解答:以0℃为标准,高于0℃记作正,低于0℃记作负,2℃表示比标准高2℃,-8℃表示比标准低8℃,所以最高和最低的差为10℃分析:要找出标准来,超出为正,低于标准为负,由此来解决正负数问题13.在一次数学测试中,七(2)班的平均分为85分,把高于平均分的高出部分数记为正数,老师将某一小组的美美、多多、田田、乐乐四位同学的成绩记为+7,-4,-11,+13,则这四位同学实际成绩最高的是()A.美美 B.多多 C.田田 D.乐乐答案:D解析:解答:85分为标准,高于标准为正,低于标准为负,因此可知乐乐高于标准,并且高于标准13分,即成绩最高的为乐乐,答案为D选项.分析:要找出标准来,超出为正,低于标准为负,由此来解决正负数问题二、填空题(共7题)14.如果收入15•元记作+•15•元,•那么支出20•元记作________元.答案:—20解析:解答:正负数是表示意义相反的量,如果收入为正那么支出为负,所以支出20元记作—20元.分析:注意正负数是表示意义相反的量15.某食品包装袋上标有“净含量385±5”,•这包食品的合格净含量范围是______克~390克.答案:380解析:解答:385克为标准,高于标准为正,低于标准为负,因此可知合格的范围为最多高于标准5克或是最多低于标准5克,因此可以判断合格范围是在385克的基础上加或减去5克.分析:要找出标准来,超出为正,低于标准为负,由此来解决正负数问题16.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在__℃~__℃范围内保存才合适。
青岛版2020七年级数学上册第三章有理数的运算自主学习培优提升训练题1附答案详解)

青岛版2020七年级数学上册第三章有理数的运算自主学习培优提升训练题1(附答案详解)1.按如图所示的运算程序,能使运算输出的结果为4的是( )A .x =5,y =﹣1B .x =2,y =2C .x =﹣3,y =1D .x =3,y =﹣1 2.如图表格是一个4×4的奇妙方阵:从这个方阵中选四个数(其中任何两个既不在同一行,也不在同一列),虽然有很多种选法,但每次选出的四个数相加,其和是一个定值.则方阵中空白处的数是( )A .5B .6C .7D .83.2019-的倒数是( )A .2019-B .12019-C .12019D .20194.对于任何有理数a ,下列各式中一定为负数的是( )A . (2)a --+B .-aC .3a --D .-a 2-5 5.把算式1132()()()3443-++---写成省略括号的和的形式是( ) A .11323443---+ B .11323443--- C .1132+3443-- D .11323443--- 6.把一个数写成a ×10n (1≤a <10,n 为整数)的形式为3.57×10﹣5.则原数为( ) A .0.0000357 B .0.000357 C .357000 D .35700007.据有关部门统计,2019年春节期间,广东各大景点的游客总数约25200000人次,将数25200000用科学记数法表示为( )A .2.52×107B .2.52×108C .0.252×107D .0.252×1088.银河系中大约有恒星160 000 000 000颗,数据160 000 000 000用科学记数法表示为( )9.下列各组数中,结果相等的是().A .+32与+23B .-23 与(-2)3C .-32与(-3)2D .|-3|3与(-3)3 10.计算432()()()7143-÷-÷-的结果是( ) A .169- B .﹣4 C .4 D .449- 11.下列各对数中,数值相等的是( )A .3-23⎛⎫ ⎪⎝⎭ 与()3-23B .2-3与()2-3 C .3-2与()3-2D .3-32⨯与()3-32⨯ 12.下列说法正确的是( ).A .近似数5千和5000的精确度是相同的B .近似数8.4和0.7的精确度不一样C .2.46万精确到百分位D .317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯13.若a 、b 互为相反数,c 、d 互为倒数,且m 的绝对值为2,则21()3m cd a b +-+=_____.14.平方等于16的数的倒数是______.15.北京时间2019年4月10日21时,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M 87的中心,距离地球约55000000年,那么55000000用科学记数法表示为_______.16.用“>”“>”或“=”填空.(1)若0a >,0b >,则+a b ________0;(2)若0a <,0b <,则+a b ________0;(3)若0a >,0b <,且a b >,则+a b ________0;(4)若0a <,0b >,且a b >,则+a b ________0.17.若224,9a b ==,则a b -=________.18.一天早晨的气温是﹣7℃,中午的气温3℃,则中午的气温比早晨的气温高_____℃. 19.用科学计数法表示:0.00000507=_____;362(0.510)(810)⨯⨯⨯的结果是____.20.一天早晨气温为-4℃,中午上升了7℃,半夜又下降了8℃,则半夜的气温是_____. 21.今年“十一”假期,我市某主题公园共接待游客77600人次,将77600用科学计数法表示为___________.22.据统计,今年琼中绿橙的产值约为28500000元,数据28500000用科学记数法表示为_______.23.用科学记数法表示:6400000=_____________。
2019-2020年七年级数学上册:有理数的加减法(提高)知识讲解(含答案与解析)

有理数的加减法(提高)
2019-2020年七年级数学上册:有理数的加减法(提高)知识讲解(含答案与解析)
【学习目标】
1.掌握有理数加法的意义,法则及运算律,并会使用运算律简算;
2.掌握有理数减法的法则和运算技巧,认识减法与加法的内在联系,体会其中蕴含的转化
的思想;
3.熟练地将加减混合运算统一成加法运算,理解运算符号和性质符号的意义,运用加法运
算律合理简算,并且会解决简单的实际问题.
【要点梳理】
要点一、有理数的加法
1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.
2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对
值减去较小的绝对值.互为相反数的两个数相加得0;
(3)一个数同0相加,仍得这个数.
要点诠释:利用法则进行加法运算的步骤:
(1)判断两个加数的符号是同号、异号,还是有一个加数为零,以此来选择用哪条法则.
(2)确定和的符号(是“+”还是“-”).
(3)求各加数的绝对值,并确定和的绝对值(加数的绝对值是相加还是相减).
3.运算律:
有理数加法运算律加法
交换
律
文字语言两个数相加,交换加数的位置,和不变
符号语言
a+b=b+a
加法
结合
律
文字语言
三个数相加,先把前两个数相加,或者先把后两个数相加,
和不变
符号语言(a+b)+c=a+(b+c)
要点诠释:交换加数的位置时,不要忘记符号.
要点二、有理数的减法
1.定义:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,例如:(-5)+?=7,求?,减法是加法的逆运算.。
七年级数学上册有理数专题提高练习-有理数的乘法(含答案)

七年级数学上册有理数专题提高练习有理数的乘法学校:___________姓名:___________班级:___________一.选择题(共12小题)1.计算:(﹣3)×(﹣5)=()A.﹣8 B.8 C.﹣15 D.152.计算4×(﹣9)的结果等于()A.32 B.﹣32 C.36 D.﹣363.﹣9×的结果是()A.﹣3 B.3 C.D.4.若()×=﹣1,则括号内应填的数是()A.2 B.﹣2 C.D.﹣5.计算2×(﹣3)的结果等于()A.6 B.﹣6 C.﹣1 D.56.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了,下面两个图框是用法国“小九九”计算8×9和6×7的两个示例,若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是()A.2,4 B.3,3 C.3,4 D.2,37.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.2017 B.2016 C.2017!D.2016!8.已知两个有理数a,b,如果ab<0且a+b>0,那么()A.a>0,b>0B.a<0,b>0C.a、b同号D.a、b异号,且正数的绝对值较大9.已知:a=﹣2+(﹣10),b=﹣2﹣(﹣10),c=﹣2×(﹣),下列判断正确的是()A.a>b>c B.b>c>a C.c>b>a D.a>c>b10.正整数x、y满足(2x﹣5)(2y﹣5)=25,则x+y等于()A.18或10 B.18 C.10 D.2611.若a+b<0,ab>0,那么这两个数()A.都是正数B.都是负数C.一正一负D.符号不能确定12.利用裂项技巧计算﹙﹚×33时,最恰当的方案可以是()A.(100﹣)×33 B.(﹣100﹣)×33 C.﹣(99+)×33 D.﹣(100﹣)×33二.填空题(共10小题)13.计算=.14.a<0,ab<0,则b0.15.乘积是6的两个负整数之和为.16.数﹣5,1,﹣4,6,﹣3中任取二个数相乘,积最小值为.17.已知|a|=5,|b|=3,且ab<0,则a﹣b=.18.两个有理数之积是﹣1,已知一个数是﹣2,则另一个数是.19.若有理数a、b满足|a|=2,|b|=5,且ab<0,则a﹣b=.20.设有理数a,b,c满足a+b+c=0,abc>0,则a,b,c中正数的个数为.21.绝对值不大于3的所有整数的积是.22.在3,﹣4,5,﹣6这四个数中,任取两个数相乘,所得的积最大的是.三.解答题(共6小题)23.如果|a|=4,|b|=8,|c|=3,ab<0,求c﹣a﹣|b|的值.24.已知|x|=2,|y|=8.(1)若x<y,求x﹣y的值;(2)若xy<0,求x+y的值.25.计算:(1)﹣0.75×(﹣0.4 )×1;(2)0.6×(﹣)×(﹣)×(﹣2).26.如图,A,B两点在数轴上对应的数分别为a,b,且点A在点B的左边,|a|=10,a+b=80,ab<0.(1)求出a,b的值;(2)现有一只电子蚂蚁P从点A出发,以3个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q从点B出发,以2个单位长度/秒的速度向左运动.①设两只电子蚂蚁在数轴上的点C相遇,求出点C对应的数是多少?②经过多长时间两只电子蚂蚁在数轴上相距20个单位长度?27.阅读下列材料并解决有关问题:我们知道|x|=,所以当x>0时,==1;当x<0时,==﹣1.现在我们可以用这个结论来解决下面问题:(1)已知a,b是有理数,当ab≠0时,+=;(2)已知a,b,c是有理数,当abc≠0时,++=.28.学习有理数得乘法后,老师给同学们这样一道题目:计算:49×(﹣5),看谁算的又快又对,有两位同学的解法如下:小明:原式=﹣×5=﹣=﹣249;小军:原式=(49+)×(﹣5)=49×(﹣5)+×(﹣5)=﹣249;(1)对于以上两种解法,你认为谁的解法较好?(2)上面的解法对你有何启发,你认为还有更好的方法吗?如果有,请把它写出来;(3)用你认为最合适的方法计算:19×(﹣8)参考答案与试题解析一.选择题(共12小题)1.【分析】根据有理数的乘法法则计算可得.【解答】解:(﹣3)×(﹣5)=+(3×5)=15,故选:D.2.【分析】原式利用乘法法则计算即可求出值.【解答】解:原式=﹣36,故选:D.3.【分析】根据有理数的乘法法则计算可得.【解答】解:﹣9×=﹣(9×)=﹣3,故选:A.4.【分析】根据积除以一个因式得到另一个因式即可.【解答】解:根据题意得:﹣1÷=﹣1×2=﹣2,故选:B.5.【分析】原式利用乘法法则计算即可求出值.【解答】解:原式=﹣2×3=﹣6,故选:B.6.【分析】根据示例得出左手伸出的手指数为第一个数比5多的部分、右手伸出的手指数为第二个因数比5多的部分,据此可得.【解答】解:根据题意,左手伸出的手指数为第一个数比5多的部分、右手伸出的手指数为第二个因数比5多的部分,所以计算7×9,左、右手依次伸出手指的个数是2和4,故选:A.7.【分析】根据题意将原式变形为即可得.【解答】解:==2017,故选:A.8.【分析】先由有理数的乘法法则,判断出a,b异号,再用有理数加法法则即可得出结论.【解答】解:∵ab<0,∴a,b异号,∵a+b>0,∴正数的绝对值较大,故选:D.9.【分析】首先利用有理数的加法法则、减法法则、乘方法则计算出a、b、c的值,再比较大小即可.【解答】解:a=﹣2+(﹣10)=﹣12,b=﹣2﹣(﹣10)=﹣2+10=8,c=﹣2×(﹣)=,∵8>>﹣12,∴b>c>a,故选:B.10.【分析】易得(2x﹣5)、(2y﹣5)均为整数,分类讨论即可求得x、y的值即可解题.【解答】解:∵x、y是正整数,且最小的正整数为1,∴2x﹣5是整数且最小整数为﹣3,2y﹣5是整数且最小的整数为﹣3∵25=1×25,或25=5×5,∴存在两种情况:①2x﹣5=1,2y﹣5=25,解得:x=3,y=15,;②2x﹣5=2y﹣5=5,解得:x=y=5;∴x+y=18或10,故选:A.11.【分析】根据有理数的乘法法则,得a、b同号,再由有理数的加法法则,得a、b都是负数.【解答】解:∵ab>0,∴a、b同号,∵a+b<0,∴a、b都是负数,故选:B.12.【分析】将变形为﹣100+,进一步根据乘法分配律进行计算.【解答】解:﹙﹚×33=﹣(100﹣)×33=﹣3300+1=﹣3299.故选:D.二.填空题(共10小题)13.【分析】根据乘法分配律展开,再根据有理数的乘法和加减法运算法则计算.【解答】解:,=×12+×12﹣×12,=3+2﹣6,=5﹣6,=﹣1.14.【分析】根据异号得负解答即可.【解答】解:∵a<0,ab<0,∴b>0.故答案为:>.15.【分析】利用有理数的乘法法则确定出两个负整数,求出之和即可.【解答】解:乘积是6的两个负整数为﹣1和﹣6或﹣2与﹣3,之和为﹣7或﹣5,故答案为:﹣7或﹣516.【分析】根据所求的积最小,选取最大的正数和最小的负数相乘,即可解答.【解答】解:﹣5×6=﹣30,故答案为:﹣30.17.【分析】由a与b异号,利用绝对值的代数意义求出a与b的值,即可确定出a ﹣b的值.【解答】解:∵|a|=5,|b|=3,且ab<0,∴a=﹣5,b=3;a=5,b=﹣3,则a﹣b=±8,故答案为:±818.【分析】已知积和其中的一个因数,求另一个因数用除法.根据题意先列出除法算式,再计算出结果.【解答】解:﹣1÷(﹣2)=﹣1÷(﹣)=故答案为:19.【分析】根据异号得负和绝对值的性质确定出a、b的值,然后相减即可得解.【解答】解:∵ab<0,|a|=2,|b|=5,∴a=2时,b=﹣5,a﹣b=2﹣(﹣5)=2+5=7,a=﹣2时,b=5,a﹣b=﹣2﹣5=﹣7,∴a﹣b=7或﹣7.故答案为:7或﹣7.20.【分析】由abc>0可以得到a、b、c中负数有偶数个,而a+b+c=0,由此即可判定其中的正数的个数.【解答】解:∵abc>0,∴a、b、c中负数有偶数个,而a+b+c=0,∴a,b,c中负数有2个,即正数的个数为一个.故填空答案:1.21.【分析】根据绝对值的含义,写出符合条件的整数,然后求出它们的积.【解答】解:绝对值不大于3的所有整数是:±3,±2,±1,0,它们的积是:(﹣1)×(﹣2)×(﹣3)×1×2×3×0=0.故答案是:0.22.【分析】两个数相乘,同号得正,异号得负,且正数大于一切负数,所以找积最大的应从同号的两个数中寻找即可.【解答】解:∵(﹣4)×(﹣6)=24>3×5.故答案为:24.三.解答题(共6小题)23.【分析】根据绝对值的意义得到a=±4,b=±8,c=±3,由ab<0,则a=4,b=﹣8或a=﹣4,b=8,把它们分别代入c﹣a﹣|b中计算即可.【解答】解:∵|a|=4,|b|=8,|c|=3,ab<0,∴a=4,b=﹣8,c=3或a=4,b=﹣8,c=﹣3或a=﹣4,b=8,c=3或a=﹣4,b=8,c=﹣3,∴c﹣a﹣|b|=﹣9或﹣15或﹣1或﹣7.24.【分析】(1)根据绝对值的性质以及有理数的大小比较判断出x、y的值,然后相减计算即可得解;(2)根据有理数的乘法运算法则和绝对值的性质判断出x、y的值,然后相加计算即可得解.【解答】解:(1)∵|x|=2,|y|=8,x<y,∴x=±2,y=8,∴x﹣y=2﹣8=﹣6,或x﹣y=﹣2﹣8=﹣10;(2)∵|x|=2,|y|=8,xy<0,∴x=2,y=﹣8或x=﹣2,y=8,∴x+y=2+(﹣8)=﹣6,或x+y=﹣2+8=6.25.【分析】(1)直接利用有理数的乘法运算法则计算得出答案;(2)直接利用有理数的乘法运算法则计算得出答案.【解答】解:(1)原式=﹣0.75×(﹣0.4 )×=××=;(2)原式=0.6×(﹣)×(﹣)×(﹣2)=﹣×××=﹣1.26.【分析】(1)根据题意可以a、b的符号相反、可得a=﹣10,根据a+b=80可得b的值,本题得以解决;(2)①根据题意可以求得两只电子蚂蚁在数轴上的点C相遇是点C对应的数值;②根据题意和分类讨论的数学思想可以解答本题.【解答】解:(1)∵A,B两点在数轴上对应的数分别为a,b,且点A在点B 的左边,|a|=10,a+b=80,ab<0,∴a=﹣10,b=90,即a的值是﹣10,b的值是90;(2)①由题意可得,点C对应的数是:90﹣[90﹣(﹣10)]÷(3+2)×2=90﹣100÷5×2=90﹣40=50,即点C对应的数为:50;②设相遇前,经过m秒时间两只电子蚂蚁在数轴上相距20个单位长度,[90﹣(﹣10)﹣20]÷(3+2)=80÷5=16(秒),设相遇后,经过n秒时间两只电子蚂蚁在数轴上相距20个单位长度,[90﹣(﹣10)+20]÷(3+2)=120÷5=24(秒),由上可得,经过16秒或24秒的时间两只电子蚂蚁在数轴上相距20个单位长度.27.【分析】(1)分3种情况:a<0、b<0;a>0、b>0;a、b异号讨论即可求解;(2)分4种情况:a<0、b<0、c<0;a>0、b>0、c>0;a、b、c两负一正;a、b、c两正一负讨论即可求解.【解答】解:(1)已知a,b是有理数,当ab≠0时,①a<0,b<0,+=﹣1﹣1=﹣2;②a>0,b>0,+=1+1=2;③a、b异号,+=0.所以+=±2或0,故答案为:±2或0;(2)已知a,b,c是有理数,当abc≠0时,①a<0,b<0,c<0,++=﹣1﹣1﹣1=﹣3;②a>0,b>0,c>0,++=1+1+1=3;③a、b、c两负一正,++=﹣1﹣1+1=﹣1;④a、b、c两正一负,++=﹣1+1+1=1.所以++=±1或±3,故答案为:±1或±3.28.【分析】(1)根据计算判断小军的解法好;(2)把49写成(50﹣),然后利用乘法分配律进行计算即可得解;(3)把19写成(20﹣),然后利用乘法分配律进行计算即可得解.【解答】解:(1)小军解法较好;(2)还有更好的解法,49×(﹣5)=(50﹣)×(﹣5)=50×(﹣5)﹣×(﹣5)=﹣250+=﹣249;(3)19×(﹣8)=(20﹣)×(﹣8)=20×(﹣8)﹣×(﹣8)=﹣160+=﹣159.。
2019—2020年最新湘教版七年级数学上册期末复习(一)有理数及答案.docx

期末复习(一) 有理数考点一 有理数的相关概念【例1】 填空:(1)-51的相反数是_____;-|-20131|=_____;-1.2的倒数是_____. (2)如图,在数轴上与点A 所表示的数距离为3的数是_____.【解答】 (1)51;-20131;-65.(2)5或-1. 【方法归纳】 对概念的考查,要紧扣概念的本质属性,掌握概念的展示形式,如绝对值、相反数有时是文字形式,有时是符号形式,还要理解某些概念的“代数,几何”双重意义.1.(2012·河北)下列各数中,为负数的是( )A.0B.-2C.1D.21 2.(2013·黔东南)|-3|的相反数是( )A.3B.-3C.±3D.31 考点二 有理数的运算 【例2】 计算:(97-65+183)×18+3.95×6-1.45×6. 【解答】 原式=97×18-65×18+183×18+(3.95-1.45)×6 =14-15+3+2.5×6=2+15=17.【方法归纳】 有理数的运算主要把握两点:一是运算法则,二是运算顺序.能运用运算律的尽量运用运算律简化运算.3.计算:1÷(-1)+0÷4-5×0.1×(-2)3.4.计算:(41-92+3121-181)÷(-361)-23×87.6-23×12.4.考点三 科学记数法【例3】 (2013·邵阳)据邵阳市住房公积金管理会议透露,今年我市新增住房公积金11.2亿元,其中11.2亿元可用科学记数法表示为( )A.11.2×108元B.1.12×109元C.0.112×1010元D.112×107元【解答】B【方法归纳】 科学记数法的表示形式是a ×10n 的形式,其中1≤|a|<10,n 为整数,表示的关键是确定a 和n 的值,同时还要注意单位的统一.5.(2013·防城港)我国第一艘航母“辽宁舰”最大排水量为67 500吨,用科学记数法表示这个数字是( )A.6.75×103吨B.67.5×103吨C.6.75×104吨D.6.75×105吨考点四 有理数运算的应用【例4】 一振子从点A 开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动的记录为(单位:mm):+10,-9,+8,-6,+7.5,-6,+8,-7.(1)求该振子停止时所在的位置距A点多远?(2)如果每毫米需用时间0.02 s,则完成8次振动共需要多少秒?【解答】(1)(+10)+(-9)+(+8)+(-6)+(+7.5)+(-6)+(+8)+(-7)=5.5(mm).答:该振子停止时距A点右侧5.5 mm;(2)|+10|+|-9|+|+8|+|-6|+|+7.5|+|-6|+|+8|+|-7|=10+9+8+6+7.5+6+8+7=61.5(mm).61.5×0.02=1.23(s).答:完成8次振动共需1.23 s.【方法归纳】有理数运算的应用,关键是要扣住题目中的数量关系,先列出相应的运算式,然后利用运算法则计算.6.某城市用水标准为:居民每户用水未超过7立方米时,每立方米收水费1元,并加收0.2元的城市污水处理费;超过7立方米的部分每立方米收水费1.5元,并加收0.4元的城市污水处理费.小明家1月份用水10立方米,二月份用水6立方米,他家这两个月的水费共多少元?一、选择题(每小题3分,共24分)1.(2013·盐城)如果收入50元,记做+50元,那么支出30元记做( )A.+30元B.-30元C.+80元D.-80元2.下列说法中,正确的是( )A.0是最小的有理数B.任一个有理数的绝对值都是正数C.-a 是负数D.0的相反数是它本身3.下列说法:①-2.5既是负数、分数,也是有理数;②-25既是负数,也是整数,但不是自然数;③0既不是正数,也不是负数;④0是非负数.其中正确的个数是( )A.1个B.2个C.3个D.4个4.(2013·聊城)(-2)3的相反数是( )A.-6B.8C.-61D.81 5.(2013·宜昌改编)数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A.a+b=0B.b <aC.ab >0D.|b|<|a|6.下列各式计算正确的是( ) A.(395-2275)×59=3-231=32 B.43÷74×47=43÷1=34 C.(-61-41+91)×(-36)=6+9-4=11 D.(-61-41+91)×(-36)=-6-9+4=-11 7.已知A ,B 两点在数轴上表示的数是-5,1,在数轴上有一点C ,满足AC=2BC ,则C 点表示的数为( )A.-1B.0C.7D.-1或78.小王利用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据是8时,输出的数据是( ) 输入… 1 2 3 4 5 … 输出… 21 52 103 174 265 … A.618 B.638 C.658 D.678 二、填空题(每小题4分,共24分)9.若a 与-5互为倒数,则a=____.10.温家宝总理有句名言:多么小的问题乘以13亿,都会变得很大;多么大的经济总量,除以13亿都会变得很小.将13亿用科学记数法表示为____.11.请把0,-2.5,31,-21,8,0.75这六个数按从小到大,从左到右串成糖葫芦.依次填:________________.12.已知(x-3)2+|y+5|=0,则xy-y x =____.13.根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为____.14.若|m-n|=n-m ,且|m|=4,|n|=3,则(m+n)2=.____三、解答题(共52分)15.(20分)计算:(1)0.125×(-7)×8; (2)-32-(-8)×(-1)5÷(-1)4;(3)[221-(97-1211+61)×36]÷5; (4)(-370)×(-41)+0.25×24.5+(-521)×(-25%).16.(10分)小力在电脑上设计了一个有理数运算程序:输入a ,加※键,再输入b ,得到运算a ※b =a 2-b 2-[2(a-1)-b 1]÷(a-b). (1)求(-2)※21的值; (2)小华在运用此程序计算时,屏幕显示“该程序无法操作”,你猜小华在输入数据时,可能出现什么情况?为什么?17.(10分)一辆汽车沿着南北向的公路往返行驶,某天早上从A 地出发,晚上最后到达B 地,若约定向北为正方向(如+7.4千米表示汽车向北行驶7.4千米,-6千米则表示该汽车向南行驶6千米).当天的行驶记录如下:(单位:千米)+18.3,-9.5,+7.1,-14,-6.2,+13,-6.8,-8.5.请问:(1)B 地在A 地何方?相距多少千米?(2)若汽车行驶每千米耗油0.335升,那么这一天共耗油多少升?18.(12分)观察下面一列数,探求其规律:21,-32,43,-54,65,-76,…. (1)这一列属于有理数中的哪一类;(2)写出第7,8,9项的三个数;(3)第2 013个数是什么?(4)如果这一列数无限排列下去,与哪两个数越来越接近?参考答案变式练习1.B2.B3.原式=-1+0-0.5×(-8)=-1+0+4=3.4.原式=(41-92+1213-181)×(-36)-23×(87.6+12.4)=-9+8-111+2-2 300=-2 410. 5.C6.一月份的水费:(1+0.2)×7+(1.5+0.4)×(10-7)=14.1(元);二月份的水费:(1+0.2)×6=7.2(元);14.1+7.2=21.3(元).答:他家这两个月的水费共21.3元.复习测试1.B2.D3.D4.B5.D6.C7.D8.C9.-15 10.1.3×109 11.-2.5,-12,0,13,0.75,8 12.110 13.4 14.49或115.(1)原式=0.125×8×(-7)=1×(-7)=-7.(2)原式=-9-(-8)×(-1)÷1=-9-8=-17.(3)原式=[1212-(28-33+6)]÷5=(25-1)÷5=23×51=103. (4)原式=370×0.25+0.25×24.5+5.5×0.25=(370+24.5+5.5)×0.25=400×0.25=100.16.(1)(-2)※21=(-2)2-(21)2-[2×(-2-1)-2]÷(-2-21)=4-41-(-6-2)÷(-25)=4-41-516=2011. (2)可能出现的情况是b =0或a =b ,因为b 及(a-b)均是除数,除数为0时,无意义就使该程序无法操作.17.(1)18.3-9.5+7.1-14-6.2+13-6.8-8.5=-6.6(千米).答:B 地在A 地南边,相距6.6千米.(2)18.3+9.5+7.1+14+6.2+13+6.8+8.5=83.4(千米),83.4×0.335=27.939(升).答:这一天共耗油27.939升.18.(1)分数.(2)87,-98,109. (3)20142013. (4)1或-1.。
2019—2020年人教版七年级数学第一学期《有理数》同步测试题一及答案.docx

1.2有理数同步测试题一、选择题1.下列各数中,不是有理数的是( )A .4B .-5.6 C.227D .π 2.下列是数轴的是( D )3.下列说法错误的是( )A .-3是负有理数B .0不是整数 C.13是正有理数 D .-0.35是负分数 4.数轴上的点A 到原点的距离是6,则点A 表示的数为( )A .6或-6B .6C .-6D .3或-35. 下列说法:①-2是相反数;②2是相反数;③-2是2的相反数;④-2和2互为相反数.其中正确的有( )A .1个B .2个C .3个D .4个6. .有理数m ,n ,e ,f 在数轴上的对应点的位置如图所示,这四个数中,绝对值最小的是( )A .MB .nC .eD .f7. 如图,下列说法中,正确的是( )A .a >bB .b >aC.a>0 D.b<08. 下列结论中一定正确的是( )A.一个有理数不是正数就是负数B.一个有理数不是整数就是分数C.有理数是指整数、分数、正有理数、负有理数和0这五类数D.有理数是指自然数和负整数9.下列说法中,正确的是( )A.数轴上一个点可以表示两个不同的有理数B.数轴上两个不同的点可以表示同一个有理数C.有的有理数不能表示在数轴上,如-0.000 05D.任何一个有理数都可在数轴上找到和它对应的唯一的一个点10. 下列各式中,化简正确的是( )A.-(-7)=-7 B.-(+7)=-7 C.+(-7)=7 D.-[+(-7)]=-7 11. 在有理数中,绝对值等于它本身的数有( )A.1个B.2个C.3个D.无数个12. 数轴上原点及原点左边的点表示( )A.正数B.负数C.非正数D.非负数13.16.若|a|=-a,则数a在数轴上的对应点一定在( )A .原点左侧B .原点或原点左侧C .原点右侧D .原点或原点右侧二、填空题14. 若a =-12 015,b =-12 016,则a 、b 的大小关系是a________b. 15. 若|a|+|b|=0,则a =________,b =________.16. 如图所示,在数轴上有A 、B 、C 三点.请回答:(1)将点A 向右移动2个单位长度后,表示的有理数是_______;(2)将点B 向左移动3个单位长度后,表示的有理数是________;(3)将点C 向左移动5个单位长度后,表示的有理数是________.17. 数轴上与原点距离3个单位长度的点表示的数是________.18. .若a =3.5,则-a =________;若-x =-(-10),则x =________;若m =-m ,则m =_______.19. 若有理数a ,b 在数轴上对应的点的位置如图,则|a|,|b|的大小关系是________.三、解答题20.将下列各有理数按不同的标准分类:2, 413, -7, 1.5, 0, -5.3, -32, 6, -80%.(1)按有理数的定义分;(2)按有理数的正、负性质分.21. 小红在做作业时,不小心将墨水洒在一个数轴上,如图所示,根据图中标出的数值,判断被墨迹盖住的整数共有多少个?22. 某工厂生产一批精密的零件要求是φ50+0.04(φ表示圆形工件的直径,单位是mm),抽查了5个零件,-0.03数据如下表,超过规定的记作正数,不足的记作负数.1号2号3号4号5号+0.031 -0.037 +0.018 -0.021 +0.042(1)哪些产品是符合要求的?(2)符合要求的产品中哪个质量最好?用绝对值的知识加以说明.23.已知a,b,c为有理数,且它们在数轴上的位置如图所示.(1)试判断a,b,c的正负性;(2)在数轴上标出a,b,c的相反数的位置;(3)根据数轴化简:①|a|=_______;②|b|=____;③|c|=____;④|-a|=_______;⑤|-b|=____;⑥|-c|=____.(4)若|a|=5.5,|b|=2.5,|c|=5,求a,b,c的值.24. 已知|a|=5,|b|=3,且a>0,b>0,求a+b的值.参考答案一、选择题1.下列各数中,不是有理数的是( D )A .4B .-5.6 C.227D .π 2.下列是数轴的是( D )3.下列说法错误的是( B )A .-3是负有理数B .0不是整数 C.13是正有理数 D .-0.35是负分数 4.数轴上的点A 到原点的距离是6,则点A 表示的数为( A )A .6或-6B .6C .-6D .3或-35. 下列说法:①-2是相反数;②2是相反数;③-2是2的相反数;④-2和2互为相反数.其中正确的有( B )A .1个B .2个C .3个D .4个6. .有理数m ,n ,e ,f 在数轴上的对应点的位置如图所示,这四个数中,绝对值最小的是( C )A .MB .nC .eD .f7. 如图,下列说法中,正确的是( B )A .a >bB .b >aC.a>0 D.b<08. 下列结论中一定正确的是( B )A.一个有理数不是正数就是负数B.一个有理数不是整数就是分数C.有理数是指整数、分数、正有理数、负有理数和0这五类数D.有理数是指自然数和负整数9.下列说法中,正确的是( D )A.数轴上一个点可以表示两个不同的有理数B.数轴上两个不同的点可以表示同一个有理数C.有的有理数不能表示在数轴上,如-0.000 05D.任何一个有理数都可在数轴上找到和它对应的唯一的一个点10. 下列各式中,化简正确的是( B )A.-(-7)=-7 B.-(+7)=-7 C.+(-7)=7 D.-[+(-7)]=-7 11. 在有理数中,绝对值等于它本身的数有( D )A.1个B.2个C.3个D.无数个12. 数轴上原点及原点左边的点表示( C )A.正数B.负数C.非正数D.非负数13.16.若|a|=-a,则数a在数轴上的对应点一定在( B )A .原点左侧B .原点或原点左侧C .原点右侧D .原点或原点右侧二、填空题14. 若a =-12 015,b =-12 016,则a 、b 的大小关系是a____<____b. 15. 若|a|+|b|=0,则a =____0____,b =___0_____.16. 如图所示,在数轴上有A 、B 、C 三点.请回答:(1)将点A 向右移动2个单位长度后,表示的有理数是___-1_____;(2)将点B 向左移动3个单位长度后,表示的有理数是____-4____;(3)将点C 向左移动5个单位长度后,表示的有理数是____-2____.17. 数轴上与原点距离3个单位长度的点表示的数是__3或-3______.18. .若a =3.5,则-a =__-3.5______;若-x =-(-10),则x =____-10____;若m =-m ,则m =____0____.19. 若有理数a ,b 在数轴上对应的点的位置如图,则|a|,|b|的大小关系是___|a |>|b|_____.三、解答题20.将下列各有理数按不同的标准分类:2, 413, -7, 1.5, 0, -5.3, -32, 6, -80%.(1)按有理数的定义分;(2)按有理数的正、负性质分.解:(1)整数:2,-7,0,6;分数:413,1.5,-5.3,-32,-80% (2)正有理数:2,413,1.5,6;零:0;负有理数:-7,-5.3,-32,-80%21. 小红在做作业时,不小心将墨水洒在一个数轴上,如图所示,根据图中标出的数值,判断被墨迹盖住的整数共有多少个?解:因为-13<-12.6<-12,-8<-7.4<-7,所以此段整数有-12,-11,-10,-9,-8共5个;同理:10<10.6<11,17<17.8<18,所以此段整数有11,12,13,14,15,16,17共7个,所以被墨迹盖住的整数共有5+7=12个.22. 某工厂生产一批精密的零件要求是φ50+0.04(φ表示圆形工件的直径,单位是mm),抽查了5个零件,-0.03数据如下表,超过规定的记作正数,不足的记作负数.1号2号3号4号5号+0.031 -0.037 +0.018 -0.021 +0.042(1)哪些产品是符合要求的?(2)符合要求的产品中哪个质量最好?用绝对值的知识加以说明.解:(1)1号,3号,4号符合要求.(2)因为|+0.018|<|-0.021|<|+0.031|,所以3号零件质量最好.23.已知a,b,c为有理数,且它们在数轴上的位置如图所示.(1)试判断a,b,c的正负性;(2)在数轴上标出a,b,c的相反数的位置;(3)根据数轴化简:①|a|=___-a____;②|b|=_b___;③|c|=__c__;④|-a|=___-a____;⑤|-b|=__b__;⑥|-c|=__c__.(4)若|a|=5.5,|b|=2.5,|c|=5,求a,b,c的值.解:(1)a为负,b为正,c为正(2)-c-b-a(4)a=-5.5,b=2.5,c=524. 已知|a|=5,|b|=3,且a>0,b>0,求a+b的值.解:因为|a|=5,|b|=3,且a> 0,b>0,所以a=5,b=3.所以a+b=5+3=8.。
2019—2020年人教版七年级数学第一学期《有理数》单元测试题一及答案.docx

第一章有理数单元测试题(一)一、选择题(每小题3分,共30分)1.下列各对数中,互为倒数的是( )A.3和-3 B.1和-1 C.0.5和50 D.2和2.两个有理数的和与积都是负数,那么这两个有理数()。
A.都是负数B.一正一负,其中绝对值较小的是正数C.都是正数D.一正一负,其中绝对值较小的是负数3.月球表面白天的温度可达123℃,夜晚可降到-233℃,那么月球表面昼夜的温差为()。
A.110℃B.-110℃C.356℃D.-356℃4.小宇同学在数轴上表示-3时,由于粗心,将-3画在了它相反数的位置并确定原点,要想把数轴画正确,原点应( )A.向左移6个单位B.向右移6个单位C.向左移3个单位D.向右移3个单位5.恩施生态旅游初步形成,2011年全年实现旅游综合收入9 086 600 000元,数9 086 600 000用科学记数法精确到千万是( )A.9.09×109B.9.087×1010C.9.08×109D.9.09×1086.下列说法正确的是( )A.带有负号的数是负数B.零既不是正数也不是负数C.若-a是负数,则a不一定是正数D.绝对值是本身的数是07.冰箱冷冻室的温度是-6 ℃,此时房屋内的温度为20 ℃,则房屋内的温度比冰箱冷冻室的温度高( ) A.26 ℃B.14 ℃C.-26 ℃D.-14 ℃8.对于式子-(-8),下列说法:①可表示-8的相反数;②可表示-1与-8的积;③结果是8;④与(-2)3相等.其中错误的是( )A .②③④B .②④C .④D .①②③④ 9.在(-2)2,-(-3),-|-4|,-23,0中,负数共有( ) A .3个 B .2个 C .1个 D .0个 10.下列运算中错误的是( )A .(-6)×(-5)×(-3)×(-2)=180B .(-938)÷(-3)=-278C .(-3)×13÷(-13)×3=9D .12×(13-14)=1二、填空题(每小题2分,共20分)11.计算(-3)+4= ;3-(-3)= .12.31的倒数是 ;-0.5的倒数是 ;|-2|的相反数是 . 13.计算:(-2)×(-3)= ; 12÷(-6)= .(-4)÷______=-8;______÷(-31)=3. 14.下列5个数:-3,-2,1,4,5中取出三个不同的数,其和最大是 ,其积最大是 。
2019—2020年人教版七年级上学期数学《有理数》综合试题及解析(基础提分试卷).docx

《第1章有理数》一、填空题1.在﹣5,0,﹣(﹣1.5),﹣|﹣5|,2,,24中,整数是,正数是.2.若a>0,|a|= ;若a<0,|a|= ;若a=0,|a|= .3.用“>”“<”“=”填空①﹣|﹣4| ﹣(﹣4);②(﹣)|﹣|;③|﹣0.5| (﹣).4.数轴上表示﹣5和表示﹣14的两点之间的距离是;﹣1的倒数的绝对值是.5.2003+(﹣1)2004= .6.填空:|﹣1+|+|﹣+|+|﹣+|+┉+|﹣+|= .7.用科学记数法表示下列各数.(1)320100= ;(2)﹣10200= .8.在(﹣)2中的底数是,指数是.9.有一次小明在做24点游戏时抽到的四张牌分别是3、4、1、7,他苦思不得其解,相信聪明的你一定能帮他解除困难,请写出一个成功的算式:=24.10.如图是一个数值转换机,若输入的x为﹣5,则输出的结果是.11.观察:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6651…,根据以上的规律,判断数字32005的个位数字是.二、选择题12.大于﹣3.5,小于2.5的整数共有()个.A.6 B.5 C.4 D.313.下列算式正确的是()A.(﹣14)﹣5=﹣9 B.0﹣(﹣3)=3 C.(﹣3)﹣(﹣3)=﹣6 D.|5﹣3|=﹣(5﹣3)14.下列说法错误的个数是()①一个数的绝对值的相反数一定是负数;②只有负数的绝对值是它的相反数;③正数和零的绝对值都等于它本身;④互为相反数的两个数的绝对值相等.A.3个B.2个C.1个D.0个15.已知字母a、b表示有理数,如果a+b=0,则下列说法正确的是()A.a、b中一定有一个是负数B.a、b都为0C.a与b不可能相等D.a与b的绝对值相等16.乘积为﹣1的两个数叫做互为负倒数,则﹣2的负倒数是()A.﹣2 B.C.D.217.下列各式的结论,成立的是()A.若|m|=|n|,则m=n B.若m>n,则m|>|n|C.若|m|>|n|,则m>n D.若m<n<0,则|m|>|n|18.如果a+b<0,并且ab>0,那么()A.a<0,b<0 B.a>0,b>0 C.a<0,b>0 D.a>0,b<019.有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b>020.下列各组数中,数值相等的是()A.﹣23和(﹣2)3B.32和23C.﹣32和(﹣3)2D.﹣(3×2)2和﹣3×22三、解答题21.(1)(﹣5)+2+(﹣)+(﹣2)(2)(﹣+﹣)×|﹣24|(3)8﹣23÷(﹣4)3﹣(4)(﹣5)×6+(﹣125)÷(﹣5)(5)﹣64÷3×(﹣)(6)1﹣×[3×(﹣)2﹣(﹣1)3]+÷(﹣)2.22.已知(a﹣4)2+|a+b|=0,求(﹣a)2+(﹣b)3的值.23.某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10.(1)这10名同学中最高分是多少?最低分是多少?(2)10名同学中,低于80分的所占的百分比是多少?(3)10名同学的平均成绩是多少?24.规定一种运算:=ad﹣bc,例如=2×5﹣3×4=﹣2,请你按照这种运算的规定,计算和的值.25.已知有理数a、b、c在数轴上的位置如图所示,且|a|=|b|.①求a5+b5的值;②化简|a|﹣|a+b|﹣|c﹣a|+|c﹣b|+|ac|﹣|﹣2b|.26.一张长方形桌子可坐6人,按下图方式将桌子拼在一起.(1)2张桌子拼在一起可坐多少人?三张桌子呢?n张桌子呢?(2)一家餐厅有40张这样的长方形桌子,按照上图的方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐多少人?(3)在(2)中,若改为每8张桌子拼成1张大桌子,则共可坐多少人?《第1章有理数》参考答案与试题解析一、填空题1.在﹣5,0,﹣(﹣1.5),﹣|﹣5|,2,,24中,整数是0,﹣|﹣5|,24,正数是﹣(﹣1.5),2,,24.【考点】绝对值;有理数;相反数.【分析】先化简各数,再根据整数的定义,正数的定义进行分类即可求解.【解答】解:∵﹣(﹣1.5)=1.5,﹣|﹣5|=﹣5,24=16,∴在﹣5,0,﹣(﹣1.5),﹣|﹣5|,2,,24中,整数是0,﹣|﹣5|,24,正数是﹣(﹣1.5),2,,24.故答案为:0,﹣|﹣5|,24;﹣(﹣1.5),2,,24.【点评】此题考查了绝对值,有理数,相反数,关键是化简各数.2.若a>0,|a|= a ;若a<0,|a|= ﹣a ;若a=0,|a|= a .【考点】绝对值.【分析】根据绝对值实数轴上的点到原点的距离,可得答案.【解答】解:若a>0,|a|=a;若a<0,|a|=﹣a;若a=0,|a|=a;故答案为:a,﹣a a.【点评】本题考查了绝对值,非负数的绝对值等于它本身,负数的绝对值等于他的相反数.3.用“>”“<”“=”填空①﹣|﹣4| <﹣(﹣4);②(﹣)<|﹣|;③|﹣0.5| >(﹣).【考点】有理数大小比较.【分析】①、②先去括号及绝对值符号,再比较大小即可;③先去括号,再比较大小即可.【解答】解:①∵﹣|﹣4|=﹣4<0,﹣(﹣4)=4>0,∴﹣|﹣4|<﹣(﹣4).故答案为:<;②∵﹣<0,|﹣|>0,∴﹣<|﹣|.故答案为:<;③∵|﹣0.5|=0.5>0,(﹣)=﹣<0,∴|﹣0.5|>﹣.故答案为:>.【点评】本题考查的是有理数的大小比较,熟知绝对值的性质及正数与负数比较大小的法则是解答此题的关键.4.数轴上表示﹣5和表示﹣14的两点之间的距离是9 ;﹣1的倒数的绝对值是.【考点】倒数;数轴;绝对值.【分析】根据数轴上两点间的距离是大数减小数,乘积为1的两个数互为倒数,可得答案.【解答】解:数轴上表示﹣5和表示﹣14的两点之间的距离是﹣5﹣(﹣14)=﹣5+14=9,﹣1的倒数是﹣,倒数的绝对值是,故答案为:9,.【点评】本题考查了倒数,先求倒数,再求绝对值,把带分数化成假分数是求倒数的关键.5.(﹣1)2003+(﹣1)2004= 0 .【考点】有理数的乘方.【专题】计算题.【分析】原式利用﹣1的奇次幂为﹣1,偶次幂为1计算即可得到结果.【解答】解:原式=﹣1+1=0.故答案为:0【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.6.填空:|﹣1+|+|﹣+|+|﹣+|+┉+|﹣+|= .【考点】有理数的加减混合运算;绝对值.【专题】计算题;实数.【分析】原式利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=1﹣+﹣+﹣+…+﹣=1﹣=,故答案为:【点评】此题考查了有理数的加减混合运算,以及绝对值,熟练掌握运算法则是解本题的关键.7.用科学记数法表示下列各数.(1)320100= 3.201×105;(2)﹣10200= ﹣1.02×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:(1)320100=3.201×105;(2)﹣10200=﹣1.02×104.故答案为:3.201×105,﹣1.02×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.在(﹣)2中的底数是﹣,指数是 2 .【考点】有理数的乘方.【专题】计算题.【分析】原式利用幂的定义判断即可得到结果.【解答】解:在(﹣)2中的底数是﹣,指数是2.故答案为:﹣;2【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.9.有一次小明在做24点游戏时抽到的四张牌分别是3、4、1、7,他苦思不得其解,相信聪明的你一定能帮他解除困难,请写出一个成功的算式:3×7+(4﹣1)=24.【考点】有理数的混合运算.【专题】计算题;开放型.【分析】24点游戏的关键是加入任何运算符号和括号,使其运算结果为24即可,答案不唯一.【解答】解:答案不唯一,如:3×7+(4﹣1)=24.【点评】此题考查有理数混合运算的灵活程度,可以提高学生的学习兴趣.10.如图是一个数值转换机,若输入的x为﹣5,则输出的结果是21 .【考点】有理数的乘法.【专题】图表型.【分析】根据转换机的设置,结合有理数的混合运算法则求出即可.【解答】解:如图所示:若输入的x为﹣5,则输出的结果是:(﹣5﹣2)×(﹣3)=﹣7×(﹣3)=21.故答案为:21.【点评】此题主要考查了有理数的混合运算,熟练掌握运算法则是解题关键.11.观察:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6651…,根据以上的规律,判断数字32005的个位数字是 3 .【考点】尾数特征.【专题】规律型;实数.【分析】观察已知结果尾数特征,归纳总结得到一般性规律,确定出所求个位数字即可.【解答】解:根据题意得:结果尾数特征为:3,9,7,1循环,∵2005÷4=501…1,∴数字32005的个位数字是3,故答案为:3【点评】此题考查了尾数特征,弄清题中的规律是解本题的关键.二、选择题12.大于﹣3.5,小于2.5的整数共有()个.A.6 B.5 C.4 D.3【考点】有理数大小比较.【分析】求出大于﹣3.5,小于2.5的整数,然后可求解.【解答】解:大于﹣3.5,小于2.5的整数有﹣3,﹣2,﹣1,0,1,2,所以共有6个.故答案为A.【点评】比较有理数的大小的方法:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.13.下列算式正确的是()A.(﹣14)﹣5=﹣9 B.0﹣(﹣3)=3 C.(﹣3)﹣(﹣3)=﹣6 D.|5﹣3|=﹣(5﹣3)【考点】有理数的减法;绝对值.【分析】根据有理数的减法运算法则和绝对值的性质对各选项分析判断利用排除法求解.【解答】解:A、(﹣14)﹣5=﹣19,故本选项错误;B、0﹣(﹣3)=0+3=3,故本选项正确;C、(﹣3)﹣(﹣3)=﹣3+3=0,故本选项错误;D、|5﹣3|=2,﹣(5﹣3)=﹣2,故本选项错误.故选B.【点评】本题考查了有理数的减法,绝对值的性质,熟记运算法则和性质并准确计算是解题的关键.14.下列说法错误的个数是()①一个数的绝对值的相反数一定是负数;②只有负数的绝对值是它的相反数;③正数和零的绝对值都等于它本身;④互为相反数的两个数的绝对值相等.A.3个B.2个C.1个D.0个【考点】绝对值.【分析】①一个数的绝对值的相反数一定是负数.反例:当这个数是0时,结果还是0不是负数,所以错误;②只有负数的绝对值是它的相反数.反例:当这个数是0时,结果还是0也是0的相反数,所以错误;③正数和零的绝对值都等于它本身.由绝对值性质可知,正确;④互为相反数的两个数的绝对值相等.正确.所以错误的有2个.【解答】解:根据绝对值的性质和相反数的概念,得①,②错误;③,④正确.故选B.【点评】主要考查了绝对值,相反数的性质和定义.本题中要特别注意一些特殊的数字,如0,有时该数是最后的反例.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;15.已知字母a、b表示有理数,如果a+b=0,则下列说法正确的是()A.a、b中一定有一个是负数B.a、b都为0C.a与b不可能相等D.a与b的绝对值相等【考点】有理数的加法.【分析】根据互为相反数的两个数相加得0,以及绝对值的性质即可作出判断.【解答】解:∵a+b=0,∴a与b互为相反数,∵互为相反数的两个数的绝对值相等,∴a与b的绝对值相等.故选D.【点评】考查了有理数的加法,关键是熟悉互为相反数的两个数相加得0.16.乘积为﹣1的两个数叫做互为负倒数,则﹣2的负倒数是()A.﹣2 B.C.D.2【考点】倒数.【专题】计算题.【分析】根据负倒数的定义,可得出﹣2的负倒数.【解答】解:与﹣2乘积为﹣1的数为.﹣2的负倒数为.故选C.【点评】此题考查了倒数的知识,解答本题的关键是理解题意,理解负倒数的定义,属于基础题,难度一般.17.下列各式的结论,成立的是()A.若|m|=|n|,则m=n B.若m>n,则m|>|n|C.若|m|>|n|,则m>n D.若m<n<0,则|m|>|n|【考点】绝对值.【分析】如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.【解答】解:A、若m=﹣3,n=3时,|m|=|n|,而m≠n.故本选项错误;B、若m>n>0,则m|>|n|.故本选项错误;C、若|m|>|n|,则m>n>0.故本选项错误;D、若若m<n<0,则|m|>|n|.故本选项正确.故选D.【点评】本题考查了绝对值.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.18.如果a+b<0,并且ab>0,那么()A.a<0,b<0 B.a>0,b>0 C.a<0,b>0 D.a>0,b<0【考点】有理数的乘法;有理数的加法.【专题】计算题.【分析】根据ab大于0,利用同号得正,异号得负的取符号法则得到a与b同号,再由a+b小于0,即可得到a与b都为负数.【解答】解:∵ab>0,∴a与b同号,又a+b<0,则a<0,b<0.故选A.【点评】此题考查了有理数的乘法、加法运算,熟练掌握运算法则是解本题的关键.19.有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b>0【考点】有理数的减法;数轴;有理数的加法.【专题】常规题型.【分析】先根据数轴判断出a、b的正负情况,以及绝对值的大小,然后对各选项分析后利用排除法求解.【解答】解:根据图形可得:a<﹣1,0<b<1,∴|a|>|b|,A、a+b<0,故A选项正确;B、a+b>0,故B选项错误;C、a﹣b<0,故C选项错误;D、a﹣b<0,故D选项错误.故选:A.【点评】本题考查了有理数的加法、减法,根据数轴判断出a、b的情况,以及绝对值的大小是解题的关键.20.下列各组数中,数值相等的是()A.﹣23和(﹣2)3B.32和23C.﹣32和(﹣3)2D.﹣(3×2)2和﹣3×22【考点】有理数的乘方.【分析】根据有理数的乘方运算法则分别计算,进行比较,得出数值相等的选项.【解答】解:A、﹣23=﹣8,(﹣2)3=﹣8,故A选项符合题意;B、32=9,23=8,故B选项不符合题意;C、﹣32=﹣9,(﹣3)2=9,故C选项不符合题意;D、﹣(3×2)2=﹣36,﹣3×22=﹣12,故D选项不符合题意.故选:A.【点评】本题考查有理数的运算能力,解决此类题目的关键是熟记有理数的运算法则.三、解答题21.(1)(﹣5)+2+(﹣)+(﹣2)(2)(﹣+﹣)×|﹣24|(3)8﹣23÷(﹣4)3﹣(4)(﹣5)×6+(﹣125)÷(﹣5)(5)﹣64÷3×(﹣)(6)1﹣×[3×(﹣)2﹣(﹣1)3]+÷(﹣)2.【考点】有理数的混合运算.【分析】(1)先算同分母分数,再算加减法;(2)根据乘法分配律计算;(3)(6)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(4)先算乘除,后算加法;(5)将除法变为乘法,再约分计算即可求解.【解答】解:(1)(﹣5)+2+(﹣)+(﹣2)=﹣5+(2﹣2)+(﹣)=﹣5+0﹣=﹣5;(2)(﹣+﹣)×|﹣24|=(﹣+﹣)×24=﹣×24+×24﹣×24=﹣12+16﹣6=﹣2;(3)8﹣23÷(﹣4)3﹣=8﹣8÷(﹣64)﹣=8+﹣=8;(4)(﹣5)×6+(﹣125)÷(﹣5)=﹣30+25=﹣5;(5)﹣64÷3×(﹣)=﹣64××(﹣)=12;(6)1﹣×[3×(﹣)2﹣(﹣1)3]+÷(﹣)2.=1﹣×[3×﹣(﹣1)]+÷=1﹣×[﹣(﹣1)]+1=1﹣×+1=1﹣+1=.【点评】考查了有理数的混合运算,有理数混合运算的四种运算技巧:1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算. 2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解. 3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算. 4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.22.已知(a ﹣4)2+|a+b|=0,求(﹣a )2+(﹣b )3的值.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a ﹣4=0,a+b=0,解得a=4,b=﹣4,所以,(﹣a )2+(﹣b )3=(﹣4)2+[﹣(﹣4)]3=16+64=80.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.23.某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10.(1)这10名同学中最高分是多少?最低分是多少?(2)10名同学中,低于80分的所占的百分比是多少?(3)10名同学的平均成绩是多少?【考点】有理数的除法;正数和负数.【专题】应用题.【分析】(1)根据题意分别让80分加上记录结果中最大的数就是最高分,加上最小数就是最低分;(2)共有5个负数,即不足80分的共5人,计算百分比即可;(3)直接让80加上记录结果的平均数即可求算平均成绩.【解答】解:(1)最高分是80+12=92分,最低分是80﹣10=70分;(2)低于80分的有5个,所占的百分比是5÷10×100%=50%;(3)平均分是80+(8﹣3+12﹣7﹣10﹣3﹣8+1+0+10)÷10=80分.【点评】主要考查了正负数的基本运算,要掌握数的加法和减法法则,才能准确的计算结果.要注意基本数和记录结果之间的关系.24.规定一种运算:=ad﹣bc,例如=2×5﹣3×4=﹣2,请你按照这种运算的规定,计算和的值.【考点】有理数的混合运算.【专题】新定义.【分析】读懂新运算的运算规则,按新规则解答.【解答】解:=1×0.5﹣(﹣3)×(﹣2)=0.5﹣6=﹣5.5;=(﹣1)2010×(﹣9)﹣4×1.25=﹣9﹣5=﹣14.【点评】此题是定义新运算题型.读懂新运算规则,是关键.25.已知有理数a、b、c在数轴上的位置如图所示,且|a|=|b|.①求a5+b5的值;②化简|a|﹣|a+b|﹣|c﹣a|+|c﹣b|+|ac|﹣|﹣2b|.【考点】数轴;绝对值;有理数的乘方.【专题】计算题.【分析】根据有理数a、b、c在数轴上的位置,可知c<b<0<a,且|a|=|b|,继而即可求出①的值,对②中的式子去绝对值,也即可得出答案.【解答】解:根据有理数a、b、c在数轴上的位置,可知c<b<0<a,且|a|=|b|,则a+b=0,所以有①a5+b5=0;②|a|﹣|a+b|﹣|c﹣a|+|c﹣b|+|ac|﹣|﹣2b|,=a﹣0﹣(a﹣c)+(b﹣c)﹣ac+2b,=3b﹣ac.【点评】本题考查了数轴,绝对值,有理数的乘方的知识,注意要会根据数在数轴上的位置判断其符号以及组成的一些代数式的符号.同时注意把一个代数式看作一个整体.26.一张长方形桌子可坐6人,按下图方式将桌子拼在一起.(1)2张桌子拼在一起可坐多少人?三张桌子呢?n张桌子呢?(2)一家餐厅有40张这样的长方形桌子,按照上图的方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐多少人?(3)在(2)中,若改为每8张桌子拼成1张大桌子,则共可坐多少人?【考点】规律型:图形的变化类.【专题】规律型.【分析】(1)根据所给的图,正确数出即可.在数的过程中,能够发现多一张桌子多2个人,根据这一规律用字母表示即可;(2)结合(1)中的规律,先求出5张桌子放在一起可以坐的人数,然后计算出40张桌子拼成8张大桌子所坐的总人数;(3)结合(1)中的规律,先求出8张桌子放在一起可以坐的人数,然后计算出40张桌子拼成5张大桌子所坐的总人数.【解答】解:(1)2张桌子拼在一起可坐2×2+4=8人,3张桌子拼在一起可坐2×3+4=10人,那么n张桌子拼在一起可坐(4+2n)人;(2)∵每5张桌子拼在一起,40张可拼40÷5=8张大桌子,再利用字母公式,得出40张大桌子共坐8×(4+2×5)=112人;(3)∵每8张桌子拼成1张大桌子,40张可拼40÷8=5张大桌子,再利用字母公式,得出40张大桌子共坐5×(4+2×8)=100人.【点评】本题考查规律型中的图形变化问题,此类题一定要结合图形发现规律:多一张桌子多2个人.把这一规律运用字母表示出来即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年初一有理数提高练习题及答案
一、选择题
1、已知|a|=2,|b|=3,且在数轴上表示有理数b的点在a的左边,则a﹣b的值为()
2、下列说法正确的是()
3、如果a和2b互为相反数,且b≠0,那么a的倒数是()
A. B. C. D.
4、如下图,数轴的单位长度为1.如果点A,B表示的数的绝对值相等,那么点A表示的数是()
A.-4 B.-2 C.0 D.4
5、如果与1互为相反数,则等于()
A.2 B. C.1 D.
6、已知a,b是有理数,若a在数轴上的对应点的位置如图所示,,有以下
结论:①;②;③;④.
则所有正确的结论是()
A.①,④
B. ①,③
C. ②,③
D. ②,④
7、下列说法正确的是 ( )
①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数
④两个数比较,绝对值大的反而小
A ①②
B ①③
C ①②③
D ①②③④
8、下列说法中,正确的是()。
A.是正数 B.-a是负数 C.-是负数 D.不是负数
9、下面的说法中,正确的个数是()
①若a+b=0,则|a|=|b| ②若|a|=a,则a>0
③若|a|=|b|,则a=b ④若a为有理数,则a2=(-a)2
A.1个
B.2个
C.3个
D.4个
10、在一次智力竞赛中,主持人问了这样的一道题目:“是最小的正整数,是最大的负整数的相反数,是绝对值最小的有理数,请问:、、三数之和为多少?”你能回答主持人的问题吗?其和应为()
A、-1
B、0
C、1
D、2
11、若,则的大小关系是 ( ).
A. B.
C.D.
12、有理数a、b、c、d在数轴上的位置如图1所示,下列结论中错误的是( )
图1
A.a+b<0
B.c+d>0
C.|a+c|=a+c
D.|b+d|=b+d
13、如图,、、在数轴上的位置如图所示,
则。
14、对于有理数、,如果,则下列各式成立的是()
A.B.且
C.且 D.且
15、a,b是有理数,它们在数轴上的对应点的位置如下图所示:
把a,-a,b,-b按照从小到大的顺序排列 ( )
A -b<-a<a<b
B -a<-b<a<b
C -b<a<-a<b
D -b<b<-a<a
二、填空题
16、如果|a-2|=0,|b|=3,求a+b的值___________.
17、绝对值不大于10的所有整数的和等于_____,绝对值小于5的所有负整数的和为_______.
18、在数轴上,若A点表示数,点B表示数-5,A、B两点之间的距离为7,则_______________.
19、已知:=0,则的值为 .;
20、如果m__ __,
21、设>0,<0,且,用“<”号把、-、、-连接起来 .
22、小明在写作业时不慎将一滴墨水滴在数轴上,根据图的数值,判断墨迹盖住的整数共有______个.
23、用“”与“”表示一种法则:(a b)= -b,(a b)= -a,如(23)= -3,
则.
24、若0<a<1,则a,a2,的大小关系是 .
25、水位上升用正数表示,水位下降用负数表示,如图,水面从原来的位置到第二次变化后的位置,其变化值是
_____________________________.
三、简答题
26、已知│a-3│+│b-4│=0,求的值.
27、如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表
示的数是,已知点A,B是数轴上的点,请参照下图并思考。
(1)如果点A表示数,将点A向右移动7个单位长度,那么终点B表示的数是_______,A,B两点间的距离是________.
(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是________,A,B两点间的距离为________.
(3)如果点A表示数,将A点向右移动2008个单位长度,再向左移动2009个单位长度,那么终点B表示的数是________,A,B两点间的距离是________.
28、若|a|=a,|b|=b,|c|=-c,|d|=-d,且无一个数为0,还满足|a|>|b|>|c|>|d|,请把a、b、c、d四个数从小到大排列.
29、分类讨论是一种重要的数学方法,如在化简时,可以这样分类:当a>0时,;当a=0时,;
当a<0时,.用这种方法解决下列问题:
(1)当a=5时,求的值.
(2)当a=-2时,求的值.
(3)若有理数a不等于零,求的值.
(4)若有理数a、b均不等于零,试求的值.
30、阅读与探究:我们知道分数写为小数即,反之,无限循环小数写成分数即.一般地,任何一个无限
循环小数都可以写成分数形式.现在就以为例进行讨论:设:,由:…,得:…,
…,
于是:……,即:,解方程得:,于是得:.
请仿照上述例题完成下列各题:
(1)请你把无限循环小数写成分数,即.
(2)你能化无限循环小数为分数吗?请完成你的探究过程.
参考答案
一、选择题
1、D
2、D
3、A 解析:因为和互为相反数,所以,故的倒数是.
4、B 解析:设原点为O,是AB的中点,则OA=AB=2,故点A表示的数是-2.
5、C
6、A
7、A;
8、 D
9、B
10、D;
11、B(
12、C
13、0
14、D
15、C
二、填空题
16、5或-1
17、0 -10
18、2或-12;
19、3.5
20、m < 0;
21、b<-a<a<-b
22、9
23、2011
24、
25、-8米
三、简答题
26、解:由│a-3│+│b-4│=0,得a-3=0且b-4=0,所以a=3,b=4,=.
27、(1)4,7 (2)1,2 (3),1
28、c<d<b<a
29、(1)当a=5时,,∴. (2分)
(2)当a=-2时,,∴. (4分)(3)当a>0时,=1. (5分)当a<0时,=-1. (6分)
(4)当a>0,b>0时,=1+1=2. (7分)
当a>0,b<0时,=1+(-1)=0. (8分)
当a<0,b>0时,=(-1)+1=0. (9分)
当a<0,b<0时,=(-1)+(-1)=-2.(10分)∴的值为2或0或-2.
30、(1)(2)得:。