七年级数学乘法公式测试题
七年级数学下册 2.2.3 运用乘法公式进行计算习题 湘教版(2021年整理)

2017春七年级数学下册2.2.3 运用乘法公式进行计算习题(新版)湘教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017春七年级数学下册2.2.3 运用乘法公式进行计算习题(新版)湘教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017春七年级数学下册2.2.3 运用乘法公式进行计算习题(新版)湘教版的全部内容。
2。
2.3 运用乘法公式进行计算基础题知识点1 运用乘法公式进行计算1.运用公式(a+b)(a-b)=a2-b2计算(a+b-1)(a-b+1),下列变形正确的是(C) A.[a-(b+1)]2B.[a+(b+1)]2C.[a-(b-1)][a+(b-1)]D.[(a-b)+1][(a-b)-1]2.计算(-a+1)(a+1)(a2+1)的结果是(D)A.a4-1 B.a4+1C.a4+2a2+1 D.1-a43.计算(x-y+1)(x+y-1)的结果是(D)A.x2-2xy+y2-1 B.x2-y2-2y-1C.x2+y2-1 D.x2-y2+2y-14.计算(a+1)2(a-1)2的结果是(D)A.a4-1 B.a4+1C.a4+2a2+1 D.a4-2a2+15.若(a-b-c)·M=(a-c)2-b2,则M=a+b-c.6.计算:(1)(x+2y)(x2-4y2)(x-2y);解:原式=[(x+2y)(x-2y)](x2-4y2)=(x2-4y2)(x2-4y2)=x4-8x2y2+16y4.(2)(a+b-3)(a-b+3);解:原式=[a+(b-3)][a-(b-3)]=a2-(b-3)2=a2-(b2-6b+9)=a2-b2+6b-9。
苏科版七年级数学下册 乘法公式优生辅导测评(Word版含答案)

苏科版七年级数学下册《9-4乘法公式》优生辅导测评(附答案)一.选择题(共8小题,满分40分)1.(2a﹣m)2=4a2+2a+,则m=()A.B.C.D.2.已知多项式4x2﹣2(m+1)x+1是完全平方式,则m的值为()A.﹣3或1B.﹣3C.1D.3或﹣13.已知a﹣b=2,a2+b2=20,则ab值是()A.﹣8B.12C.8D.94.已知(x﹣1)2=2,则代数式x2﹣2x+5的值为()A.4B.5C.6D.75.已知m﹣n=3,则m2﹣n2﹣6n的值是()A.7B.8C.9D.106.若n满足(n﹣2021)2+(2022﹣n)2=1,则(n﹣2021)(2022﹣n)的值为()A.﹣1B.0C.D.17.如图,将长方形ABCD的各边向外作正方形,若四个正方形周长之和为56,面积之和为58,则长方形ABCD的面积为()A.98B.49C.20D.108.如图,大正方形与小正方形的面积之差是40,则阴影部分的面积是()A.20B.30C.40D.60二.填空题(共8小题,满分40分)9.若a2﹣b2=6,a+b=2,则a﹣b=.10.已知(x+y)2=2,(x﹣y)2=8,则x2+y2=.11.若x2﹣(m﹣1)x+49是完全平方式,则实数m=.12.一个正方形的边长增加3,它的面积就增加39,这个正方形的边长是.13.现有甲、乙、丙三种不同的正方形或长方形纸片若干张(边长如图).要用这三种纸片无重合无缝隙拼接成一个大正方形,先取甲纸片1张,乙纸片4张,还需取丙纸片张.14.计算(x+y﹣z)(x﹣y+z)=.15.已知:x+y=0.34,x+3y=0.86,则x2+4xy+4y2=.16.(1)已知x+y=4,xy=3,则x2+y2的值为.(2)已知(x+y)2=25,x2+y2=17,则(x﹣y)2的值为.(3)已知x满足(x﹣2020)2+(2022﹣x)2=12,则(x﹣2021)2的值为.三.解答题(共5小题,满分40分)17.计算:(m﹣3)(m+3)﹣(m﹣3)2.18.(1)如图1所示,若大正方形的边长为a,小正方形的边长为b,则阴影部分的面积是;若将图1中的阴影部分裁剪下来,重新拼成如图2所示的一个长方形,则它的面积是;(2)由(1)可以得到一个公式:;(3)利用你得到的公式计算:20212﹣2022×2020.19.计算:(x﹣2y+3)(x+2y﹣3).20.数学活动课上,老师准备了图1中三种不同大小的正方形与长方形,拼成了一个如图2所示的正方形.(1)请用两种不同的方法表示图2中阴影部分的面积和.方法1:;方法2:.(2)请你直接写出三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知m+n=5,m2+n2=20,求mn和(m﹣n)2的值;②已知(x﹣2021)2+(x﹣2023)2=34,求(x﹣2022)2的值.21.从边长为a的正方形中减掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(2)运用你从(1)写出的等式,完成下列各题:①已知:a﹣b=3,a2﹣b2=21,求a+b的值;②计算:.参考答案一.选择题(共8小题,满分40分)1.解:∵(2a﹣m)2=4a2﹣4ma+m2,(2a﹣m)2=4a2+2a+,∴4a2﹣4ma+m2=4a2+2a+,∴﹣4m=2,解得:m=﹣,故选:D.2.解:∵4x2﹣2(m+1)x+1是完全平方式,∴﹣2(m+1)x=±2•2x•1,解得:m=﹣3或1.故选:A.3.解:∵a﹣b=2,∴(a﹣b)2=4,∴a2﹣2ab+b2=4,∴a2+b2=20,∴20﹣2ab=4,∴ab=8,故选:C.4.解:∵(x﹣1)2=2,∴x2﹣2x+1=2,∴x2﹣2x=1,∴原式=1+5=6,故选:C.5.解:∵m﹣n=3,∴m2=(n+3)2,∴m2=n2+6n+9,∴m2﹣n2﹣6n=9,故选:C.6.解:设n﹣2021=x,2022﹣n=y,∴x+y=n﹣2021+2022﹣n=1,∵(n﹣2021)2+(2022﹣n)2=1,∴x2+y2=1,∵x+y=1,∴(x+y)2=1,∴x2+2xy+y2=1,∴xy=0,∴(n﹣2021)(2022﹣n)=0,故选:B.7.解:设AB=DC=x,AD=BC=y,由题意得:化简得:将①两边平方再减去②得:2xy=20∴xy=10故选:D.8.解:设大正方形的边长为a,小正方形的边长为b,∵大正方形与小正方形的面积之差是40,∴a2﹣b2=40,由正方形的性质得:BC⊥AB,BD⊥AB,BC=AB=a,BD=BE=b,∴AE=AB﹣BE=a﹣b,∴阴影部分的面积=S△ACE+S△AED=AE•BC+AE•BD=AE•(BC+BD)=(a﹣b)(a+b)=(a2﹣b2)=×40=20,即阴影部分的面积是20.故选:A.二.填空题(共8小题,满分40分)9.解:∵a2﹣b2=6,∴(a+b)(a﹣b)=6,∵a+b=2,∴a﹣b=3,故答案为:3.10.解:∵(x+y)2=2,(x﹣y)2=8,∴x2+2xy+y2=2①,x2﹣2xy+y2=8②,①+②得:2(x2+y2)=10,∴x2+y2=5.故答案为:5.11.解:∵x2﹣(m﹣1)x+49是完全平方式,∴﹣(m﹣1)=±14,解得:m=15或﹣13.故答案为:15或﹣13.12.解:设原正方形的边长为a,则变化后的正方形的边长为a+3,由题意得,(a+3)2﹣a2=39,解得a=5,故答案为:5.13.解:∵a2+4ab+4b2=(a+2b)2,∴还需取丙纸片4张.故答案为:4.14.解:(x+y﹣z)(x﹣y+z)=[x+(y﹣z)][x﹣(y﹣z)]=x2﹣(y﹣z)2=x2﹣y2+2yz﹣z2.故答案为:x2﹣y2+2yz﹣z2.15.解:∵x+y=0.34,x+3y=0.86,∴2x+4y=1.2,即x+2y=0.6,则x2+4xy+4y2=(x+2y)2=0.36.故答案为:0.36.16.解:(1)∵x+y=4,xy=3,∴x2+y2=(x+y)2﹣2xy=16﹣6=10.故答案为:10;(2)∵(x+y)2=25,x2+y2=17,∴x2+y2+2xy﹣(x2+y2)=8,∴xy=4,∴(x﹣y)2=x2+y2﹣2xy=17﹣8=9.故答案为:9;(3)∵(x﹣2020)2+(x﹣2022)2=12,∴[(x﹣2021)+1]2+[(x﹣2021)﹣1]2=12,∴(x﹣2021)2+2(x﹣2021)+1+(x﹣2021)2﹣2(x﹣2021)+1=12,∴(x﹣2021)2=5.故答案为:5.三.解答题(共5小题,满分40分)17.解:原式=m2﹣9﹣(m2﹣6m+9)=m2﹣9﹣m2+6m﹣9=6m﹣18.18.解:(1)图1中阴影部分的面积等于两个正方形的面积差,即a2﹣b2;拼成的图2的长方形的长为(a+b),宽为(a﹣b),因此长方形的面积为(a+b)(a﹣b).故答案为:a2﹣b2;(a+b)(a﹣b);(2)由(1)中两种方法表示阴影部分的面积可得a2﹣b2=(a+b)(a﹣b).故答案为:a2﹣b2=(a+b)(a﹣b);(3)原式=20212﹣(2021+1)×(2021﹣1)=20212﹣(20212﹣1)=20212﹣20212+1=1.19.解:原式=x2﹣(2y﹣3)2=x2﹣(4y2﹣12y+9)=x2﹣4y2+12y﹣9.20.解:(1)阴影两部分求和为a2+b2,用总面积减去空白部分面积为(a+b)2﹣2ab,故答案为:a2+b2,(a+b)2﹣2ab;(2)由题意得,a2+b2=(a+b)2﹣2ab;(3)①由(2)题结论a2+b2=(a+b)2﹣2ab可得ab=,∴m+n=5,m2+n2=20时,mn===,(m﹣n)2=m2﹣2mn+n2;=20﹣2×=20﹣5=15;②设a=x﹣2021,b=x﹣2023,可得a+b=(x﹣2021)+(x﹣2023)=x﹣2021+x﹣2023=2x﹣4044=2(x﹣2022),由(2)题结论a2+b2=(a+b)2﹣2ab可得,(a+b)2=a2+2ab+b2,又∵(a﹣b)2=[(x﹣2021)﹣(x﹣2023)]2=22=4,且由(a﹣b)2=a2﹣2ab+b2,可得2ab=(a2+b2)﹣(a﹣b)2=(x﹣2021)2+(x﹣2023)2﹣[(x﹣2021)﹣(x﹣2023)]2=34﹣4=30,∴(x﹣2022)2=()2====16.21.解:(1)图1剩余部分的面积为a2﹣b2,图2的面积为(a+b)(a﹣b),二者相等,从而能验证的等式为:a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2=(a+b)(a﹣b);(2)①∵a﹣b=3,a2﹣b2=21,a2﹣b2=(a+b)(a﹣b),∴21=(a+b)×3,∴a+b=7;②(1﹣)×(1﹣)×(1﹣)×…×(1﹣)×(1﹣)=(1﹣)(1+)(1﹣)(1+)(1﹣)(1+)×…×(1﹣)(1+)(1﹣)(1+)=××××××…××××=×=.。
苏科版七年级数学下册 乘法公式同步强化训练(三)(Word版含答案)

苏科版七年级数学下《9.4乘法公式》同步强化训练(三)(时间:90分钟满分:120分)一.选择题(共15题;共30分)1.运用完全平方公式(a+b)2=a2+2ab+b2计算(x+)2,则公式中的2ab是()A. x B.x C.2x D.4x2.不论a、b取何有理数,a2+b2-2a-4b+5的值总是 ( )A.负数 B.零 C.正数 D.非负数3.如图,能根据图形中的面积说明的乘法公式是()A.(a+b)(a﹣b)=a2﹣b2 B.(a+b)2=a2+2ab+b2C.(a﹣b)=a2﹣2ab+b2 D.(x+p)(x+q)=x2+(p+q)x+pq第3题图第4题图第5题图4.如图1,在边长为a的正方形中剪去一个边长为b的小正形(a>b),把剩下部分拼成一个梯形(如图2),利用这两幅图形面积,可以验证的公式是()A.a2+b2=(a+b)(a﹣b)B.a2﹣b2=(a+b)(a﹣b)C.(a+b)2=a2+2ab+b2D.(a﹣b)2=a2﹣2ab+b25.如图①是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四个形状和大小都一样的小长方形,然后按图②所示的方式拼成一个正方形,则中间空白部分的面积是( )A.2ab B.(a+b)2 C.(a-b)2 D.a2-b26.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式.下列三个代数式:①(a﹣b)2;②(2a﹣b)(2a+b);③a(a+b).其中是完全对称式的是() A.③B.①③ C.②③ D.①7.已知x2+2(m﹣1)x+9是一个完全平方式,则m的值为()A.4 B.4或﹣2 C.±4 D.﹣28.若a+b=6,ab=4,则a2+4ab+b2的值为()A.40 B.44 C.48 D.529.计算(2+1)(22+1)(24+1)(28+1)+1的值是()A.1024 B.28+1 C.216+1 D.21610.下列计算正确的是( )A.(x+y)2=x2+y2 B.(x-y)2=x2-2xy-y2C.(x+2y)(x-2y)=x2-2y2 D.(-x+y)2=x2-2xy+y211.若(5a+3b)2=(5a-3b)2+M,则M=( )A.60ab B.30ab C.15ab D.12ab12.若x+y=3,x2-y2=12,则x-y的值为( )A.2 B.3 C.4 D.613.与7x-y2的乘积等于y4-49x2的代数式是( )A.7x+y2 B.7x-y2 C.-7x+y2 D.-7x-y214.下列计算(-7+a+b)(-7-a-b)正确的是( )A.原式=[-(7-a-b)][-(7+a+b)]=72-a2-b2B.原式=[-(7+a)+b][-(7+a)-b]=(7+a)2-b2C.原式=(-7+a+b)[-7-(a+b)]=-72-(a+b)2D.原式=(-7+a+b)[-7-(a+b)]=72-(a+b)215.若x+y+z=-2,xy+yz+xz=1,则x2+y2+z2的值是 ( )A.2 B.3 C.4 D.5二.填空题(共15题;共30分)16.若a -b =2,a -c =1,则(2a -b -c)2+(c -a)2=_______.17.若a 、b 满足a 2+2b 2+1-2ab -2b =0,则a +2b =_______.18.已知m(m -3)-(m 2-3n)=9,那么222m n +-mn 的值为______. 19.已知三角形的三边a 、b 、c 满足a 2+b 2+c 2=ab +bc +ac,试利用乘法公式判断这个三角形是_________三角形.20.已知a 2+b 2=2022,则(a +b)2-2ab 的值为________21.(2+1)(22+1)(24+1)(28+1)(216+1)+1的计算结果的个位数字是_________22.若x 2-4x -1=(x +a)2-b,则|a -b|=________.23.如图,从边长为(a+4)(a >0)的正方形纸片中剪去一个边长为(a+1)的正方形,剩余部分沿虚线又剪拼成一个长方形ABCD (不重叠无缝隙),则长方形ABCD 的周长是 .24、计算的结果是_______ 25.若(7x-a)2=49x 2-bx+9,则|a+b|= .26、 .27.若把代数式x 2-2x-3化为(x-m )2+k 的形式,其中m,k 为常数,则m+k= -3 .28.已知x+y=7且xy=12,则当x <y 时,1x - 1y 的值等于 .29、已知,则的值是 . 30、已知,则_________.三.解答题(共8题 共60分)31.(6分)计算:(1)(2a -3b +c)2. (2)4(a -b)2-(2a +b)(-b +2a)32.(6分)利用乘法公式进行计算:(1)(2x +3y)2(2x -3y)2; (2)(2x -y -3)2.33.(8分)先化简,再求值:(1))1)(1()2(2a a a +-++,其中43-=a。
苏科版数学七年级上册第二章有理数多个有理数相乘(习题)

1.4.2 多个有理数相乘【夯实基础】1.计算:(−1)×(−1)×(−1)×(−1)=_______.A.1B.−4C.4D.−12.若a <c <0<b ,则abc 与0的大小关系是( )A. abc <0B.abc >0C. abc =0D.不确定3.根据所给的程序(如图)计算:当输入的数据为−23时,输出的结果是____.4.三个数的积是正数,那么三个数中负数的个数是( ) A.1 B.0或2 C.3 D.1或35.下列说法错误的有( )①几个不等于0的有理数相乘,其积一定不是0;②几个有理数相乘,只要其中有一个因数是0,其积一定是0;③几个非0有理数相乘,积的符号由负因数的个数决定;④三个有理数相乘,积为负数,则这三个数都是负数.A.0个B.1个C.2个D.3个6.绝对值不大于2019的所有整数的积______.7.如果四个不相等的整数a ,b ,c ,d ,它们的积abcd =49,那么a +b +c +d 的值为________.8.若定义新运算:aΔb =(−2)×a ×3×b ,请利用此定义计算:(1Δ2)Δ(−3)=_____.9.三个互不相等的整数的积为15,则这三个数的和的最大值等于_____.10.计算:(1) (-6)×5×; (2)(−5.6)×(−4.2)×217×(−514)−⨯(76)27输入数×(−3) ×5 输出数(3)14×(−16)×(−45)×(−114) (3)(−8)×(−1.25)×(−43)×54(5)(−112)×(−113)×(−114)×(−115)×(−116)【能力提升】11.P 为正整数,现规定P!=P (P −1)(P −2)⋯×2×1.若m!=24,则正整数m =_____.12.计算:(12019−1)×(12018−1)×(12017−1)×⋯×(11000−1)【思维挑战】13.在学习有理数乘法时,李老师和同学们做了这样的游戏,将2020这个数说给第一位同学,第一位同学将它减去它的12的结果告诉第二位同学,第二位同学再将听到的结果减去它的13的结果告诉第三位同学,第三位同学再将听到的结果减去它的14的结果告诉第四位同学,…,照这样的方法直到全班40人全部传完,最后一位同学将听到的结果告诉李老师,你知道最后的结果吗?。
初一数学乘法公式试题

初一数学乘法公式试题1. x2-4x+( )=( )2,( )+2ay+1=( )2.【答案】4,,,【解析】根据完全平方公式即可得到结果。
x2-4x+4=,+2ay+1=【考点】本题考查的是完全平方公式点评:解答本题的关键是熟练掌握完全平方公式:2.计算: .【答案】【解析】化,再根据完全平方公式计算即可。
【考点】题考查的是完全平方公式点评:解答本题的关键是熟练掌握完全平方公式:3.下列各式中计算正确的是()A.B.C.D.【答案】D【解析】根据完全平方公式依次分析即可。
A. ,故本选项错误;B. ,故本选项错误;C. ,故本选项错误;D. ,本选项正确;故选D.【考点】本题考查的是完全平方公式点评:解答本题的关键是熟练掌握完全平方公式:4.设(5a+3b)2=(5a-3b)2+M,则M的值是( )A.30ab B.60ab C.15ab D.12ab【答案】B【解析】根据完全平方公式即可得到结果。
(5a+3b)2=(5a-3b)2+M,,则,故选B.【考点】本题考查的是完全平方公式点评:解答本题的关键是熟练掌握完全平方公式:5.计算:;【答案】【解析】根据完全平方公式即可得到结果。
【考点】本题考查的是完全平方公式点评:解答本题的关键是熟练掌握完全平方公式:6.计算:;【答案】【解析】先根据完全平方公式去括号,再合并同类项即可得到结果。
【考点】本题考查的是完全平方公式,合并同类项点评:解答本题的关键是熟练掌握完全平方公式:7.计算:.【答案】【解析】先根据完全平方公式,多项式乘多项式法则去括号,再合并同类项即可。
【考点】本题考查的是完全平方公式,多项式乘多项式,合并同类项点评:解答本题的关键是熟练掌握完全平方公式:;多项式乘多项式法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.8.若,则的值为.【答案】5【解析】根据完全平方公式即可得到结果。
【考点】本题考查的是完全平方公式点评:解答本题的关键是熟练掌握完全平方公式:时,多项式取得最小值.9.当x=___________________【答案】-1【解析】化,由即可得到结果。
苏科版数学七年级下册_2021最新同步训练:乘法公式-完全平方公式

初中数学苏科版七年级下册9.4 乘法公式——完全平方公式同步训练一、单选题(本大题共10题,每题3分,共30分)1.等于()A. B. C. D.2.下列等式能够成立的是()A. (2x-y)2=4x2-2xy+y2B. (x+y)2=x2+y2C. (a-b)2= a2-ab+b2D. (+x)2= +x23.若代数式x2-6x+b可化为(x-a)2-1,则b-a的值是()A. 5B. -5C. 11D. -114.已知a+b=-5,ab=-4,则a2-ab+b2的值是()A. 37B. 33C. 29D. 215.已知x﹣y=3,xy=1,则x2+y2=()A. 5B. 7C. 9D. 116.若,,则的值为()A. 6B. 7C. 8D. 97.对于任何实数m、n,多项式m2+n2-6m-10n+36的值总是()A. 非负数B. 0C. 大于2D. 不小于28.已知(m 2018)2+(m 2020)234,则(m 2019)2的值为()A. 4B. 8C. 12D. 169.小淇将(2019x+2020)2展开后得到a1x2+b1x+c1;小尧将(2020x﹣2019)2展开后得到a2x2+b2x+c2,若两人计算过程无误,则c1﹣c2的值为()A. 2019B. 2020C. 4039D. 110.已知a=2019x+2018,b=2019x+2019,c=2019x+2020.则多项式a2+b2+c2﹣ab﹣bc﹣ac 的值为()A. 1B. 2C. 3D. 4二、填空题(本大题共9题,每题2分,共18分)11.若a+b=17,ab=60,则(a- b)2=________12.若a2+b2=6,a+b=3,则ab的值为________.13.已知x﹣=6,求x2+ 的值为________.14.已知xy=-3,x+y=-4,则x2-xy+y2的值为________.15.计算:20202﹣4040×2019+20192=________.16.设(a+2b) 2=(a-2b) 2+A,则A=________.17.已知,则的值是________.18.已知关于的二次三项式是完全平方式,则a=________.19.我围古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)“的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为________.三、解答题(本大题共7题,共82分)20.计算:(a+b+c)221.先化简,再计算:(2a+b)(b﹣2a)﹣(a﹣3b)2,其中a=﹣2,b= .22.已知(x+y)2=25,(x﹣y)2=81,求x2+y2和xy的值.23.已知,,求下列各式的值.(1);(2);(3).24. (1)当,时,分别求代数式和的值;(2)当,时,________ (填“ ”,“ ”,“ ”)(3)观察(1)(2)中代探索代数式和有何数量关系,并把探索的结果写出来:________ (填“ ”,“ ”,“ ”)(4)利用你发现的规律,求的值.25.如图1,A纸片是边长为a的正方形,B纸片是边长为b的正方形,C纸片是长为b,宽为a的长方形.现用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积.方法1:________;方法2:________;(2)观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系________;(3)根据(2)题中的等量关系,解决如下问题:若a+b=5,a2+b2=13,求ab的值;26.(阅读理解)“若满足,求的值”.解:设,,则,,(解决问题)(1)若满足,则的值为________;(2)若满足,则的值为________;(3)如图,正方形的边长为,,,长方形的面积是200,四边形和都是正方形,四边形是长方形,求图中阴影部分的面积(结果必须是一个具体的数值).答案解析部分一、单选题1.【答案】B【考点】完全平方公式及运用解:(−a+b)2=a2−2ab+b2.故答案为:B.【分析】根据完全平方式的定义,将(−a+b)2展开即可求解.2.【答案】C【考点】完全平方公式及运用解:A、(2x-y)2=4x2-4xy+y2 ,故A错误;B、(x+y)2=x2+2xy+y2,故C错误;C、(a-b)2=a2-ab+b2,故C正确;D、( +x)2= +2+x2,故D错误;故答案为:C.【分析】根据(a b)2=a22ab+b2逐一判断即可.3.【答案】A【考点】完全平方公式及运用解:由x2-6x+b=x2-6x+9+(b-9)=(x-3)2+(b-9)=(x-a)2-1,所以a=3,b-9=-1,即a=3,b=8,故b-a=5.故选A.【分析】利用配方法可得x2-6x+b=(x-3)2+(b-9),从而可得(x-3)2+(b-9)=(x-a)2-1,继而得出a=3,b-9=-1,求出a、b的值并代入计算即可.4.【答案】A【考点】完全平方公式及运用解:∵a+b=-5,ab=-4,∴a2-ab+b2=(a+b)2-3ab=(-5)2-3×(-4)=37,故答案为:A.【分析】先根据完全平方公式进行变形,再代入求出即可.5.【答案】D【考点】代数式求值,完全平方公式及运用解:∵x﹣y=3,xy=1,∴(x﹣y)2=x2+y2﹣2xy,∴9=x2+y2﹣2,∴x2+y2=11,故答案为:D.【分析】由完全平方公式:(x﹣y)2=x2+y2﹣2xy,然后把x﹣y,xy的值整体代入即可求得答案.6.【答案】A【考点】完全平方公式及运用解:将a﹣b=1两边平方得:(a﹣b)2=a2+b2﹣2ab=1,把a2+b2=13代入得:13﹣2ab=1,解得:ab=6.故答案为:A.【分析】将a﹣b=1两边平方,利用完全平方公式化简,将第一个等式代入计算即可求出ab的值.7.【答案】D【考点】完全平方公式及运用解:m2+n2-6m-10n+36=(m2-6m+9)+(n2-10n+25)+2=(m-3)2+(n-5)2+2≥2故对于任何实数m、n多项式m2+n2-6m-10n+36的值都不小于2.故答案为:D.【分析】将多项式进行变形,整理成含有两个完全平方式的形式,再改写成平方的形式,根据平方的非负性进行解答.8.【答案】D【考点】完全平方公式及运用解:∵(m-2018)2+(m-2020)2=34,∴(m-2019+1)2+(m-2019-1)2=34,∴(m-2019)2+2(m-2019)+1+(m-2019)2-2(m-2019)+1=34,2(m-2019)2+2=34,2(m-2019)2=32,(m-2019)2=16.故答案为:D.【分析】先把(m -2018)2+(m-2020)2=34变形为(m-2019+1)2+(m-2019-1)2=34,把(m-2019)看作一个整体,根据完全平方公式展开,得到关于(m-2019)2的方程,解方程即可求解.9.【答案】C【考点】完全平方公式及运用解:∵(2019x+2020)2展开后得到a1x2+b1x+c1;∴c1=20202,∵(2020x﹣2019)2展开后得到a2x2+b2x+c2,∴c2=20192,∴c1﹣c2=20202﹣20192=(2020+2019)(2020﹣2019)=4039,故答案为:C.【分析】依据小淇将(2019x+2020)2展开后得到a1x2+b1x+c1;小尧将(2020x﹣2019)2展开后得到a2x2+b2x+c2,即可得到c1﹣c2=20202﹣20192,进而得出结论.10.【答案】C【考点】代数式求值,完全平方公式及运用解:∵a=2019x+2018,b=2019x+2019,c=2019x+2020.,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,则原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a2﹣2ab+b2)+(a2﹣2ac+c2)+(b2﹣2bc+c2)]=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=×[1+4+1]=3,故答案为:C.【分析】把已知的式子化成[(a-b)2+(a-c)2+(b-c)2]的形式,然后代入求解.二、填空题11.【答案】49【考点】完全平方公式及运用解:∵,,∴.故答案为:49.【分析】利用完全平分公式的变形公式进行计算即可.12.【答案】【考点】完全平方公式及运用解:由a+b=3两边平方,得a2+2ab+b2=9 ①,a2+b2=6 ②,①﹣②,得2ab=3,两边都除以2,得ab= .故答案为:.【分析】根据完全平方公式,可得a2+2ab+b2=9,再根据等式的性质,可得答案.13.【答案】38【考点】完全平方公式及运用解:将x﹣=6两边平方,可得:,解得:,故答案为:38.【分析】把x﹣=6两边平方后化简整理解答即可.14.【答案】25【考点】完全平方公式及运用解:x2-xy+y2=(x+y)2-3xy=(-4)2-3×(-3)=25.【分析】利用配方将原式变形为(x+y)2-3xy,然后整体代入计算即可.15.【答案】1【考点】完全平方公式及运用解:20202﹣4040×2019+20192=20202﹣2×2020×2019+20192=(2020﹣2019)2=12=1.故答案为:1.【分析】完全平方公式式的应用,a2-2ab+b2=(a-b)2。
湘教版七年级下册数学第2章2.2.3运用乘法公式进行计算习题课件1

能力提升练
12.解方程:2x(x-1)-(x-4)(x+4)=(x+2)2. 解:2x(x-1)-(x-4)(x+4)=2x2-2x-x2+16= x2-2x+16.(x+2)2=x2+4x+4. 故原方程可化为6x=12. 解得x=2.
能力提升练
13.【教材改编题】如果一个正方形的边长增加4厘米,那 么它的面积就增加40平方厘米,这个正方形的边长是 多少? 解:设这个正方形的边长是x厘米, 由题意,得(x+4)2-x2=40, 解得x=3. 答:这个正方形的边长是3厘米.
+312n)+1
能力提升练
=-1-3111+3111+3121+3141+3181+3116… 1+312n+1=-1-321n+1+1=-1+321n+1+1 =321n+1.
【答案】D
能力提升练
11.若x+1x2=9,则x-1x2的值为___5_____. 【点拨】因为x+1x2=x-1x2+4,x+1x2=9, 所以x-1x2=9-4=5.
基础巩固练
(5)【2021·武汉洪山区校级月考】(a-2b-1)(a+2b-1) -(a-2b+1)2.
原式=[(a-1)-2b][(a-1)+2b]-[(a-2b)+1]2 =(a-1)2-(2b)2-(a-2b)2-2(a-2b)-1 =a2-2a+1-4b2-a2+4ab-4b2-2a+4b-1 =-4a-8b2+4ab+4b.
能力提升练
10.【2021·福州仓山区期末】若 …1+312n+1,则 A 的值是(
)
A.0
B.1
1 C.322n
1 D.32n+1
【点拨】A=-23(1+311)(1+312)(1+314)(1+318)(1+3116)…(1
能力提升练
初一数学乘法公式试题

初一数学乘法公式试题1.用字母表示平方差公式为:___________.【答案】(a+b)(a-b)=a2-b2【解析】根据平方差公式即可得到结果。
用字母表示平方差公式为:(a+b)(a-b)=a2-b2.【考点】本题考查的是平方差公式点评:使用平方差公式去括号的关键是要找相同项和相反项,其结果是相同项的平方减去相反项的平方.2.计算:(1)(a+1)(a-1)=_________;(3)(-a+1)(a+1)=________;(3)(-a+1)(a+1)=________;(4)(a+1)(-a-1)=_______.【答案】(1)a2-1;(2)a2-1;(3)1-a2;(4)【解析】根据平方差公式:(a+b)(a-b)=a2-b2,即可得到结果。
(1)(a+1)(a-1)= a2-1;(2)(-a+1)(-a-1)= a2-1;(3)(-a+1)(a+1)=1-a2;(4)(a+1)(-a-1)=-a2-2a-1.【考点】本题考查的是平方差公式点评:使用平方差公式去括号的关键是要找相同项和相反项,其结果是相同项的平方减去相反项的平方.3.(1)(3a-4b)()=9a2-16b2;(2)(4+2x)()=16-4x2;(3)(-7-x)()=49-x2;(4)(-a-3b)(-3b+a)=_______.【答案】(1)3a+4b;(2)4-2x;(3)-7+x;(4)9b2-a2【解析】根据平方差公式:(a+b)(a-b)=a2-b2,依次分析各小题即可得到结果。
(1)(3a-4b)(3a+4b)=9a2-16b2;(2)(4+2x)(4-2x)=16-4x2;(3)(-7-x)(-7+x)=49-x2;(4)(-a-3b)(-3b+a)=9b2-a2.【考点】本题考查的是平方差公式点评:使用平方差公式去括号的关键是要找相同项和相反项,其结果是相同项的平方减去相反项的平方.4.计算(-4x-5y)(5y-4x)的结果是()A.16x2-25y2B.25y2-16x2C.-16x2-25y2D.16x2+25y2【答案】A【解析】根据平方差公式:(a+b)(a-b)=a2-b2,即可得到结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.4乘法公式同步练习
【基础能力训练】
一、平方差公式
1.下列多项式乘法中,可以用平方差公式计算的是()
A.(2x+3y)(2x-1
3
y)B.(x-y)(y-x)
C.(-4a+3b)(3b-4a)D.(a-b-c)(-a-b-c)2.下列计算正确的是()
A.(2y+6)(2y-6)=4y2-6 B.(5y+1
2
)(5y-
1
2
)=25y2-
1
4
C.(2x+3)(2x-3)=2x2-9 D.(-4x+3)(4x-3)=16x2-9 3.判断正误:
(1)(3a-bc)(-bc-3a)=b2c2-9a2()
(2)(x+1
x
)(x-
1
x
)=x2-1 ()
4.(3x-4y)(4y+3x)=(_____)2-(_____)2=_______.
5.(x+1)(x-1)(x2+1)=_______.
6.(2m-3n)(_____)=4m2-9n2
7.(-3x+2y)(_______)=-9x2+4y2
8.计算(a4+b4)(a2+b2)(b-a)(a+b)的结果是()
A.a8-b8B.a6-b6C.b6-a8D.b6-a6
9.化简(a+b)2-(a-b)2的结果是()
A.0 B.-2ab C.2ab D.4ab
10.在下列等式中,A和B应表示什么式子?
(1)(a+b+c)(a-b+c)=(A+B)(A-B)
(2)(x+y-z)(x-y+z)=(A+B)(A-B)
11.为了应用平方差公式计算(2x+y+z)(y-2x-z),下列变形正确的是()A.[2x-(y+z)] 2B.[2x+(y+z)][2x-(y+z)]
C.[y+(2x+z)][y-(2x+z)] D.[z+(2x+y)][z-(2x+y)]
12.计算:(1)(5m-6n)(-6n-5m)(2)(1
2
x2y2+3m)(-3m+
1
2
x2y2)
13.计算:
(1)898×902 (2)303×297 (3)9.9×10.1 (4)30.8×29.2
14.计算:
(1)(x+y)(x-y)+(y-z)(y+z)+(z-x)(z+x)
(2)(3m2+5)(-3m2+5)-m2(7m+8)(7m-8)-(8m)2
二、完全平方公式
15.下列计算正确的是()
A.(x+y)2=x2+y2B.(m-n)2=m2-2mn-n2
C.(a+2)2=a2+2a+4 D.(m-3)2=m2-6m+9
16.已知m≠n,下列等式中计算正确的有()
①(m-n)2=(n-m)2②(m-n)2=-(n-m)2
③(m+n)(m-n)=(-m-n)·(-m+n)④(-m-n)2=-(m-n)2
A.1个B.2个C.3个D.4个
17.下列各式中,计算结果为1-2xy2+x2y4的是()
A.(-1-x2y2)2B.(1-x2y2)2C.(-1+x2y2)2D.(xy2-1)2 18.计算(4a-3b)(-4a-3b)的结果为()
A.16a2-9b2B.-16a2+9b2
C.16a2-24ab+9b2D.-16a-24ab-9b2
19.计算:
(1)(1
4
a-
1
3
b)2(2)(-x2+3y2)2
(3)(-a2-2b)2(4)(0.2x+0.5y)2
20.计算:
(1)198×202 (2)5052
【综合创新训练】
一、创新应用
21.化简求值:4x(x2-2x-1)+x(2x+5)(5-2x),其中x=-1.
22.化简求值:(3x+2y)(3x-2y)-(3x+2y)2+(3x-2y)2,其中x=,y=-1
2
.
23.解方程:(x-3)(x+1)=x(2x+3)-(x2+1)24.解不等式:(x-4)2-(x-3)(x+4)<2(3x+2)
二、巧思妙解
25.1232-124×122
26.
22004
200420052003
-⨯
27.1.23452+0.76552+2.469×0.7655 三、综合测试
28.(-2
3
a+3b)(
2
3
a+3b)(-
2
3
a-3b)(-
2
3
a+3b)
29.(1+a+b)2
30.(m+2n-p)2
31.(3a-b)2-(2a+b)2+5b2
32.已知x+y=4,xy=2,求x2+y2的值.33.已知x2+4x+y2-2y+5=0,求x,y的值.
四、探究学习
观察下面各式规律:
12+(1×2)2+22=(1×2+1)2
22+(2×3)2+32=(2×3+1)2
32+(3×4)2+42=(3×4+1)2
……
写出第n行的式子,并证明你的结论.
答案:
【基础能力训练】
1.D 2.B 3.(1)∨(2)×
4.(3x)2(4y)29x2-16y25.x4-1 6.2m+3n 7.3x+2y 8.C 9.D 10.(1)A代表a+c,B代表b (2)A代表x,B代表y-z
11.C 12.(1)36n2-25m2(2)1
4
x4y4-9m2
13.(1)原式=(900-2)(900+2)=9002-22=810 000-4=809 996 (2)原式=(300+3)(300-3)=3002-32=90 000-9=89 991 (3)原式=(10-0.1)(10+0.1)=102-0.12=100-0.01=99.99 (4)原式=(30+0.8)(30-0.8)=302-0.82=900-0.64=899.36 14.(1)0 (2)25-58m4
15.D 16.B 17.D 18.B
19.(1)
1
16
a2-
1
6
ab+
1
9
b2(2)x4-6x2y2+9y4
(3)a4+4a2b+4b2(4)0.04x2+0.2xy+0.25y2 20.(1)39 996 (2)255 025
【综合创新应用】
21.原式=4x3-8x2-4x+10x2-4x3+25x-10x2=-8x2+21x,当x=-1时,原式=-8-21=-29.
22.原式=9x2-4y2-(9x2+12xy+4y2)+9x2-12xy+4y2 =9x2-4y2-9x2-12xy-4y2+9x2-12xy+4y2
=9x2-24xy-4y2
把x=1
3
,y=-
1
2
代入得4.
23.去括号,得x2+x-3x-3=2x2+3x-x2-1,合并,得x2-2x-3=x2+3x-1,
移项,得x2-2x-x2-3x=-1+3,
合并同类项,得-5x=2,
系数化为1,得x=-25
. 24.去括号,得x 2-8x+16-x 2-4x+3x+12<6x+4,
移项,得x 2-x 2-8x -4x+3x -6x<4-16-12,•
合并同类项,得-15x<-24,系数化为1,得x>85
. 25.原式=1232-(123+1)(123-1)=1232-(1232-12)=1.
26.原式=220042004(20041)(20041)
-+- 2222200420042004(20041)200420041=
=---+=2004. 27.原式=(1.234 5+0.765 5)2=22=4.
28.原式=[(3b )2-(23a )2]×[(-23
a )2-(3
b )2] =(9b 2-49a 2)(49a 2-9b 2)=-(9b 2-49a 2)(9b 2-49
a 2) =-(9
b 2-a 2)2=-81b 4+8a 2b 2-1681
a 4. 29.原式=[1+(a+
b )] 2=1+2(a+b )+(a+b )2=1+2a+2b+a 2+2ab+b 2.
30.原式=[(m+2n )-p] 2=(m+2n )2-2p (m+2n )+p 2=m 2+4mn+4n 2-2pm -4pm+p 2.
31.原式=9a 2-6ab+b 2-4a 2-4ab -b 2+5b 2=5a 2-10ab+5b 2.
32.x 2+y 2=(x+y )2-2xy=42-2×2=12.
33.x 2+4x+y 2-2y+5=0,变形为:(x 2+4x+4)+(y 2-2y+1)=0,
即(x+2)2+(y -1)2=0,又因(•x+2)2与(y -1)2皆是非负数,
所以(x+2)2=0且(y -1)2=0,即x+2=0,y -1=0,解得x=-2,y=1.
【探究学习】
第n 个式子:n 2+[n (n+1)] 2+(n+1)2=[n (n+1)+1] 2
证明:因为左边n 2+[n (n+1)] 2+(n+1)2=n 2+(n 2+n )2+(n+1)2
=(n 2+n )2+n 2+n 2+2n+1=(n 2+n )2+•2(n 2+n )+1=(n 2+n+1)2,
而右边=(n 2+n+1)2,
所以左边=右边,成立.。