我谈学习数学史的心得体会范文
数学史读后感

数学史读后感《数学史》这本书,给我带来了很多的启发和思考。
数学,作为一门抽象的学科,具有独特的魅力和深度,而《数学史》这本书则从历史的角度,全面地展示了数学的演变历程,让我更加深入地了解了数学的本质和价值。
数学是人类智慧的结晶,也是世界上最古老的学科之一。
在《数学史》这本书里,作者从古希腊开始,一直讲述到现代数学的发展,详细介绍了许多伟大的数学家和他们的贡献。
通过阅读,我了解到了毕达哥拉斯定理、欧几里得几何学、埃拉托色尼的筛法、阿拉伯数字的传入、无理数的发现等重要的数学成果和事件。
这些成果不仅引领了数学的发展方向,也对其他科学领域产生了深远的影响。
通过了解数学的历史,我更加明白了数学在人类社会中的不可替代的地位和作用。
值得一提的是,《数学史》这本书不仅介绍了数学的发展历程,同时也展示了数学家们思考问题的过程和方法。
数学家们在解决问题时,经常需要面临各种困难和挑战,但他们从不放弃,不断地努力探索和创新。
他们坚持不懈地追求真理,不为困难和挫折所动摇。
正是这种坚持不懈的精神,使得数学在不断发展的道路上越来越丰富和完善。
对我而言,这种精神是值得我学习和借鉴的。
面对学习中的困难和挑战,我应该保持乐观积极的态度,不放弃自己,并且持续努力,才能取得更好的成果。
通过阅读《数学史》,我也意识到数学的本质是一种思维方式和逻辑思维的训练。
在数学中,我们需要运用严谨的逻辑思维和抽象的概念来解决问题,而这种思维方式是可以将其应用到生活的其他方面的。
在现实生活中,我们也经常需要进行逻辑思考,分析问题的根本原因,从而找到解决问题的有效方法。
数学的学习和应用,不仅可以培养我们的思维习惯和能力,还可以帮助我们提高解决问题的能力。
此外,《数学史》这本书也揭示了数学的美感和哲学价值。
数学不仅仅是一门实用的学科,更是一门追求真理和美的学问。
在数学中,有很多美妙的理论和公式,它们不仅仅是简单的推导和计算,更蕴含着深奥的意义和丰富的内涵。
数学史学习体会范本

数学史学习体会范本数学史是一门既有深厚学问又有广阔视野的学科,通过学习数学史,我深刻地认识到数学的发展历程中的伟大成就和思想方法,对我的数学学习和素养提供了极大的帮助。
在学习数学史的过程中,我受益匪浅,有以下几点感悟。
首先,数学史给我提供了一个鲜活的案例,展示了数学思想的迭代和进化过程。
通过研究古代数学家的贡献,我明白了他们如何从实际问题中发现并发展新的数学思想和方法。
例如,古希腊的毕达哥拉斯定理是通过对直角三角形的研究得出的,而欧几里得几何的基础是从解决农田测量问题开始的。
这些案例使我认识到数学是以解决实际问题为导向的,而不是只是一种抽象的概念。
每个数学思想和方法的产生都有它自身的背景和场景,这为我学习数学提供了很好的指导。
其次,数学史使我了解到数学的发展是一个集体努力的结果,不是个别天才的创造。
虽然我们经常听到像欧拉、高斯、牛顿这样的数学巨匠,但实际上,数学的进步是通过多个数学家的合作和互动取得的。
例如,勾股定理是在古希腊时期由不同数学家提出和证明的,而无理数的发现也是由不同数学家的努力积累而得出的。
这种合作和互动的精神对我产生了深刻的影响,提醒我在学习和解决数学问题时要注重团队合作和交流。
数学的发展需要集体智慧和合作,在此过程中每个人都可以作出自己的贡献。
再次,数学史给我展示了数学思想的多样性和开放性。
数学的发展历程中,出现了很多不同的思想流派和学派,每个学派都有自己独特的思考方式和解决问题的方法。
例如,古希腊的几何学和古印度的代数学都有各自的特点和重要性。
这使我认识到数学并不是固定不变的,而是随着时间和文化的变化而不断变化的。
这也为我提供了更多的思维方式和途径,让我能够从不同的角度来解决问题和思考数学的本质。
最后,数学史给我提供了一个全局的视野,让我认识到数学的重要性和广泛应用的范围。
数学是一门独立发展的学科,也是其他学科的重要基础。
通过学习数学史,我明白了数学对科学、工程、经济等各个领域的重要性和作用。
学习数学史的感受

学习数学史的感受第一篇:学习数学史的感受学习《数学史》的心得体会你知道毕达哥拉斯何许人?你能列举《几何原本》与《九章算术》的不同风格?你能列举几位著名中国籍的数学家?这些问题让我们学了十几年数学的学生不知所答,但随着上学期对《数学史》进行整合学习,对这些问题逐渐明朗与了解。
发现数学的发展伴随着人类的发展,上下五千年的人类文明蕴藏着十分丰富的数学史料。
通过学习让我们更加深入地了解数学的发展历程,历经数学萌芽期、初等数学时期、变量数学时期、近代数学时期、现代数学时期,这如同胎儿的发育过程,大体要经过从单细胞生物到人类的进化过程,要经过类似原生动物、腔肠动物、脊椎动物、灵长类等各阶段,最后才长成人类的样子。
作为人类智慧的结晶,数学不仅是人类文化的重要组成部分,而且始终是推动人类文明进步的重要力量。
在数学那漫漫长河中,三次数学危机掀起的巨浪,真正体现了数学长河般雄壮的气势。
第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。
这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。
当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。
该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为1的正方形的对角线长度既不是整数,也不是整数的比所能表示。
希伯索斯的发现被认为是“荒谬”和违反常识的事。
它不仅严重地违背了毕达哥拉斯学派的信条,也冲击了当时希腊人的传统见解。
使当时希腊数学家们深感不安,相传希伯索斯因这一发现被投入海中淹死,这就是第一次数学危机。
最后,这场危机通过在几何学中引进不可通约量概念而得到解决。
两个几何线段,如果存在一个第三线段能同时量尽它们,就称这两个线段是可通约的,否则称为不可通约的。
《数学简史》心得体会(优秀模板6篇)

《数学简史》心得体会(优秀模板6篇)《数学简史》心得体会第1篇读《数学简史》有感数学经历了历史的积淀,给我们的世界展现出来一个不一样的画卷,我看了一本书《数学简史》,书里讲的是数学的发展历史,并且对国内外的数学都进行了介绍。
我想在时间的慢慢长河里,这是多么传奇的历史啊!那么接下来我带大家走进我所见到的数学世界。
数学是有自己独特魅力的科学,《数学简史》一共有十四个大的章节,每一个章节都凝聚了数学的“理”性思维脉络,让我们清楚的领略数的价值和意义所在。
首先谈谈数学早期的萌芽,事物的发展总是一步一步慢慢向前的,数学当然也不例外。
早期的数学主要是介绍数与形概念的起源,美索不达米亚、古埃及和中国等早期数学的萌芽,不同的文明,数学的产生与演变也有很多区别和联系,数的概念产生于原始人的生活和生产,中国早期用结绳、刻划等方式计数,并产生抽象过程从“结绳”到“书契”;美索不达米亚则是由楔形文字对数学内容进行了记载,一是“表格课本”也就是古代的“应用数学”,二是“问题课本”也称“理论数学”;古埃及数学知识的象征是至今蔚为奇观的金字塔,金字塔大多呈正四棱锥形,据对最大的胡夫金字塔的测算,发现它基地是正方形,各边误差仅仅是1。
6厘米。
这些早期的数学象征物的出现,给数学带来了一个基本的框架,让我们更好的了解的数学的发展。
其次,我们不得不说的便是古希腊数学,数学的发展和我们历史发展的是有很大相似之处的,它们都会经历兴盛和衰落,古希腊数学从雅典开始到亚历山大时期达到了全盛,但是物盛极必衰,在亚历山大后期就逐渐衰落,在此期间,数学史出现了几位十分重要的人物,论证数学开创者泰勒斯,他是古希腊“七贤之首”,据记载泰勒斯是第一个将埃及人的几何学带回到希腊。
据说他本人发现了许多几何命题,并创立了对几何命题的逻辑推理,因此泰勒斯是论证数学发端第一位代表人物。
有关几何的研究还出现了不少学派,毕达哥拉斯学派、埃利亚学派、柏拉图学派和亚里士多德学派等,这些学派活跃了数学世界。
2024年数学史学习体会

2024年数学史学习体会2024年,作为一个对数学有兴趣的学生,我对数学史进行了深入的研究学习。
通过学习数学史,我不仅对数学的发展有了更深入的认识,也对现代数学的一些概念和方法有了更清晰的理解。
以下是我对2024年数学史学习的一些体会。
首先,在学习数学史的过程中,我深深感受到数学的发展是一个不断演化、不断积累知识的过程。
数学并不是一蹴而就的成果,而是几千年来数学家们不断努力、不断突破的结果。
从古代的巴比伦人、埃及人到近代的欧洲数学家们,每一位数学家都为数学的发展做出了重要的贡献。
这使我深刻地意识到,只有不断钻研、不断创新,才能使数学不断发展。
其次,学习数学史让我对数学的内在逻辑有了更清晰的认识。
数学不仅仅是一堆公式和运算的集合,而是一门有机的学科,其内在的逻辑和思维方式是其发展的基础。
在学习数学史的过程中,我发现古代数学家们的思维方式与现代数学家们有着许多共同之处。
他们都注重证明和推理,都追求简洁而优雅的解决方法。
这使我对数学的思维方式有了更深入的理解,也让我对如何进行数学研究有了更清晰的认识。
另外,在学习数学史时,我也发现了许多令人惊叹的数学成就。
例如,古代希腊人在几何学方面取得了重大突破,他们通过严密的推理和证明,发展了一套完整的几何学体系。
在代数学方面,阿拉伯数学家在中世纪时期对代数学进行了重要的贡献,开创了代数学的新篇章。
这些成就不仅仅激发了我的学习热情,也让我对现代数学的发展趋势充满了期待。
通过对数学史的学习,我也深刻体会到数学的普适性和应用性。
无论是古代还是现代,数学始终是一门普遍的语言,它不仅存在于纯粹的数学理论中,也广泛应用于其他学科和实际问题中。
数学的应用不仅在科学和工程领域,还延伸到经济、金融、医学等领域。
这使我对数学的重要性有了更深刻的认识,也让我更加珍惜数学的学习机会。
最后,通过对数学史的学习,我对数学的未来发展也有了更清晰的展望。
我相信,随着科技的不断进步和数学研究的不断深入,数学将继续取得新的突破和进展。
《数学简史》心得体会(精选9篇)

《数学简史》心得体会(精选9篇)《数学简史》心得体会(精选9篇)我们心里有一些收获后,应该马上记录下来,写一篇心得体会,从而不断地丰富我们的思想。
但是心得体会有什么要求呢?下面是小编收集整理的《数学简史》心得体会范文,希望对大家有所帮助。
《数学简史》心得体会篇1数论专家写的数学历史简史,条理性,逻辑性强,作者奇才博学,读书多,文字精彩,有大手笔。
整本书简明扼要,通俗易懂,精彩。
特别是他对于过去世界数学历史的回顾,没得说。
它都是些“经典”的诠释与介绍。
读数学历史的意义?如同哲学家,思想家。
布莱士·帕斯卡曾说过:“不认识整体就不可能认识局部,同样,不认识局部也不可能认识整体。
”这像中国常言道,“不观全局,不足以为谋”。
同时他还强调“一叶知秋”的重要。
其实,在学习所有学科领域应该都是如此。
尽管作者涉及介绍数学历史内容太广,太丰富,他在关注数学思想美或者算法思想本身及将来数学发展的前景或者未来数学发展思想萌芽方面的介绍,居然都不欠缺。
特别是面对将来,数学毕竟更多,更大的挑战是要面对未来,像量子物理,AI算法等,它也都有介绍。
只是好像如何对于控制调节“复杂系统”之全新数学缺乏有挑战的系统思考,或者似乎需要有更多或者大手笔对于未来数学发展,像能够有“一叶知秋”的深思熟虑,或者列出还有哪些数学有待证明难题挑战?如果作者能够有一个简单清单,可能就更精彩。
因为现在似乎不缺对于一个不是数学家都可以总结内容书。
例如,过去的数学。
特别是用如此多笔墨与精力介绍已经知道的数学历史,多少有点像是一种人才极大浪费。
因为介绍数学家们及其数学或者八卦故事小册字已经成堆了。
当然,本作者下半部分有关现代数学内容介绍及数学应用部分最精彩!这也可能正是他的书与众不同的地方。
它能够开人的数学大眼界。
如此有上建议,是因为来自对于数学吃瓜读者的兴趣或者好奇心,及未来新一代读者,更关心的可能是哪些有挑战或者未知的,激发人想象力东东。
因为人对精神包括数学领域的创造是有一种强烈的渴求,如果没有这样一种渴求,也许就不会有下一位“新的爱因斯坦”式人物,也不会有新一代有影响力的大哲学家,思想家,大数学家。
数学史学习体会

数学史学习体会数学史是研究数学发展历史的学科,通过对数学历史的研究,可以了解数学的起源、发展和演变过程。
在学习数学史的过程中,我有着深刻的体会。
首先,数学史的学习让我意识到数学是一门与人类文明发展密切相关的学科。
数学作为一种工具,自古以来就被人们用于解决实际问题。
古代的数学主要侧重于计算和测量,比如古埃及人运用几何学知识建造金字塔;古巴比伦人则开创了使用数字系统进行计算的方法。
随着人类文明的进步,数学的发展逐渐从实际问题的解决转向了理论研究。
希腊人在公元前6世纪至公元前3世纪期间创立了几何学和数学分析等重要学科,奠定了数学的基本概念和方法。
随后,阿拉伯数学的兴起使得数学在欧洲的传播和发展得以推动。
到了近代,数学逐渐成为一门独立的学科,涉及到了更广泛的领域,如代数学、数论、几何学等。
通过学习数学史,我更加深刻地认识到数学在人类文明中的重要地位和作用。
其次,数学史的学习让我认识到数学的发展是一个相互关联、相互推动的过程。
数学的发展离不开各个时期数学家的贡献和努力。
比如古希腊的欧几里得为几何学奠定了基础,将几何学建立在自洽、逻辑严密的基础上;文艺复兴时期的欧洲数学家们通过对古希腊数学的研究,推动了几何学的发展,开创了新的研究领域。
同时,不同时期的数学家之间也存在着相互影响和借鉴的关系。
比如阿拉伯数学家将古希腊数学带入欧洲,为欧洲数学的发展做出了巨大贡献;文艺复兴时期的欧洲数学家将阿拉伯数学以及古希腊数学的研究内容结合起来,推动了数学的发展。
通过学习数学史,我认识到数学的发展必须是一个聚合各个时期、各个数学家的努力和成果的过程,并且这些成果对后世的数学发展产生了深远的影响。
此外,数学史的学习让我对数学的价值有了新的认识。
数学作为一门学科,不仅存在于学术研究中,也广泛应用于实际生活中。
几何学在建筑和地理测量中的应用,代数学在物理学和工程学中的应用等,都体现了数学在现实世界中的重要性。
通过学习数学史,我了解到过去的数学家们是如何将数学应用于实际问题解决中的,这也激励着我将所学的数学知识应用于实际生活中,发挥数学在解决实际问题中的作用。
数学史读后感范文(通用10篇)

数学史读后感范文(通用10篇)数学史读后感篇1从小到大,在学习数学的过程中,接触大量的数学题,对数学的历史很少提及。
《数学史》,一本专门研究数学的历史,娓娓道来,满足了我的好奇,把数学的发展过程展示出来。
本书于1958年出版,作者J.F.斯科特。
书中主要阐述西方数学的发展历史,但也专门用一章讲述印度和中国的数学发展。
沿着时间轴,数学的发展经历了从初等到高等的过程。
上古时代的古埃及人和古巴比伦人在平时的生产劳作中运用到了数学知识。
古希腊人继承这些数学知识并不断拓展,成为数学史上一个“黄金时代”,涌现出毕达哥拉斯、柏拉图、亚里士多德、欧几里得、阿基米德,丢番图等一系列耳熟能详的名字。
在黑暗的中世纪,数学发展处于停滞状态,而斐波那契的出现把数学带上复兴。
文艺复兴,数学又进入一个蓬勃发展的时期,对解三次方程和四次方程、三角学、数学符号、记数方法的研究没有停步。
“+”、“-”、“=”、“”、“>”的符号是在那个时候出现的,同时出了一名数学家韦达——韦达定理的发明者。
7世纪,解析几何出现、力学兴起、小数和对数发明。
这些都为微积分的发明奠定了基础。
牛顿和莱布尼兹两位大师的研究,在数学领域开辟了一个新纪元。
8世纪,为完善微积分中的概念,各路数学家在数学分析方法上有所发展。
欧拉、拉格朗日,柯西等大师采用极限、级数等方法让微积分更加严谨。
同时,非欧几何的理论开始萌芽。
纵观全书,数学的发展是由一群人搭建起来的。
前人的工作为后人的研究奠定了基础。
后人在前人的工作上不断突破和创新。
另外,数学中也有哲理,天地有大美而不言。
当看到欧拉时,想到欧拉公式;看到韦达,想到韦达定理。
公式很简洁,但把规律说清楚了。
数学爱好者可以试着解里面的数学题,看看古人在当时是如何研究的,有的方法很笨拙,有的方法很巧妙。
读完后,发现学习数学,会解几道数学题是不够的,还要学会去培养自己的思维。
毕竟数学家的思维也会受到历史的局限。
比如负数开根号,当时被人看来是无法接受,后来发明了虚数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我谈学习数学史的心得体会范文
你知道毕达哥拉斯何许人?
你能列举《几何原本》与《九章算术》的不同风格?
你能列举几位著名温州籍的数学家?
这些问题让我们学了九年数学的学生不知所答,但随着上学期
对《数学史选讲》进行整合学习,对这些问题逐渐明朗与了解。
发现数学的发展伴随着人类的发展,上下五千年的人类文明蕴藏着十分丰富的数学史料。
通过学习让我们更加深入地了解数学的发展历程,历经数学萌芽期、初等数学时期、变量数学时期、近代数学时期、现代数学时期,这如同胎儿的发育过程,大体要经过从单细胞生物到人类的进化过程,要经过类似原生动物、腔肠动物、脊椎动物、灵长类等各阶段,最后才长成人类的样子。
作为人类智慧的结晶,数学不仅是人类文化的重要组成部分,而且始终是推动人类文明进步的重要力量。
在近一周的数学史学习中,我感触颇深,适逢老师布置大家撰
写一篇学习体会,现报告如下:
体会一:懂得历史:从欧几里得到牛顿的思想变迁
历史使人明智,数学史也不例外。
古希腊的文明,数学是主要
标志之一,其中欧几里得的《几何原本》闪耀着理性的光辉,人们在欣赏和赞叹严密的逻辑体系的同时,渐渐地把数学等同于逻辑,以“理性的封闭演绎”作为数学的主要特征。
跟我国古代数学巨著《九章算术》相对照,就可以发现从形式到内容都各有特色和所长,形成东西方数学的不同风格:《几何原本》以形式逻辑方法把全部内容贯穿起
来,极少提及应用问题,以几何为主,略有一点算术内容,而《九章算术》则按问题的性质和解法把全部内容分类编排,以解应用问题为主,包含了算术、代数、几何等我国当时数学的全部内容。
但是在近代数学史上,以牛顿为代表的数学巨人冲破了“数学=逻辑演绎”的公式,创造地发明了微积分。
从中我们可以认识到欧几里得的几何学具有严密的逻辑演绎思维模式,牛顿的微积分具有开放的实践创造思维模式。
在我们的学习中同样需要兼顾严密的逻辑演绎思维与开放的实践创造思维。
体会二:激发精神:数学大师的执着、爱国
学过数学的人应该都知道勾股定理吧!那你知道是谁最早发现的吗?在西方的文献中一直把勾股定理称作毕达哥拉斯定理。
他是希腊论证数学的另一位祖师,并精于哲学、数学、天文学、音乐理论;他创立的毕达哥拉斯学派把数学当作一种思想来追求,去追求永恒的真理。
你知道被国际公认为“东方第一几何学家”的人谁吗?当我们学校组织高一段的同学去平阳春游,参观了苏步青的故居后,这个谜团才得以解决。
而且对苏步青有了进一步的了解,从他身上发现爱国情怀尤其突出,如在极端恶劣的条件下毅然回国,并以严谨的治学态度、宽厚仁慈的胸怀、苦心孤诣的钻研精神激励着学生,于是才有了潘承洞、王元、陈景润等对哥德巴赫猜想的突出贡献,才有了我国在国际奥林匹克数学竞赛上的一枚枚金牌。
在我们温州还有很多著名的数学家,如谷超豪、姜立夫、姜伯驹等等,专家分析之所以形成一个庞大的温州籍数学家群体,这与温州的“务实”与“勤恳”的文化传
统有着直接的关系。
温州人在历史上就以“吃苦耐劳”著称,这种群体性格特征在现代温州商人身上体现尤为明显,而数学家们自然也秉承了这一精神。
体会三:掌握学法:学习之道在于悟
例如,做菜,用同样的材料和调味品,为什么大厨做出来的就比你做出来的好吃?材料都是一样的啊!这说明除材料外,还有一个东西在起作用——就是在做菜的过程中,如何搭配材料,材料的使用顺序,何时使用材料,如何把握火候等。
这些东西在起作用。
同理数学知识分为两类:一类是陈述性知识(或者说明性知识),是关于事实本身的知识,例如定义、定理、公理、概念、性质、法则、运算律等等,是关于是什么的一类知识;另一类是程序性知识,指怎样进行认识活动的知识。
陈述性知识可通过说明、解释、举例等方式达到理解,是可传授的,易掌握的,通过训练是能够牢固掌握的。
程序性知识更多地体现在经验,可传授性差,要靠体验、意会和悟性,而体验是要在过程中生成的,需要逐步积累的。
数学学习的特点给我们两点启示:1、程序性知识比陈述性知识更为重要。
(为什么不会解题的原因)2、程序性知识的学习要在应用过程中揣摩,陈述性知识要在训练中加深理解和掌握。
体会四:更新理念:大胆猜想,小心求证
在数学史中,有这样一个游戏:传说在古老的印度有一座神庙,神庙中有三根针和套在一根针上的64个圆环.古印度的天神指示他的僧侣们按下列规则:把圆环从一根针上全部移到另一根针上,第三
根针起“过渡”的作用.1.每次只能移动1个圆环;2.较大的圆环不能放在较小的圆环上面.如果有一天,僧侣们将这64个圆环全部移到另一根针上,那么世界末日就来临了(汉诺塔游戏)。
以上的游戏体现了数学中的探索、推理、归纳的思想,合情推理是创新思维的火花,操作探究是创新的基本技能。
当面临错综复杂的实际问题时,应能自觉运用数学的思维方式(退到简单入手)去观察和思考问题,并努力寻求用数学解决问题的办法(寻找递推关系)。
这种思考方式在解题中非常重要,又如谢宾斯基三角形与雪花曲线:
以上四点体会是我在学习《数学史选讲》后的总结,在学习过程中,我们体会到数学的发展并非一帆风顺,它是众多数学先贤前赴后继、辛勤耕耘的奋斗过程,也是克服困难、战胜危机的斗争过程。
了解数学史,对于我们把握数学知识之间的关系和联系,领会数学知识所内含的数学思想方法大有好处。