第十章-2细胞骨架

合集下载

第十章 细胞骨架

第十章 细胞骨架

第十章细胞骨架(Cytoskeleton)第一节细胞质骨架一、细胞骨架:是指真核细胞中的蛋白纤维网架体系,其概念有狭义与广义之分,1、狭义概念:指细胞质骨架,包括微丝、微管和中间纤维2、广义概念:包括细胞核骨架,细胞质骨架,细胞膜骨架和细胞外基质。

二、微丝(microfilament, MF)1、概念:又称肌动蛋白纤维(actin filament), 是指真核细胞中由肌动蛋白(actin)组成、直径为7nm的骨架纤维。

2、成分: 肌动蛋白(actin)是微丝的结构成分,外观呈哑铃状。

肌动蛋白的单体为球形分子,称为球形肌动蛋白G-actin(globular actin),它的多聚体称为纤维形肌动蛋白F-actin (fibrous actin)。

3、装配:1)MF是由G-actin单体形成的多聚体,肌动蛋白单体具有极性,装配时呈头尾相接, 故微丝具有极性,既正极与负极之别。

2)MF的解聚:在含有ATP和Ca2+以及低浓度的Na+, K+等阳离子溶液中,趋向于解聚。

3)MF的装配:在Mg2+和高浓度的Na+, K+等溶液中,趋向于装配。

4)倒踏车现象:微丝装配过程中,表现出一端因加亚单位而延长,同时,另一端因亚单位的脱落而简短的现象。

&S226; Actin is a globular protein that polymerize helicaly forming actin filaments (or microfilaments), which like the other two components of the cellular cytoskeleton form a three-dimensional network inside an eukariotic cell. Actin filaments provide mechanical support for the cell, determine the cell shape, enable cell movements (through pseudopods); and participate in certain cell junctions, in cytoplasmic streaming and in contraction of the cell during cytokinesis. In muscle cells they play an essential role, along with myosin, in muscle contraction. In the cytosol, actin is predominantly bound to ATP, but can also bind to ADP. An A TP-actin complex polymerizes faster and dissociates slower than an ADP-actin complex. Actin is also one of the most highly conserved proteins, differing by no more than 5% in species as diverse as algae and humans.&S226; The globular Actin is known as G-actin, while the filamentous polymer composed of G-actin subunits (a microfilament), is called F-actin. The microfilaments are the thinest component of the cytoskeleton, measuring only 7nm in diameter. Much like the microtubules, actin filaments are polar, with the plus (+) end elongating approximately 10 times faster than the minus (-) end. (Known as the treadmill effect).4、微丝结合蛋白1)肌肉收缩系统中的有关蛋白:&O1569; 肌球蛋白&O1570; 原肌球蛋白&O1571; 肌钙蛋白2)非肌肉细胞中微丝结合蛋白&O1569; 肌球蛋白&O1570; 原肌球蛋白&O1571; α-辅肌动蛋白5、微丝结合蛋白将微丝组织成以下三种主要形式:1)Parallel bundle: MF同向平行排列,主要发现于微绒毛与丝状伪足。

第十章 细胞骨架(Cytoskeleton) 2(简)

第十章 细胞骨架(Cytoskeleton)  2(简)
僵直?
第二节 微管及其功能
真核细胞中直径24~26nm的中空管状结构 ,其空间结 构与功能与微管结合蛋白有关。
一、化学组成 二、装配 三、微管结合蛋白 四、功能
一、化学组成

2
1
3
管 13
4
进化上高度保守,由同一祖先基因进化而来 横

12 11
5
6 7
10

98
微 管 蛋 白
微管蛋白 极性
(55KD 450aa) 异二聚体
驱动蛋白和胞质动力蛋白介导的细胞内膜泡和细胞器运输
(KIF,驱动蛋白超家族)
鞭毛和纤毛的摆动
纤毛Βιβλιοθήκη 鞭毛纤毛或鞭毛结构组成
纤毛动力蛋白的结构
外动力 蛋白
连 接 蛋 白
“9+2” 微管
内动力 蛋白
多亚基的ATP酶
纤毛/鞭毛运动的微管滑动学说
1234. 带动新结有力的合水A蛋的T解A白PT产结头P物合水部的于解与头动,相部力其邻与蛋释二B白放联微上的体管,能上的使量B另微头使一管部头个结与部位合相的点,邻角结促的度合进二复,A联原T开体。P始(水B微解管) 脱又A离一D。次P循+P环i(释。放),同时动力蛋白头部构象变化角度改变, 牵引相邻B微管向纤毛顶部滑动。
两端速率相等时,微管长度不变。
GTP的作用
调节微管的组装
GTP- GTP – tubulin 促进组装;
GTP→GDP+Pi; GTP- GDP -tubulin 去组装
装配过程 请你仔细找一下微管的“接缝”!
原纤维核装配
侧面加宽并延长
稳定阶段
踏车行为
缩短
延长
微管的体内组装特点

第10章_细胞骨架

第10章_细胞骨架

第10章_细胞骨架第一篇:第10章_细胞骨架第10章细胞骨架 cytoslceleton 本章内容首先简介细胞骨架的组分、分类、功能和研究细胞骨架的技术,第二介绍对胞质骨架即微丝,微管和中间纤维的超分子结构特征、装配动力学,生物学功能和发挥功能作用中的相关蛋白,以及主要由微丝和高度组织化形成的横纹肌收缩系统的精细结构和收缩机制,由微管和相关蛋白构成的纤毛,鞭毛的精细结构和运动机制有较清楚和明确的认识,并了解分子发动机的概念。

第一节细胞骨架细胞骨架指细胞中除了细胞器外的三维蛋白纤维网架体系。

一、组成和分布1.微管核周围,呈放射状向四周扩散2.微丝质膜内侧3.中等纤维分布在整个细胞中细胞骨架具有动态的特点,并非静止不变。

二、细胞骨架的功能1.细胞结构和形态支持2.胞内运输3.收缩和运动 4.空间区域组织三、细胞骨架的研究方法 1.荧光显微镜荧光抗体基因工程改造的带有荧光的蛋白,一种藻类中centrin的荧光抗体显影,centrin分布在鞭毛和基体中,红色为藻类光合作用自身发出的荧光。

2.电镜 3.电视显微镜分子发动机蛋白质在微管上的移动(见箭头相对于微管位置的移动)第二节细胞骨架的各个组分一、微管 Micorotubules(MTs)1.形态、化学组成和超分子结构MT是刚性的直径约20-25nm的圆管状结构,其长度因种类和功能等的不同而有很大的变化。

完整的MT经负染法显示,其壁是由一层串珠样的纵行的纤维丝包围形成的,从横截面上看,细丝共13条,这些串珠样的细丝被称为原纤丝Protofilaments。

原纤丝的化学组成是微管蛋白tubutin。

微管蛋白是球状分子,分α和β两种,分子量均大约为5.5KD,在一般生物细胞内,它们均以各一个分子结合成异二聚体的形式存在。

原纤丝就是由异二聚体首尾相连而成。

α和β都有一个GDP结合位点,α中的位点也结合GTP,称可交换位点(exchangable site,E site)。

第十章 细胞骨架

第十章 细胞骨架


微管结合蛋白:是与微管结合的辅助蛋白,并与微管共存,
参与微管的装配。
微管的形状:中空的管状结构,内径15nm,厚5nm。
微管蛋白由α蛋白和β蛋白形成一个异源二聚体。
微管结合蛋白
微管的存在类型
单管:由13根原纤维组成,是细胞质中常见的形 式,其结构不稳定,易受环境因素而降解。 二联管:由A,B两根单管组成,A管由13根原纤 维,B管有10根原纤维,与A管共用3根原纤维,主要 分布于纤毛、鞭毛内。
后逐渐发现许多非肌细胞的myosin,目前已知的有15种类
型(myosin I-XV)。 Myosin II是构成肌纤维的主要成分之一。由两个重链 和4个轻链组成,重链形成一个双股α 螺旋,一半呈杆状, 另一半与轻链一起折叠成两个球形区域,位于分子一端, 球形的头部具有ATP酶活性
5.参与细胞、Ga2+、Na+、K+的浓 度及药物的影响。 影响微丝组装、去组装的主要药物有细胞松驰素B等。
微丝的主要功能
1.构成细胞的支架 微丝不能单独发挥作用,必须形成网络结构或成束
状结构才能发挥作用。
微绒毛

形态结构特征:是细胞表面的一种特化结构,其核
心是由20-30个同向平行的微丝组成束状结构其中有 微丝结合蛋白绒毛蛋白和毛缘蛋白。另外还有肌球 蛋白-1和钙调蛋白将微丝与绒毛处的质膜相连。正 是由于微丝及其结合蛋白的存在,才使得微绒毛的 形状得以维持。
肌动蛋白是一个由375个氨基酸组成的单链多肽,与一
分子的ATP相连。称为球形-肌动蛋白。微丝是由球形-肌 动蛋白形成的聚合体,也称纤维状-肌动蛋白。微丝的结 构也具有极性,有正负极之分。
微丝结合蛋白
微丝结合蛋白的种类较多,且功能复杂。目前在

细胞骨架(Cytoskeleton)

细胞骨架(Cytoskeleton)

Insect cell expressing Insect cell expressing MAP2 tau From J. Chen et al. 1992. Nature 360: 674
微管功能
◆维持细胞形态
◆细胞内物质的运输 ◆细胞器的定位 ◆鞭毛(flagella)运动和纤毛(cilia)运动
细胞质骨架
●微丝(microfilament, MF)
●微 管(microtubules)
●中间纤维(intermediate filament,IF) ●细胞骨架结构与功能总结
Figure 10-2. The three types of protein filaments that form the cytoskeleton.
输过程与细胞骨架体系中的微管及其Motor protein有关。
· Motor proteins · 神经元轴突运输的类型及运输模式 · 色素颗粒的运输
Motor proteins
目前已鉴定的Motor proteins多达数十种。根据其
结合的骨架纤维以及运动方向和携带的转运物不同而分
为不同类型。胞质中微管motor protein分为两大类: 驱动蛋白(kinesin):通常朝微管的正极方向运动 动力蛋白(cytoplasmic dynein):朝微管的负极运动 Kinesin与Dynein的分子结构 Kinesin与Dynein的运输方式
②原肌球蛋白(tropomyosin, Tm)由两条平行的多肽链形成α -螺旋构型,位于肌动蛋白 螺旋沟内,结合于细丝, 调节肌动蛋白与肌球蛋白头部的结合。 ③肌钙蛋白 (Troponin, Tn)为复合物,包括三个亚基:TnC(Ca2+敏感性蛋白) 能特异与Ca2+结合; TnT(与原肌球蛋白结合); TnI(抑制肌球蛋白ATPase活性)

细胞生物学-1第十章:细胞骨架与细胞运动

细胞生物学-1第十章:细胞骨架与细胞运动

10. 细胞骨架与细胞运动细胞除了含有各种细胞器外, 在细胞质中还有一个三维的网络结构系统,这个系统被称为细胞骨架(图10-1)。

图10-1 细胞骨架系统10.1 细胞骨架(cytoskeleton)的组成和功能细胞除了具有遗传和代谢两个主要特性之外, 还有两个特性, 就是它的运动性和维持一定的形态。

细胞骨架是细胞运动的轨道,也是细胞形态的维持和变化的支架。

10.1.1 细胞骨架的组成和分布¦ 组成细胞骨架是细胞内以蛋白质纤维为主要成分的网络结构,由主要的三类蛋白纤丝(filamemt)构成,包括微管、微丝(肌动蛋白纤维)和中间纤维。

¦分布微管主要分布在核周围, 并呈放射状向胞质四周扩散。

微丝主要分布在细胞质膜的内侧。

而中间纤维则分布在整个细胞中(图10-2)。

12图10-2 细胞骨架的三类主要成分及其分布10.1.2 细胞骨架的功能什么是细胞骨架?在细胞内的主要功能是什么?细胞骨架对于维持细胞的形态结构及内部结构的有序性,以及在细胞运动、物质运输、能量转换、信息传递和细胞分化等一系列方面起重要作用。

¦作为支架(scaffold),为维持细胞的形态提供支持结构,如红细胞质膜膜骨架结构维持。

¦在细胞内形成一个框架(framework)结构,为细胞内的各种细胞器提供附着位点。

细胞骨架是胞质溶胶的组织者,将细胞内的各种细胞器组成各种不同的体系和区域的网络结构。

¦为细胞器的运动和细胞内物质运输提供机械支持。

细胞骨架作为细胞内物质运输的轨道;在有丝分裂和减数分裂过程中染色体向两极的移动,以及含有神经细胞产生的神经递质的小泡向神经细胞末端的运输都要依靠细胞骨架的机械支持。

¦为细胞从一个位置向另一位置移动提供力。

一些细胞的运动结构, 如伪足的形成也是由细胞骨架提供机械支持。

纤毛和鞭毛等运动器官主要是由细胞骨架构成的。

¦为信使RNA提供锚定位点,促进mRNA翻译成多肽。

第十章 细胞骨架(Cytoskeleton)

第十章 细胞骨架(Cytoskeleton)

成束蛋白:将相邻的微丝交联成平行排列
如:丝束蛋白、绒毛蛋白、 α-辅肌动蛋白。
凝胶形成蛋白:将微丝连接成网状
如:细丝蛋白
4、交联蛋白
A、成束蛋白将相邻的微丝交联成束状结构。丝束蛋白和绒毛蛋白等交联而成的微丝 束为紧密包装型,肌球蛋白不能进入,无收缩功能;B、由α-辅肌动蛋白交联形成 的微丝束相邻的纤维之间比较宽松,肌球蛋白可以进入与之相互作用,可收缩。 C、细丝蛋白将微丝交联成网状。
三、微丝主要结构成分—肌动蛋白的类型
哺乳动物和鸟类已分离到6种肌动蛋白:4种α-肌动蛋白,分别
为横纹肌、心肌、血管平滑肌和肠道平滑肌所特有。另两种为
β-肌动蛋白和γ-肌动蛋白,存在于所有肌细胞和非肌细胞中。
特点:同源性很高,常作为内参基因。但微小差异可能上的变化。
四、微丝特异性药物
◆细胞松弛素(cytochalasins):可以切断微丝,并结合
马达结构域 2条重链
在心肌、骨骼肌、 平滑肌、收缩环、 张力纤维等产生 强大的收缩力。
内吞作用和吞噬泡运输 细胞内膜泡 和其他细胞 器的运输
部分肌球蛋白超家族成员的结构示意图
(二)肌球蛋白的结构


三个功能结构域:马达结构域、调控结构域和“货物” 结合的尾部结构域。 Ⅱ型肌球蛋白:在肌细胞中,组装成肌原纤维的粗丝, 在非肌细胞中,与收缩环的动态结构以及应力纤维的 活动相关。
(3)动力蛋白

特点:既有与微丝或微管结合的马达结构域,又有与
膜性细胞器或大分子复合物特异结合的“货物”结构
域,利用水解ATP所提供的能量有规则地沿微管或微丝
等细胞骨架纤维运动。
(一)肌球蛋白的种类

组装成粗肌丝的单位,肌球蛋白的头部和组成微丝的肌动蛋白 亚基之间的相互作用导致粗丝和细丝之间的滑动。

细胞生物学第十章_细胞骨架

细胞生物学第十章_细胞骨架

微绒毛: MF同向平行排列
培养的成纤维细 胞中具有丰富的 应力纤维,并通 过粘着斑固定在 基质上。在体内 应力纤维使细胞 具有抗剪切力
当细胞受到外界 刺激时开始运动, 应力纤维发生变 化或消失
培养的上皮细胞中的应力纤维 (微丝红色、微管绿色)
MF反向平行排列
MF相互交错排 列
肌肉的组成
• 由肌原纤维组成,肌原纤维的粗肌丝主要成分是 肌球蛋白,细肌丝主要成分是肌动蛋白、原肌球 蛋白和肌钙蛋白。
• 研究细胞的内部工作机制,窥视细胞如何分裂。通过这些观察,可以揭开癌症工作机 制和组织生长之谜。
二、微丝结合蛋白
• 已知的的微丝结合蛋白有100多种,如: • 1 .核化蛋白:使游离actin核化,开始组装,Arp • 2.单体隐蔽蛋白:阻止游离actin向纤维添加,thymosin • 3.封端蛋白:使纤维稳定,Cap Z • 4.单体聚合蛋白:将结合的单体安装到纤维,profilin • 5.微丝解聚蛋白:cofilin • 6.交联蛋白:fimbrin • 7.纤维切断蛋白:gelsolin • 8.膜结合蛋白:vinculin
• 单体呈哑铃形,称G-actin;多聚体称F-actin。 • 结构高度保守,酵母和兔子actin有88%的同源性。 • 需要翻译后修饰,如N-端乙酰化或组氨酸残基的甲基化。
(二)微丝的装配
• 条件:ATP、适宜温度、K+和Mg2+。
• 过 程 : 2-3 个 actin 聚 集 成 核 心 ( 核 化 ) ; ATPactin分子向核心两端加合(延伸)。
• 属于马达蛋白,多数趋向微丝的(+)极。
• 肌球蛋白II构成粗肌丝。由2重链和4轻链组成,具有2 球形的头和1螺旋化的干,头部有ATP酶活性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

秋水仙素、长春花碱、紫杉酚可破坏微管
功能。
二 、微管的化学组成
1 微管蛋白:

Tubulin α


tubulin β
tubulin γ
存在于微管组织中 (MTOCs)即PCM,对微管 的形成和微管极性的确
定有重要作用 。
微管结合蛋白P211
微管相关蛋白MAP 微管聚合蛋白Tau
(二)踏车模型(treadmilling model)
在微管组装达到稳定态时,微
管正端持续加入新的二聚体与微
管负端持续减去已组装的二聚体 达到一种平衡,并且需要GTP水
解供给能量来维持这一平衡
稳定期
踏车现象
+


(一)微管组装的过程
1、成核期 2、延长期
3、稳定期
成核期
(一)微管的动力学特征
由α和β异二聚体构成的微管其两个
末端的结构和动力学特性不同
β亚单位暴露的一端(+)能较快生长。 α亚单位暴露的另一端(-)生长较慢。
在细胞内,微管的负端靠近中心体,位
于细胞中心,而正端则位于细胞质周 围。

(四)影响微管组装的因素


GTP浓度温度、Ca++浓度、pH、压力等,
秋水仙素和秋水仙胺能结合和稳定游离微
管蛋白,引起微管解聚。

长春花碱和长春新碱能结合微管蛋白异二
聚体,抑制它们的聚合作用。

紫杉醇能和微管紧密结合防止微管蛋白亚
基的解聚,加速微管的聚合作用。
五、微管的功能
1、 构成细胞的网
状支架,维持细 胞的形态,固定
与支持细胞器的
位置
2、参与细胞内物质运输
作 为 色 素 颗 粒 运 输 轨 道
分子马达蛋白:介导细胞内物质沿细胞骨架
运输的一类蛋白。有动力蛋白和驱动蛋白两 类。
驱动蛋白
动力蛋白
(1)驱动蛋白:是一类微管激活的ATP 酶可沿微管从负极向正极移动。 (2)动力蛋白:是一类微管激活的ATP 酶可沿微管从正极向负极移动。
已知约15种左右,分别与特定IF结合,如:
flanggrin、Plectin、Ankyrin
特点:具有细胞特异性
五. 中间纤维的功能
1
中间纤维对细胞核有固定作用 2 细胞内物质运输作用 3 参与细胞分裂活动 4 参与信息传递活动
胞质骨架三种组分的比较
微丝 单体 结合核苷酸 纤维直径 结构 球蛋白 ATP-G-actin ~7nm 双链螺旋 微管 αβ 球蛋白 2GTP/αβ 二聚体 ~22nm 13 根源纤丝组成空心管 状纤维 有 无 有 有 动力蛋白,驱动蛋白 秋水仙素,长春花碱,紫 杉酚 中间纤维 杆状蛋白 无 10nm 8 个 4 聚体或 4 个 8 聚体组成的空心 管状纤维 无 有 无 无 无
3、 参与中心粒、纤毛和鞭毛的形成
鞭 毛 的 结 构
பைடு நூலகம்4、参与染色体的运动、调节细胞分裂
第三节 中间纤维
第三节 中间纤维
直径10nm左右,介于微丝和微管之间,故名。
IF是最稳定的细胞骨架成分,主要起支撑作用。
IF在细胞中围绕着细胞核分布,成束成网,并
扩展到细胞质膜,与质膜相连结
极性 组织特异性 蛋白库 踏车形为 动力结合蛋白 特异性药物
有 无 有 有 肌球蛋白 细胞松驰素 鬼笔环肽
试述细胞骨架的结构组成及其主要功能?
第十章
细胞骨架(2)
微丝,又叫肌动蛋白纤维, 是由肌动蛋白构成的两股 螺旋形成的细丝,普遍存 在于真核细胞中 微管,是由微管蛋白单体 构成的基本组件形成的中 空的管状结构。普遍存在 于真核细胞中
中间纤维,又叫中间丝, 粗细位于微丝和肌球蛋白 粗丝之间,普遍存在于真 核细胞中,是三种骨架系 统中结构最为复杂的一种
末端没有GTP帽;

没有GTP帽的末端不稳定性,使GTP二聚体不能加到
微管晶格中,致使微管迅速解聚,直到产生新的 GTP
帽,微管才由解聚相转变为聚合相;

有GTP帽的末端是稳定的,新的GTP二聚体可以加到
GTP帽晶格中,诱导多聚体构象改变,激活GTP水解,
加入的二聚体形成新的GTP帽,促使微管聚合。
主要功能:
①促进微管组装; ②增加微管稳定性; ③促进微管聚集成束。
三、微管的类型
1、单管(13) 细胞质中的主要存在形式 不稳定 2、二联管(A、B 23) 主要分布于纤毛和鞭毛 稳定 3、三联管(A、B、C 33) 主要分布于中心粒和鞭 毛、纤毛的基体中 稳定
单管
二联管 三联管
四、微管的组装与解聚
具有组织特异性,通常一种细胞含有一种 IF,
少数含2种以上。
二、结构与装配
(一)结构

由螺旋化杆状区,以及两端非螺旋化的球形头(N
端)尾(C端)部构成。

具有两个螺旋区,每个分为A、B两个亚区。
(二)IF的装配

①两个单体形成超螺旋二聚体;
②两个二聚体反向平行组装成四聚体;


-



踏 车


(三)非稳态动力学模式

处于组装的微管末端具有GTP帽,而处于解聚的微管
第二节 微管(microtubule)
一、微管的形态

中空圆筒状,外径25nm,内
15nm,大多数微管壁由13条
原纤维包围而成。每条原纤 维又由α、β微管蛋白首尾 相连。
特性
具有极性,
-极在中心粒,+极指向质膜;
+极的最外端是β,-极最外端是α球蛋白; 具有踏车行为; 多数微管通过动态组装/去组装实现功能;
③四聚体组成原纤维;
④8根原纤维组成IF。

装配特点:无极性,与温度和蛋白浓度无关,不
需要ATP、GTP或结合蛋白的辅助。
两个单体形成超 螺旋二聚体
两个二聚体反向平行 组装成四聚体
四聚体组成原纤维
四、IF的结合蛋白 IFAP
功能:

使中间纤维交联成束、成网, 把中间纤维交联到质膜或其它骨架成分上
相关文档
最新文档