哥伦比亚大学-离散数学-笔记-第5-8章-3
离散数学笔记(特级教师精心整理)

离散数学笔记(特级教师精心整理)第一章命题逻辑内容:命题及命题联结词、命题公式的基本概念,真值表、基本等价式及永真蕴涵式,命题演算的推理理论中常用的直接证明、条件证明、反证法证明等方法教学目的:1.熟练掌握命题、联结词、复合命题、命题公式及其解释的概念。
2.熟练掌握常用的基本等价式及其应用。
3.熟练掌握(主)析/合取范式的求法及其应用。
4.熟练掌握常用的永真蕴涵式及其在逻辑推理中的应用。
5.熟练掌握形式演绎的方法。
教学重点:1.命题的概念及判断2.联结词,命题的翻译3.主析(合)取范式的求法4.逻辑推理教学难点:1.主析(合)取范式的求法2.逻辑推理1.1命题及其表示法1.1.1 命题的概念数理逻辑将能够判断真假的陈述句称作命题。
1.1.2 命题的表示命题通常使用大写字母A,B,…,Z或带下标的大写字母或数字表示,如A i,[10],R等,例如A1:我是一名大学生。
A1:我是一名大学生.[10]:我是一名大学生。
R:我是一名大学生。
1.2命题联结词(1) P↑P⇔﹁(P∧P)⇔﹁P;(2)(P↑Q)↑(P↑Q)⇔﹁(P↑Q)⇔ P∧Q;(3)(P↑P)↑(Q↑Q)⇔﹁P↑﹁Q⇔ P∨Q。
(1)P↓P⇔﹁(P∨Q)⇔﹁P;(2)(P↓Q)↓(P↓Q)⇔﹁(P↓Q)⇔P∨Q;(3)(P↓P)↓(Q↓Q)⇔﹁P↓﹁Q⇔﹁(﹁P∨﹁Q)⇔P∧Q。
1.3 命题公式、翻译与解释1.3.1 命题公式定义命题公式,简称公式,定义为:(1)单个命题变元是公式;(2)如果P 是公式,则﹁P是公式;(3)如果P、Q是公式,则P∧Q、P∨Q、P→Q、 P↔Q 都是公式;(4)当且仅当能够有限次的应用(1) 、(2)、(3) 所得到的包括命题变元、联结词和括号的符号串是公式。
例如,下面的符号串都是公式:((((﹁P)∧Q)→R)∨S)((P→﹁Q)↔(﹁R∧S))(﹁P∨Q)∧R以下符号串都不是公式:((P∨Q)↔(∧Q))(∧Q)1.3.2 命题的翻译可以把自然语言中的有些语句,转变成数理逻辑中的符号形式,称为命题的翻译。
离散数学期末总结

离散数学期末总结离散数学是描绘一些离散量与量之间的相互逻辑构造及关系的学科。
它的思想方法及内容渗透到计算机学科的各个领域中。
因此它成为计算机及相关专业的一门重要专业根底课。
主要内容包括:集合论、关系、代数系统、图论和数理逻辑五个部分。
构造上,从集合论入手,后介绍数理逻辑,便于学生学习。
为了能很好的消化理解内容,列举了大量的较为典型、易于承受、说明问题的例题,配备了相当数量的习题,也列举了部分实际应用问题。
一.知识点第一章.集合论集合论或集论是研究集合(由一堆抽象物件构成的整体)的数学理论,包含集合、元素和成员关系等最根本数学概念。
在大多数现代数学的公式化中,集合论提供了要如何描述数学物件的语言。
本章主要介绍集合的根本概念、运算及幂集合和笛卡尔乘积。
这章是本书的根底部分,要学好离散数学就必须很好的掌握集合的内容。
集合论的概念和方法已经渗透到所有的数学分支,因而各数学分支的完整体系,都是在所取集合上。
第二章.关系关系在我们日常生活中经常会遇到关系这一概念。
但在数学中关系表示集合中元素间的联系。
本章主要学习关系的根本概念、关系的性质、闭包运算、次序关系、等价关系,本章学习的重点:关系的性质、闭包运算、次序关系。
关系这一章是集合论这一章的延伸,对集合论的理解程度对学习关系这一章是非常有影响的。
而关系又是学习下一章代数系统必不可少的,所以本章是非常重要的章节。
第三章.代数系统代数构造也叫做抽象代数,主要研究抽象的代数系统。
抽象代数研究的中心问题就是一种很重要的数学构造--代数系统:半群、群等等。
本章主要学习了运算与半群、群。
学习本章需要学会判断是否是代数系统、群和半群,以及判断代数系统具有哪些运算规律,如:结合、交换律等及单位元、逆元。
这些都在我们计算机编码中表达出重要的作用。
第四章.图论图论〔Graph Theory〕起源于著名的柯尼斯堡七桥问题,以图为研究对象。
图论中的图是由假设干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。
离散数学笔记

第一章命题逻辑内容:命题及命题联结词、命题公式的基本概念,真值表、基本等价式及永真蕴涵式,命题演算的推理理论中常用的直接证明、条件证明、反证法证明等方法教学目的:1.熟练掌握命题、联结词、复合命题、命题公式及其解释的概念。
2.熟练掌握常用的基本等价式及其应用。
3.熟练掌握(主)析/合取范式的求法及其应用。
4.熟练掌握常用的永真蕴涵式及其在逻辑推理中的应用。
5.熟练掌握形式演绎的方法。
教学重点:1.命题的概念及判断2.联结词,命题的翻译3.主析(合)取范式的求法4.逻辑推理教学难点:1.主析(合)取范式的求法2.逻辑推理1.1命题及其表示法1.1.1 命题的概念数理逻辑将能够判断真假的陈述句称作命题。
1.1.2 命题的表示命题通常使用大写字母A,B,…,Z或带下标的大写字母或数字表示,如A i,[10],R等,例如A1:我是一名大学生。
A1:我是一名大学生.[10]:我是一名大学生。
R:我是一名大学生。
1.2命题联结词(1) P↑P⇔﹁(P∧P)⇔﹁P;(2)(P↑Q)↑(P↑Q)⇔﹁(P↑Q)⇔ P∧Q;(3)(P↑P)↑(Q↑Q)⇔﹁P↑﹁Q⇔ P∨Q。
(1)P↓P⇔﹁(P∨Q)⇔﹁P;(2)(P↓Q)↓(P↓Q)⇔﹁(P↓Q)⇔P∨Q;(3)(P↓P)↓(Q↓Q)⇔﹁P↓﹁Q⇔﹁(﹁P∨﹁Q)⇔P∧Q。
1.3 命题公式、翻译与解释1.3.1 命题公式定义命题公式,简称公式,定义为:(1)单个命题变元是公式;(2)如果P 是公式,则﹁P是公式;(3)如果P、Q是公式,则P∧Q、P∨Q、P→Q、 P↔Q 都是公式;(4)当且仅当能够有限次的应用(1) 、(2)、(3) 所得到的包括命题变元、联结词和括号的符号串是公式。
例如,下面的符号串都是公式:((((﹁P)∧Q)→R)∨S)((P→﹁Q)↔(﹁R∧S))(﹁P∨Q)∧R以下符号串都不是公式:((P∨Q)↔(∧Q))(∧Q)1.3.2 命题的翻译可以把自然语言中的有些语句,转变成数理逻辑中的符号形式,称为命题的翻译。
离散数学大纲

离散数学教学大纲第一部分大纲说明一.课程的性质与任务《离散数学》是现代数学的一个重要分支,也是计算机计算机科学与技术一级学科及其相关专业必修的基础理论的核心课程。
它是学习后续专业课程不可缺少的数学工具。
该课程结合计算机学科的特点,主要研究离散量结构及相互关系,其研究对象一般是有限个或可数个元素,因此《离散数学》充分描述了计算机学科离散性的特点。
它是一门理论性较强,应用性较广的课程。
掌握集合论、数理逻辑、图论、整数、群、环、域、格、布尔代数以及语言与有限自动机等离散数学的基本概念和基本原理,为学习计算机专业各后续课程做好必要的知识准备。
并通过这些知识的学习进一步提高学生的抽象思维和逻辑推理能力,为从事计算机相关的理论研究与应用提供必要的描述工具和理论基础。
二《离散数学》的特点作为计算机科学与技术一级学科的一门课程,《离散数学》有与其他课程相同相似的地方,当然也有它自身的特点:1、义与定理多。
《离散数学》是建立在大量定义之上的逻辑推理学科,因此对概念的理解是我们学习这门课程的核心。
在学习这些概念的基础上,要特别注意概念之间的联系,而描述这些联系的实体则是大量的定理与性质。
2、法性强。
《离散数学》的许多证明题中,方法性是非常强的,如果知道题的证明方法,很容易就可以证出来,反之则事倍功半。
所以在学习该课程中要善于总结,勤于思考,这也是培养分析问题解决问题抽象思维能力的一个过程。
三与其他相关课程的关系先修课程:高等数学(包括数学分析、线性代数)后续课程:数据结构、数据库、编译原理等四课程的主要内容与基本要求本课程分为九部分:集合论基础、命题逻辑、谓词逻辑、图与网络、数论基础、群与环、多项式与有限域、格与布尔代数以及语言和有限自动机。
(一)集合论基础:在整个《离散数学》的知识体系中,集合论处于基础的地位,对于其所包含知识的掌握程度,直接关系到是否能学好图论和抽象代数问题。
本章主要讲述集合、关系和映射。
1. 掌握集合、子集、超集、空集、幂集、集合族的概念。
离散数学第五章习题答案

离散数学第五章习题答案题目1: 定义一个关系R在集合A上,如果对于所有的a, b, c属于A,满足以下条件:- 如果(a, b)属于R,则(b, a)属于R。
- 如果(a, b)属于R且(b, c)属于R,则(a, c)属于R。
证明R是传递的。
答案:根据题目给出的条件,R是对称的和传递的。
首先,对称性意味着如果(a, b)属于R,那么(b, a)也必须属于R。
其次,传递性意味着如果(a, b)和(b, c)都属于R,那么(a, c)也必须属于R。
结合这两个性质,我们可以得出结论:对于任意的a, b, c属于A,如果(a, b)和(b, c)都属于R,那么(a, c)也属于R,从而证明了R的传递性。
题目2: 给定一个函数f: A → B,如果对于A中的每个元素a,都有唯一的b属于B使得f(a) = b,那么称f为单射(或一一映射)。
证明如果函数f是单射,那么它的逆函数f^-1也是单射。
答案:要证明f^-1是单射,我们需要证明对于B中的任意两个元素b1和b2,如果f^-1(b1) = f^-1(b2),则b1 = b2。
假设f^-1(b1) = a且f^-1(b2) = a',其中a, a'属于A。
由于f是单射,我们知道f(a) = b1且f(a') = b2。
根据f^-1的定义,我们有b1 = f(a) = f(a') = b2。
因此,如果f^-1(b1) = f^-1(b2),则b1必须等于b2,这证明了f^-1是单射。
题目3: 证明一个函数f: A → B是满射(或到上映射)当且仅当对于B中的每个元素b,都存在A中的元素a使得f(a) = b。
答案:首先,我们证明如果f是满射,那么对于B中的每个元素b,都存在A 中的元素a使得f(a) = b。
假设f是满射,这意味着B中的每个元素都是A中某个元素的像。
因此,对于B中的任意元素b,我们可以找到一个a属于A,使得f(a) = b。
离散数学(图论)课后总结

第八章图论例1、下面哪些数的序列,可能是一个图的度数序列?如果可能,请试画出它的图. 哪些可能不是简单图?a) (1,2,3,4,5) b) (2,2,2,2,2) c) (1,2,3,2,4) d) (1,1,1,1,4) e) (1,2, 2,4,5)解:a)不是, 因为有三个数字是奇数. b) c) d)是.e) 不是简单图,因为它有5个结点, 有一个结点度为5, 必然有环或平行边.例2、已知无向简单图G中,有10条边,4个3度结点,其余结点的度均小于或等于2,问G中至少有多少个结点?为什么?解:已知边数|E|=10, ∑deg(v)=2|E|=20其中有4个3度结点, 余下结点度之和为: 20-3×4=8 因为G是简单图, 其余每个结点度数≤2, 所以至少还有4个结点.所以G中至少有8个结点.强连通、单侧连通和弱连通在简单有向图G中,如果任何两个结点间相互可达, 则称G是强连通. 如果任何一对结点间, 至少有一个结点到另一个结点可达, 则称G是单侧连通. 如果将G看成无向图后(即把有向边看成无向边)是连通的,则称G是弱连通.在简单有向图中,具有强连通的最大子图,称为强分图.具有单侧连通的最大子图,称为单侧分图. 具有弱连通的最大子图,称为弱分图.注:我每次都会被各种分图弄糊涂!!考试时要注意啊,千万不要错了利用可达性矩阵求强分图,注意初等矩阵变换的知识不要忘了!!令图G=<V,E,W>, 集合Si V Si’=V-Si , 令|V|=nSi={u|从u0到u的最短路已求出}Si’={u’|从u0到u’的最短路未求出}Dijkstra算法:(求从u0到各点u的最短路长)第一步. 置初值: d(u0,u0)=0 d(u0,v)=∞(其中v≠u0)i=0 S0={u0} S0’=V-S0 ,第二步.若i=n-1 则停. 否则转第三步第三步. 对每个u’∈Si’计算d(u0,u’)=min{d(u0,u’), d(u0,ui)+c(ui,u’)} ui ∈Si计算min{d(u0,u’)}u’∈S i’并用ui+1记下达到该最小值的那个结点u’置Si+1 =Si∪{ui+1} i=i+1 Si’=V-Si , 转第二步.例3、求最短路解:例.求右图中从v1到v6的最短路1.置初值: u0=v1d(u0,u0)=0d(u0,v2)=d(u0,v3)=d(u0,v4)=d(u0,v5)=d(u0,v6)=∞2.3. i=0 S0={v1} S0’={v2,v3,v4,v5,v6}d(u0,v2)=min{d(u0,v2), d(u0,u0)+c(u0,v2)}=min{∞,0+3}=3d(u0,v3)=min{d(u0,v3),d(u0,u0)+c(u0,v3)}=min{∞,0+∞}=∞d(u0,v4)=min{d(u0,v4), d(u0,u0)+c(u0,v4)}=min{∞,0+5}=5d(u0,v5)=min{d(u0,v5),d(u0,u0)+c(u0,v5)}=min{∞,0+∞}=∞d(u0,v6)=min{d(u0,v6),d(u0,u0)+c(u0,v6)}=min{∞,0+∞}=∞min{3,∞,5, ∞,∞}=3ui+1 =u1=v2 , 实际已求出d(u0,v2)=3, 路是u0v2i=1 S1={v1, v2}S1’={v3,v4,v5,v6}u1=v2d(u0,u1)=3d(u0,v3)=min{d(u0,v3),d(u0,u1)+c(u1,v3)}=min{∞,3+6}=9d(u0,v4)=min{d(u0,v4), d(u0,u1)+c(u1,v4)}=min{5,3+1}=4d(u0,v5)=min{d(u0,v5),d(u0,u1)+c(u1,v5)}=min{∞,3+∞}=∞d(u0,v6)=min{d(u0,v6),d(u0,u1)+c(u1,v6)}=min{∞,3+∞}=∞min{9,4,∞,∞}=4ui+1 =u2=v4 , 实际已求出d(u0,v4)=4, 路是u0v2v4i=2 S2={v1, v2 ,v4}S2’={v3,v5,v6}u2=v4d(u0,u2)=4d(u0,v3)=min{d(u0,v3), d(u0,u2)+c(u2,v3)}=min{9 ,4+3}=7d(u0,v5)=min{d(u0,v5), d(u0,u2)+c(u2,v5)}=min{∞,4+1}=5d(u0,v6)=min{d(u0,v6), d(u0,u2)+c(u2,v6)}=min{∞,4+∞}=∞min{7,5,∞}=5ui+1 =u3=v5 , 实际已求出d(u0,v5)=5, 路是u0v2v4 v5i=3 S3={v1, v2 ,v4 ,v5}S3’={v3,v6}u3=v5d(u0,u3)=5d(u0,v3)=min{d(u0,v3),d(u0,u3)+c(u3,v3)}=min{7 ,5+3}=7d(u0,v6)=min{d(u0,v6),d(u0,u3)+c(u3,v6)}=min{∞,5+6}=11 min{7,11}=7ui+1 =u4=v3 , 实际已求出d(u0,v3)=7, 路是u0v2v4 v3i=4 S3={v1, v2 ,v4 ,v5, v3} S3’={v6} u4=v3 d(u0,u4)=7 d(u0,v6)=min{d(u0,v6),d(u0,u4)+c(u4,v6)}=min{11,7+3}=10min{10}=10ui+1 =u5=v6 , 实际已求出d(u0,v6)=10, 路是u0v2v4 v3 v6i=5 (n-1) 时算法停止.例4、求关键路径。
离散数学第五章 函数

像与逆像: 映射的“提升”
设U和V是两个集合, f : U→V 是从U到V的一个函数, ρ(U)是U的幂集,ρ(V)是V的幂集。
像与逆像将从U到V的一个映射 f : U→V “提升” 为从U的幂集 ρ(U) 到V的幂集 ρ(V) 的映射
集合 A 在函数 f 下的 像 f (A)
U
f
V
A
f(A)
集合 B 在函数 f 下的 逆像 f -1(B)
U
f
V
-1
f (B)
B
例5.1.3 设 A={a, b, c, d, e} , B={1, 2, 3, 4} , φ: A→B, φ的定义如图所示。则
φ({a, b, c})={1, 2}
例:设 U={1,2,3,4},V={1,2,…,16},关系 f1={ <1,1>, <2,4>, <3,9>, <4,16> }, f2={ <1,1>, <2,3>, <4,4> }, f3={ <1,1>, <1,2>, <2,15>, <3,16>, <4,1> },
试判断哪些是函数?
解:f1 是,且 f1(a)=a2。 f2 不是,因为f2(3)=? f3 不是,因为两个f3(1)。
n×n×…×n = nm
m
映射:递归定义
例5.1.8 (1) 阶乘 n! f: N→N, f(0)=1, f(n+1)=f(n)(n+1), n∈N。
(但需要检查,是否都有射,是否没有一射多)
离散数学第五章__谓词逻辑详述

又如,在命题“武汉位于北京和广州之间” 中,武汉、北京和广州是三个个体,而“…位 于…和…之间”是谓词,它刻划了武汉、北京和 广州之间的关系。设P:…位于…和…之间,a: 武汉,b:北京,c:广州,则
P(a,b,c):武汉位于北京和广州之间。
定义5.1.2 一个原子命题用一个谓词(如P)和n 个有次序的个体常元(如a1,a2,…,an)表示 成P(a1,a2,…,an),称它为该原子命题的谓 词形式或命题的谓词形式。
注意:
1. n元谓词不是命题,只有其中的个体变元用特定个体或个 体常元替代时,才能成为一个命题。
例如,令S(x):x是大学生,这是一元谓词,不是命题; S(c):张明是位大学生,这就是一个命题。 2. 个体变元在哪些论域取特定的值,对命题的真值有影响。
例如,令S(x):x是大学生。若x的论域为某大学的计 算机系中的全体同学,则S(x)是真的;若x的论域是某中 学的全体学生,则S(x)是假的;若x的论域是某剧场中的 观众,且观众中有大学生也有非大学生的其它观众,则 S(x)是真值是不确定的。
例如,著名的亚里士多德三段论苏格拉底推理: 所有的人都是要死的, 苏格拉底是人, 所以苏格拉底是要死的。
根据常识,认为这个推理是正确的。若用命题逻 辑来表示,设P、Q和R分别表示这三个原子命题, 则有
P,Q┣ R
(P∧Q)→P, (P∧Q)→Q都是永真式
然而,(P∧Q)→R并不是永真式,故上述推理形 式又是错误的。一个推理,得出矛盾的结论, 问题在哪里呢? 问题就在于这类推理中,各命题 之间的逻辑关系不是体现在原子命题之间,而 是体现在构成原子命题的内部成分之间,即体 现在命题结构的更深层次上。对此,命题逻辑 是无能为力的。所以,在研究某些推理时,有 必要对原子命题作进一步分析,分析出其中的 个体词,谓词和量词,研究它们的形式结构的 逻辑关系、正确的推理形式和规则,这些正是 谓词逻辑的基本内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Discrete Math
Lecture 13
Page 2 of 4
Figure 2: Operation tables for Z6 What is e2 ∗ e1 ? e2 ∗ e1 = e1 By Axiom 3, e1 = e2 . Question: Can a group have more than one inverse element (a)? Inverse Proof. What is a1 ∗ (a ∗ a2 )? a1 ∗ (a ∗ a2 ) = a1 ∗ e = a1 What is a2 ∗ (a ∗ a1 )? a2 ∗ (a ∗ a1 ) = a2 ∗ e = a2 By Axiom 2 and 4: a1 = a2 (7) (5) (6) (3) (4) (2)
Definition Let S be a nonempty subset of G if S 1. closed under multiplication 2. closed with respect to inverse then S is a subgroup of G Example Even integers under addition (subgroup of integers under addition)
γ=
δ=
κ=
To find α ◦ β we do... (α ◦ β )(1) = α(β (1)) = α(3) = 2 (α ◦ β )(2) = α(β (2)) = α(1) = 1 (α ◦ β )(3) = α(β (3)) = α(3) = 3 (15) (16) (17) (18) Therefore (α ◦ β ) = γ . We could make a table of this: ◦ α β γ δ κ α β γ δ κ α α κ δ γ β β β γ δ κ α γ γ β α κ δ δ δ κ α β γ κ κ δ γ β α
2 e ab2 2 4
(8)
(9) (10)
b
3
b
(11) (12) (13) (14)
e
= eeb = eb =b
A Cayley Diagram represents same info as group operation table, there is one point for each element of G, arrows represent effect of applying generator. Let’s finally talk about permutations We will see that the set of Permutations form a group under the operation of function composition. -inverse of any bijection exists ⇒ inverse permutation exists (as by definition a permutation is a bijection from a set onto itself). Cont.
Permutations can be written as a product of disjoint cycles Question: When does any transitive subgroup of permutations contain a cyclic shift? We defined Leibniz Formula for the determinant using permutations:
n
det(A) =
σ ∈Sn
(−1)#inv
i=1
aσ(i),i
(19)
This function is O(n!) as described above. How can we solve systems of equations efficiently? Can we use this idea to determine whether solutions exist to other algebraic problems (not just systems of equations)? Next time: Gaussian elimination, upper triangular form
The End.
Some groups have an interesting property: All elements obtained by repeatedly applying group operation to a particular element. This is called a cyclic group, element is called generator 1 = 1 mod n 1 + 1 = 2 mod n 1 + 1 + 1 = 3 mod n not every number can be the generator Cont.
Discrete Math
Lecture 13
scribe: Alexandra Taylor-Gutt
Last time: permutations (bijections), combinatorics Algebra is more than the science of solving equations. In the 1800’s mathematicians discovered different types of algebras that involved a set, together with a rule for combining two elements of that set. Examples: -set of colors, operation of mixing two -set of musical sounds/notes, operation of combining sounds Boolean Algebra is foundation of Computer Science used to design logic gates and circuits: Write A+B for A ∪ B A • B for A ∩ B A+B=B+A A• B = B • A A• (B+C) = AB + AC A+∅=A A•∅=∅ Our study of algebra must include these new algebras and not be limited to solving equations. This motivates the idea of a group as the simplest algebraic structure. Groups are used to study symmetry in many forms, including things that, at first, may not seem to be related to mathematics. Definition A group (G, ∗) is a set G together with an operation ∗ that preserves the four axioms: 1. Closure 2. Associativity 3. Identity: ∃e∈G, s.t. e∗a = a and a∗e = a ∀a∈G 4. Inverse ∀a∈G ∃a-1 s.t. aa-1 =e and a-1 a=e Examples (Z, +) (Q* ,×) (Q, +) (R*,×) Check that these satisfy the four axioms above. Finite Groups Ex: Group of integers modulo n, under the operation of addition mod n called (Zn , +) or Zn , where Zn = {0, 1, 2, ..., n − 1}. We can also define the group (Zn , ×) of integers modulo n under multiplication. Let’s look at the operation tables for these finite groups:
Figure 1: Operation tables for Z5 Group need not be commutative (a commutative group is called Abelian after mathematician Niels Abel). Question: Can a group have more than one identity element (e)? Identity Proof. let e1 , e2 be two identity elements. What is e1 ∗ e2 ? e1 ∗ e2 = e2 (1)
Discrete Math
Lecture 13
Page 4 of 4
Note: f◦(g◦h) = (f◦g)◦h f is perm of A, f-1 is its inverse f-1 ◦f = e, f ◦f-1 = e We discussed operation of function composition which takes two functions and finds their composite. We saw the set of all n! permutations, Sn (the symmetric group) which was determined by n. Example remember last time, 3 people sit in chairs, then S3 contains the six permutations: = 1 1 1 2 2 2 2 1 3 3 3 3 α= 1 1 1 2 2 3 2 3 3 2 3 1 β= 1 3 1 3 2 1 2 2 3 2 3 1