第二讲六年级有理数的运算

合集下载

有理数的运算公式

有理数的运算公式

有理数的运算公式有理数的运算公式,那咱们可得好好说道说道。

咱先从加法说起哈。

有理数加法法则很简单,同号两数相加,取相同的符号,并把绝对值相加。

比如说,5 + 3,都是正数,符号相同,那就把它们的绝对值 5 和 3 相加,结果就是 8 呗。

而异号两数相加,绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

举个例子,5 + (-3),一个正数一个负数,正数的绝对值大,那就取正号,然后用 5 的绝对值 5 减去 3 的绝对值 3,结果就是 2 啦。

再来说说减法,其实减法就是加法的逆运算。

减去一个数,等于加上这个数的相反数。

就像 5 - 3 ,可以看成 5 + (-3) ,这样一转换,是不是就很好理解啦?乘法也不难。

两数相乘,同号得正,异号得负,并把绝对值相乘。

比如 2×3 ,同号,结果就是 6 ;而 2×(-3) ,异号,结果就是 -6 。

除法呢,除以一个不等于 0 的数,等于乘这个数的倒数。

比如说6÷3 ,就等于 6×1/3 ,结果是 2 。

我记得有一次给学生们讲这些运算公式的时候,有个小家伙特别有意思。

当时我在黑板上写了一道题:(-5) + 8 。

我就问大家答案是多少,那小家伙一脸迷茫地看着我,嘴里还嘟囔着:“这咋算呀?”我就引导他,先看符号,一个负数一个正数,正数的绝对值大,所以结果是正数,然后用 8 的绝对值 8 减去 5 的绝对值 5 ,就是 3 。

那小家伙恍然大悟的表情,我到现在都还记得,眼睛一下子亮了起来,大声说:“哦,原来是这样啊!”那一刻,我就觉得当老师可真有意思,能看到孩子们一点点地理解和掌握知识。

在实际应用中,有理数的运算公式用处可大了。

比如说咱们买东西算账的时候,商品价格有涨有跌,这价格的变化就涉及到有理数的运算。

还有气温的变化,今天比昨天升高或者降低了几度,这也是有理数的运算呀。

有理数的运算公式看起来好像有点复杂,但只要咱们多练习,多琢磨,其实很容易掌握的。

(五四制)六年级上册数学第二章有理数及其运算知识点

(五四制)六年级上册数学第二章有理数及其运算知识点

六年级上册数学期末复习知识梳理第二章有理数及其运算2.1 有理数重点:有理数的意义,用正负数表示相反数意义的量难点:按不同的标准对有理数进行分类解题技巧在用正数和负数表示一对具有相反意义的量时,“正”和“负”是相对而言的,用“正”来表示其中的一个量,就用“负”来表示另一个与之意义相反的量,但我们一般把“增加”“上涨”“盈利”“高于”等记为“正”,把与它们有相反意义的量记为“负”此外,在用正负数表示一对具有相反意义的量时,不要少了后面的单位。

知识点拨。

③相反意义的量包含两个要素:一是它们的意义要相反;二是它们都是数量。

④意义相反的量中的两个量必须是同类量,如节约汽油3t与浪费1t水就不是具有相反意义的量。

2.2 数轴重点:用数轴表示有理数难点:利用数轴表示有理数的大小解题方法1.在数轴上表示有理数的方法:在数轴上,对于不为零的有理数,可以先由这个数的符号确定它在数轴上原点的哪一边,再在相应的方向上确定它与原点相距几个单位长度,然后标上相应的点。

2.找出数轴上的点对应的有理数的步骤:(1)确定点与原点的位置关系(负左正右);(2)确定点与原点的距离。

知识方法要点:1.数轴上表示的两个数,右边的总是比左边大。

2.正数大于0,负数小于0,正数大于负数。

2.3 绝对值重点:相反数和绝对值的概念及应用。

难点:利用绝对值的概念比较两个负数的大小。

a (a>0)|a| 0 (a=0)互为相反数的两个数绝对值等于0a (a<0)解题方法1.利用数轴确定一个数的绝对值时,首先确定这个数在数轴上表示的点,然后确定这个点到原点的距离即可。

2.对于绝对值的计算,首先要判断这个数是正数、零,还是负数.如果绝对值里面的数是非负数,那么这个数的绝对值就是它本身;如果绝对值里面的数是负数,那么这个数的绝对值就是它的相反数。

知识点拨比较两个负数的大小,可以运用绝对值法,根据“两个负数,绝对值大的反而小”来比较大小;也可以运用数轴法,把要比较大小的两个负数在数轴上表示出来,右边的数总大于左边的数”来判断。

2022-2023学年上海六年级数学下学期同步知识点讲练 第02讲 有理数加减法带讲解

2022-2023学年上海六年级数学下学期同步知识点讲练 第02讲 有理数加减法带讲解

第02讲 有理数加减法(核心考点讲与练)一、有理数的加法1.有理数加法法则:(1)同号两数相加,取原来的符号,并把绝对值相加.(2)异号两数相加,绝对值相等时和为零;绝对值不相等时,其和的绝对值为较大的绝对值减去较小的绝对值所得的差,其和的符号取绝对值较大的加数的符号. (3)一个数同零相加,仍得这个数. 2.运算律:有理数加法运算律加法交换律 文字语言 两个数相加,交换加数的位置,和不变 符号语言a+b =b+a加法结合律文字语言三个数相加,先把前两个数相加,或者先把后两个数相加,和不变符号语言 (a+b)+c =a+(b+c)要点:交换加数的位置时,不要忘记符号. 二、有理数的减法 有理数减法法则:减去一个数,等于加上这个数的相反数.即()a b a b -=+-. 三、有理数加减混合运算 将加减法统一成加法运算,适当应用加法运算律简化计算.考点一:有理数的加法运算【例题1】计算:(1)(+20)+(+12); (2); (3)(+2)+(-11); (4)(-3.4)+(+4.3); (5)(-2.9)+(+2.9); (6)(-5)+0.【答案与解析】(1)(2)属于同一类型,用的是加法法则的第一条;(3)(4)属于同一类,用的是加法法则的第二条;(5)用的是第二条:互为相反数的两个数相加得0;(6)用的是法则的第三条.1223⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭(1)(+20)+(+12)=+(20+12)=+32=32; (2)(3)(+2)+(-11)=-(11-2)=-9 (4)(-3.4)+(+4.3)=+(4.3-3.4)=0.9 (5)(-2.9)+(+2.9)=0; (6)(-5)+0=-5.【总结升华】绝对值不等的异号两数相加,是有理数加法的难点,在应用法则时,一定要先确定符号,再计算绝对值.【变式训练1】计算: 【答案】【变式训练2】计算:(1) (+10)+(-11); (2) 【答案】(1) (+10)+(-11)=﹣(11-10)=﹣1;(2)考点二:有理数的减法运算【例题2】 计算:(1)(-32)-(+5); (2)(+2)-(-25).【思路点拨】此题是有理数的减法运算,先按照减法法则将减法转化为加法,再按照有理数的加法进行计算. 【答案与解析】法一:法二:(1)原式=-32-5=-32+(-5)=-37;(2)原式=2+25=27【总结升华】算式中的“+”或“-”既可以看作运算符号按法则进行计算,也可以看作是性质符号按多重符号化简进行计算.【变式训练1】若( )﹣(﹣2)=3,则括号内的数是( ) A . ﹣1 B . 1 C .5 D .﹣5【答案】B .12121123236⎛⎫⎛⎫⎛⎫-+-=-+=- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭113343⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭111113333433412⎛⎫⎛⎫⎛⎫-++=+-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭12-1+-23⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1212341-1+-=-1+=-1+=-22323666根据题意得:3+(﹣2)=1,则1﹣(﹣2)=3.考点三:有理数的加减混合运算【例题3】计算,能用简便方法的用简便方法计算.(1) 26-18+5-16 ; (2)(+7)+(-21)+(-7)+(+21) (3) (4) (5) (6) 【答案与解析】(1) 26-18+5-16=(+26)+(-18)+5+(-16) →统一成加法 =(26+5)+[(-18)+(-16)] →符号相同的数先加 = 31+(-34)=-3(2)(+7)+(-21)+(-7)+(+21)=[ (+7)+(-7) ] +[(-21)+(+21)] →互为相反数的两数先加 =0(3)→同分母的数先加 (4)→统一成加法→整数、小数、分数分别加(5) →统一同一形式(小数或分数),把可凑整的放一起⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21111-1+1++7+-2+-832432113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫--+-++-+-+ ⎪ ⎪⎝⎭⎝⎭132.25321.87584+-+1355354624618-++-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21111-1+1++7+-2+-832432⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦21111-1+-2+1+-8+733224()()⎡⎤=⎢⎥⎣⎦1-4+-7+74=3-34113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫--+-++-+-+ ⎪ ⎪⎝⎭⎝⎭113.5875573( 1.587)24⎛⎫⎛⎫=++-++-+- ⎪ ⎪⎝⎭⎝⎭11[3.587( 1.587)](57)5324⎡⎤⎛⎫⎛⎫=+-+++-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦312128544⎛⎫=++-= ⎪⎝⎭132.25321.87584+-+(2.25 2.75)(3.125 1.875)=-++(6)→整数,分数分别加【总结升华】在进行加减混合的运算时,(1)先将各式中的减法运算转化为加法运算;(2)观察各加数之间的关系,再运用“技巧”适当交换加数的位置,注意交换时各加数的带着符号一起交换. 【变式训练1】用简便方法计算:(1)(-2.4)+(-4.2)+(-3.8)+(+3.1)+(+0.8)+(-0.7) (2) 2)324(83)65()851(43-++-+-+ 【答案】 (1) 原式=[(-3.8)+ (-4.2)]+[ (-2.4)+ (-0.7) +(+3.1)]+(+0.8)=-8+0.8=-7.2 (2)原式=(2-1-4)+(34-58-56+38-23)=-3+[68-58+38+(-56-46)]=-3-1=-4考点四:有理数的加减混合运算在实际中的应用【例题4】邮递员骑车从邮局出发,先向南骑行2km 到达A 村,继续向南骑行3km 到达B 村,然后向北骑行9km 到C 村,最后回到邮局.(1)以邮局为原点,以向北方向为正方向,用1cm 表示1km ,画出数轴,并在该数轴上表示出A 、B 、C 三个村庄的位置; (2)C 村离A 村有多远? (3)邮递员一共骑了多少千米?【思路点拨】(1)以邮局为原点,以向北方向为正方向用1cm 表示1km ,按此画出数轴即可;(2)可直接算出来,也可从数轴上找出这段距离;(3)邮递员一共骑了多少千米?即数轴上这些点的绝对值之和. 【答案与解析】解:(1)依题意得,数轴为:;(2)依题意得:C 点与A 点的距离为:2+4=6(千米); (3)依题意得邮递员骑了:2+3+9+4=18(千米).【总结升华】本题主要考查了学生有实际生活中对数轴的应用能力,只要掌握数轴的基本知识即可.0.55 4.5=-+=1355354624618-++-1355354624618=--++++--1355(3546)()24618=-++-+-++-182********-++-=+2936=【变式训练1】华英中学七年级(14)班的学生分成五组进行答题游戏,每组的基本分为100分,答对一题加50分,答错一题扣50分,游戏结束后各组的得分如下表:第1组第2组第3组第4组第5组100 150 350 -400 -100(1)第一名超过第二名多少分?(2)第一名超过第五名多少分?【答案】由表看出:第一名350分,第二名150分,第五名-400分.(1) 350-150=200(分)(2) 350-(-400)=350+400=750(分)答:第一名超过第二名200分;第一名超过第五名750分.【变式训练2】某产粮专业户出售粮食8袋,每袋重量(单位:千克)如下:197,202,197,203,200,196,201,198.计算出售的粮食总共多少千克?【答案】法一:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这8个数的差的累计是:(-3)+(+2)+(-3)+(+3)+0+(-4)+(+1)+(-2)=-6200×8+(-6)=1594(千克)答:出售的粮食共1594千克.法二:197+202+197+203+200+196+201+198=1594(千克)答:出售的粮食共1594千克.考点五:数学思想在本章中的应用【例题5】(1)数形结合思想:有理数a在数轴上对应的点如图所示,则a,-a,1的大小关系.A.-a<a<1 B.1<-a<a C.1<-a<a D.a<1<-a(2)分类讨论思想:已知|x|=5,|y|=3.求x-y的值.【答案与解析】解:(1)将-a在数轴上标出,如图所示,得到a<1<-a,所以大小关系为:a<1<-a.所以正确选项为:D.(2)因为| x|=5,所以x为-5或5因为|y|=3,所以y为3或-3.当x=5,y=3时,x-y=5-3=2 当x=5,y=-3时,x-y=5-(-3)=8当x=-5,y=3时,x-y=-5-3=-8当x=-5,y=-3时,x-y=-5-(-3)=-2故(x-y )的值为±2或±8【变式训练1】若a 是有理数,|a|-a 能不能是负数?为什么? 【答案】解:当a >0时,|a|-a =a-a =0; 当a =0时,|a|-a =0-0=0; 当a <0时,|a|-a =-a-a =-2a >0.所以,对于任何有理数a ,|a|-a 都不会是负数.考点六:规律探索【例题6】将1,12-,13,14-,15,16-,…,按一定规律排列如下: 请你写出第20行从左至右第10个数是________.【思路点拨】通过观察题目所给的图形、表格或一段语言叙述,然后归纳总结,寻找规律. 【答案】1200-【解析】 认真观察可知,第1行有1个数,第2行有2个数,第3行有3个数,……,所以第20行有20个数,从第1行到第20行共有1+2+3+…+20=210个数,所以第20行最后一个数的绝对值应是1210;又由表中可知,凡是分母是偶数的分数是负数,故第20行最后一个数是1210-,以此类推向前10个,则得到第20行第10个数是1200-. 【总结升华】特例助思,探究规律,这类题主要是通过观察分析,从特殊到一般来总结发现规律,并将规律表示出来.【例1】计算:()()()246898100-++-+++-+.【难度】★★★ 【答案】50.【解析】()()()246898100-++-+++-+()()()=24689810025-++-+++-+⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦(共对)=222+++=225⨯ =50.【总结】考察有理数的加法.注意简便运算.【例2】 某单位一周中收支情况如下:524.5+元,274.3-元,490+元,100-元,29.7+元,123.6- 元,232.1-元.问该单位这一周,总共收入多少元?总共支出多少元?收支相抵后,余额是多少元?【难度】★★★【答案】共收入1044.2元,共支出730元,收支相抵后,余额为314.2元. 【解析】共收入为:()524.5++()490+()+29.7=1044.2+元, 共支出为:()274.3+-()100-()+123.6-()+232.1730-=-元 收支相抵为:()2.3147302.1044=-+元. 【总结】考察有理数的加法的实际应用.已知143a =-,566b =-,122c =-,求下列各式的值.(1)a b c --; (2)()b a c --; (3)a b c --; (4)a c b --.【难度】★★★【答案】(1)5;(2)5-;(3)5-;(4)328.【解析】(1)1511511146246222536236222a b c ⎛⎫⎛⎫⎛⎫--=-----=-++=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)()5115115564264261563263266b a c ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--=-----=---+=---=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦;(3)1511514624625362362a b c --=-----=--=-; (4)115115552426426168326326663a cb ⎛⎫⎛⎫--=-----=-++=+= ⎪ ⎪⎝⎭⎝⎭.【总结】考察有理数的加减法运算和运算律的综合应用. 【例3】 已知143a =-,566b =-,122c =-,求下列各式的值.(1)a b c --; (2)()b a c --; (3)a b c --; (4)a c b --.【难度】★★★【答案】(1)5;(2)5-;(3)5-;(4)328.【解析】(1)1511511146246222536236222a b c ⎛⎫⎛⎫⎛⎫--=-----=-++=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(5)()5115115564264261563263266b a c ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--=-----=---+=---=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦;(6)1511514624625362362a b c --=-----=--=-; (7)115115552426426168326326663a cb ⎛⎫⎛⎫--=-----=-++=+= ⎪ ⎪⎝⎭⎝⎭.【总结】考察有理数的加减法运算和运算律的综合应用.【例4】 如果2113x ⎛⎫+-= ⎪⎝⎭,那么x 等于______.【难度】★★★【答案】322=x 或223x =-.【解析】因为2113x ⎛⎫+-= ⎪⎝⎭,所以2211233x ⎛⎫=--= ⎪⎝⎭,所以322=x 或223x =-.【总结】考察有理数的加减法和绝对值运算. 【例5】 计算:135********-+-+-++-.【难度】★★★【答案】50-. 【解析】原式()()()()1357911979925=-+-+-++-(共对)()()()222=-+-++-()=252⨯- 50=-.【总结】考察有理数的加减法运算,注意找出规律进行简便运算.【例6】 计算:1234997998999999999999999999-+--+---+-. 【难度】★★★【答案】999499.【解析】原式1234997998999999999999999999=-+-+--+1234997998(499999999999999999999⎛⎫⎛⎫⎛⎫=-++-+++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭共对)111=+499999999999++(共个)499=999.【总结】考察有理数的加减法运算及与绝对值的综合计算,注意要简便运算.【例7】 如果规定运算()()23a b a b ⊗=---,求73124⎛⎫⊗- ⎪⎝⎭的值.【难度】★★★【答案】1253-.【解析】7373795=2331241246412⎡⎤⎛⎫⎛⎫⎛⎫⊗--⨯--⨯-=--=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 【总结】本题主要考察新运算与有理数的加减法的综合运用.题组A 基础过关练一、单选题1.(2020·上海市静安区实验中学课时练习)下列运算中正确的是( )分层提分A .3.58( 1.58) 3.58( 1.58)2--=+-=B .( 2.6)(4) 2.64 6.6---=+=C .2727270()()()1555555-+-=+-=+-=-D .3439571()858540-=+-=-【答案】D【分析】根据有理数的加减法法则进行分析解答即可.【详解】A 选项中,因为3.58-(-1.58)=3.58+1.58=5.16,所以A 中计算错误; B 选项中,因为(-2.6)-(-4)=-2.6+4=1.4,所以B 中计算错误;C 选项中,因为27279055555⎛⎫-+-=--=- ⎪⎝⎭,所以C 中计算错误;D 选项中,因为3439571858540⎛⎫-=+-=- ⎪⎝⎭,所以D 中计算正确. 故选D.【点睛】熟知“有理数的减法法则:减去一个数等于加上这个数的相反数”是解答本题的关键.2.(2021·上海·九年级专题练习)若数轴上表示-1和-3的两点分别是点A 和点B ,则点A 和点B 之间的距离是( ) A .-4 B .-2 C .2 D .4【答案】C【分析】根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得解. 【详解】解:AB=|-1-(-3)|=2. 故选:C .【点睛】本题考查了数轴上两点间的距离及有理数的减法运算,正确表示数轴上两点间距离并准确计算是解题关键.二、填空题3.冬季某日,上海最低气温是3℃,北京最低气温是-5℃,这一天上海的最低气温比北京的最低气温高___________℃. 【答案】8【分析】求上海的最低气温比北京的最低气温高多少,即用上海的最低气温减去北京的最低气温.【详解】解:3-(-5)=8℃.∴这一天上海的最低气温比北京的最低气温高8℃. 故答案为:84.(2018·上海市娄山中学七年级单元测试)有理数____加上3-54所得的和是6.【答案】1134【分析】设有理数为a 则列式a+(3-54)=6,运用有理数的加减法计算求解即可. 【详解】设有理数为a 则a+(3-54)=6 ∴a=6+354=1134【点睛】此题考查了有理数加减法,熟练掌握运算法则是解题的关键.5.计算:|23-|+13=______. 【答案】1试题分析:解:原式=+=1,解本题时,要去掉绝对值符号后再进行运算.考点:绝对值的定义及分数运算.点评:熟知绝对值的定义,正数的绝对值等于它本身,负数的绝对值等于它的相反数,零的绝对值还是零.本题属于基础题.难度及小,易得.6.用字母a 、b 、c 表示有理数加法的交换律是________________,结合律是____________________.【难度】★【答案】交换律:a b b a +=+;结合律:()()a b c a b c ++=++.【解析】考察有理数运算律的理解.7.计算:()31 1.24⎛⎫-++= ⎪⎝⎭_____,()31 1.24⎛⎫--+= ⎪⎝⎭_____,()31 1.24⎛⎫-+-= ⎪⎝⎭_____.【难度】★【答案】0.55-; 2.95-; 2.95-.【解析】同号两数相加:取原来的符号,并把绝对值相加;异号两数相加:绝对值相等时和 为零;绝对值不相等时,其和的绝对值为较大的绝对值减去较小的绝对值所得的差,其和的符号取绝对值较大的加数的符号.【总结】考察有理数的加减法法则的运用.8.计算:21131333⎛⎫⎛⎫--+-= ⎪ ⎪⎝⎭⎝⎭______,()()137 5.42⎛⎫-+++= ⎪⎝⎭______.【难度】★ 【答案】31;9.9.【解析】同号两数相加:取原来的符号,并把绝对值相加;异号两数相加:绝对值相等时和为零;绝对值不相等时,其和的绝对值为较大的绝对值减去较小的绝对值所得的差,其和的符号取绝对值较大的加数的符号.【总结】考察有理数的加减法法则的运用.三、判断9.判断下列算式是否正确:(1)()()220-+-=;( ) (2)()()6410-++=-;( )(3)()033+-=+;( ) (4)512663⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭;( ) (5)337744⎛⎫⎛⎫--+-=- ⎪ ⎪⎝⎭⎝⎭.( )【难度】★ 【答案】(1)×;(2)×;(3)×;(4)√;(5)√.【解析】(1)错误,正确答案为()()224-+-=-;(2)错误,正确答案为()()642-++=-;(3)错误,正确答案为()033+-=-.【总结】考察有理数的运算,注意法则的准确运用.四、解答题10.(2018·上海市娄山中学单元测试)3512+1-8-6.75412 【答案】1712-【分析】原式利用有理数加减混合运算计算即可求出值.【详解】原式=710127412+--412 =101727412-+(-)124 =10112512--=101712-=1712-【点睛】本题考查了有理数的加减混合运算,熟练掌握运算法则是正确解此题的关键.11.(2020·上海市静安区实验中学课时练习)计算:(1)(2)(9)--- (2)011- (3)5.6( 4.8)-- (4)13(4)524-- 【答案】(1)7;(2)-11;(3)10.4;(4)1104-. 【分析】根据有理数的减法法则和加法法则进行分析解答即可.【详解】(1)()()29297---=-+= ;(2)()01101111-=+-=- ;(3)5.6-(-4.8)=5.6+4.8=10.4;(4)13231(4)5(45)1024444--=-+=-.【点睛】熟记“有理数的减法法则和加法法则”是解答本题的关键.12.(2020·上海市静安区实验中学课时练习)计算:(1)23+(-17)+6+(-22)(2)(-2)+3+1+(-3)+2+(-4)【答案】(1)-10(2)-3【分析】根据有理数的加法法则(1)、(2)进行计算【详解】(1)23+(-17)+6+(-22)=29+(-39)=-(39-29)=-10(2)(-2)+3+1+(-3)+2+(-4)=(-9)+6=-(9-6)=-3【点睛】本题考查的是有理数的加法,关键是要掌握加法法则.13.(2020·上海市静安区实验中学课时练习).10袋大米,以每袋50千克为准:超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+0.5,+0.3,0,-0.2,-0.3,+1.1,-0.7,-0.2,+0.6,+0.7.10袋大米共超重或不足多少千克?总重量是多少千克?【答案】超重1.8千克,总重量是501.8(千克)【详解】本题考查了有理数的运算在实际中的应用,“正”和“负”相对,超过的千克数记为正数,不足的千克数记为负数,把称重记录的数据相加,和为正说明超过了,和为负说明不足;求10袋大米的总重量,可以用10×50加上正负数的和即可.(+0.5)+(+0.3)+0+(-0.2)+(-0.3)+(+1.1)+(-0.7)+(-0.2)+(+0.6)+(+0.7)=1.8(千克),50×10+1.8=501.8(千克). 题组B 能力提升练一、单选题1.(2020·上海市静安区实验中学课时练习)下列各式可以写成a b c -+的是( )A .()()a b c -+-+B .()()a b c -+--C .()()a b c +-+-D .()()a b c +--+【答案】B【分析】根据有理数的加减混合运算的符号省略法则化简,即可求得结果.【详解】根据有理数的加减混合运算的符号省略法则化简,得,A的结果为a-b-c,B的结果为a-b+c,C的结果为a-b-c,D的结果为a-b-c,故选:B.【点睛】此题考查有理数的加减混合运算,解题关键在于掌握去括号法则:+(+)=+,+(-)=-,-(+)=-,-(-)=+.2.(2019·上海·七年级课时练习)有理数a、b在数轴上的位置如图所示,则a b+的值()A.大于0B.小于0C.小于a D.大于b 【答案】A【分析】先根据数轴的特点判断出a,b的符号,再根据其与原点的距离判断出其绝对值的大小,然后根据有理数的加法法则得出结果.【详解】根据a,b两点在数轴上的位置可知,a<0,b>0,且|b|>|a|,所以a+b>0.故选A.【点睛】此题考查数轴,绝对值,有理数的加法法则.解题关键在于用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.二、填空题3.(2021·上海·九年级专题练习)如图,把一个面积为1的正方形等分成两个面积为12的矩形,接着把其中一个面积为12的矩形等分成两个面积为14的矩形,再把其中一个面积为14的矩形等分成两个面积为18的矩形,如此进行下去,试利用图形所揭示的规律计算:111111111=248163264128256++++++++__________.【答案】511 256【分析】根据题意及图形可得12=1-12,12+14=1-14,12+14+18=1-18,….依此规律可进行求解.【详解】解:由图及题意可得:12=1-12,12+14=1-14,12+14+18=1-18,…; 依此规律可得:111111111=248163264128256++++++++511256; 故答案为:511256. 【点睛】本题主要考查有理数的加减,关键是根据题意及图形得到规律,然后进行求解即可.三、 解答题4.(2020·上海市静安区实验中学课时练习)计算:(1)()()()7935------;(2) 4.2 5.78.410-+-+;(3)15214632-++-. 【答案】(1)-8;(2)3.1;(3)34. 【分析】根据有理数的加、减混合运算的相关法则进行计算即可.【详解】(1)()()()()()()793579351688⎡⎤------=-+-++=-+=-⎣⎦ ;(2)()()4.2 5.78.410 4.28.4 5.71012.615.7 3.1-+-+=--++=-+=;(3)15214632-++-=11523334263424⎛⎫⎛⎫--++=-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】熟悉“有理数加减混合运算的相关运算法则,能灵活的使用运算律把符号相同的数结合到一起先相加”是解答本题的关键.5.(2018·上海普陀·期中)510.474( 1.53)166----【答案】-4.【分析】先把减法运算转化为加法运算,再利用加分的交换结合律计算即可.【详解】解:原式=510.474+1.53166--=510.47 1.534166+--=2-6=-4. 【点睛】本题考查有理数的加减混合运算.6.(2020·上海市静安区实验中学课时练习)计算:(1)44413()()()13171317-+-++- (2)2111(4)(3)6(2)3324-+-++- 【答案】(1)-1;(2)334- 【分析】(1)利用有理数加法法则及加法运算律进行计算即可;(2)利用有理数加法法则及加法运算律进行计算即可.【详解】解:(1)原式44413=+13131717⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫-+-+- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦()=0+1-=1-;(2)原式211143623324⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ 1844=-+343=-. 【点睛】本题考查了有理数的加法,熟练掌握加法法则及加法运算律是解题的关键.7.(2020·上海市静安区实验中学课时练习)计算:1216.22[(3)]10.733-+-+--- 【答案】11.5【分析】根据有理数的加减混合运算法则,先计算出绝对值和相反数,再按照加法的交换律和结合律,将同类型数结合一起进行简便运算,得到结果.【详解】原式=1216.2+2310.733+- =()1216.210.7+2333⎛⎫-+ ⎪⎝⎭ =5.5+6=11.5.【点睛】考查有理数的加减混合运算法则,学生要熟练掌握求一个数的绝对值和相反数的方法,并结合运算律进行简便运算解出此题.8.计算:(1)515 6.54 3.4618--; (2)3492318.725.254⎛⎫--- ⎪⎝⎭; (3)225103 1.2850.72376----. 【难度】★★【答案】(1)1855;(2)18.7;(3)4219-. 【解析】(1)()555515 6.54 3.4615 6.54 3.461510518181818--=-+=-=; (2)()33492318.725.254918.7+2325.25=4918.7+4918.744⎛⎫=-+-=+--+-= ⎪⎝⎭原式; (3)()()2252252319103 1.2850.72=1035 1.280.72123763764242------+--=+-=-. 【总结】考察有理数的加减混合运算,注意能简便运算时要简便运算.9.计算:(1)111113131354543--+-; (2)135154723464--++.【难度】★★【答案】(1)313-;(2)0. 【解析】(1)11111111111131313331130033545435544333⎛⎫⎛⎫--+-=-+-+-=+-=- ⎪ ⎪⎝⎭⎝⎭; (2)1351153111547257422203464364422⎛⎫⎛⎫--++=-++-+=-= ⎪ ⎪⎝⎭⎝⎭. 【总结】考察有理数的加减混合运算,注意能简便运算时要简便运算.10.计算:(1)5353432 3.151********⎛⎫⎛⎫⎛⎫+-+--++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)711145438248⎛⎫⎛⎫⎛⎫⎛⎫---+--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 【难度】★★【答案】(1)15.3-;(2)436-. 【解析】(1)原式()55334231 3.1522 3.15 3.1512122222⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+-+-++-=+--=- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦;(2)原式7111111134354854246882424244⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=--+--+-=-++-=-+-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 【总结】考察有理数的加减混合运算,注意能简便运算时要简便运算.11.计算:()9585 5.3753117817⎡⎤⎡⎤⎛⎫⎛⎫-----+ ⎪ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦. 【难度】★★【答案】16. 【解析】原式9589855 5.3753151 5.375379161781717178⎛⎫⎛⎫=+++=+++=+= ⎪ ⎪⎝⎭⎝⎭.【总结】考察有理数的加减混合运算,注意能简便运算时要简便运算.12.(2019·上海黄浦·八年级课时练习)某红绿灯路口,以每天通过100辆小汽车为标准,超过的小汽车数记为正.测得某周通过该红绿灯路口的小汽车数量与标准量相比的情况如下表:最多,有多少辆?(2)这一周平均每天有多少辆小汽车通过这个红绿灯路口?【答案】(1)星期四经过该红绿灯路口的小汽车最少,为93辆;星期日经过该红绿灯路口的小汽车最多,为113辆;(2)故平均每天有103辆小汽车通过这个红绿灯路口.【分析】(1)分析统计表可得结论;(2)由(8+5-2-7-6+10+13)÷7+100可得结论..【详解】(1)从统计表格中得出星期四经过该红绿灯路口的小汽车最少,为93辆;星期日经过该红绿灯路口的小汽车最多,为113辆.(2)(8+5-2-7-6+10+13)÷7+100=103(辆),故平均每天有103辆小汽车通过这个红绿灯路口.【点睛】考核知识点:平均数.理解定义和题意是关键.13.(2019·上海·七年级课时练习)阅读下面的文字,并回答问题:1的相反数是﹣1,则1+(﹣1)=0;0的相反数是0,则0+0=0;2的相反数是﹣2,则2+(﹣2)=0,故a,b 互为相反数,则a+b=0;若a+b=0,则a,b 互为相反数。

第二讲六年级有理数的运算

第二讲六年级有理数的运算

第二讲 有理数的运算【知识网络】⎧⎪⎨⎪⎩有理数的加、减运算法则有理数的运算有理数的乘、除法运算法则混合运算模块一:有理数的加、减运算法则【引例】观察下面实例:足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”,它们的和叫做净胜球.比如,赢3球记为+3,输2球记为-2.学校足球队在一场比赛中的净胜球数可能有以下各种不同的情形:(1)上半场赢了3球,下半场赢了2球,那么净胜球数为5球.也就是(+3)+(+2)=+5 ①(2)上半场输了2球,下半场输了1球,那么净胜球数为3球.也就是②(3)上半场赢了3球,下半场输了2球,那么净胜球数为1球,也就是③(4)上半场输了3球,下半场赢了2球,那么净胜球数为1球,也就是④(5)上半场赢了3球,下半场不输不赢,那么净胜球数为3球,也就是⑤(6)上半场输了2球,下半场两队都没有进球,那么净胜球数为2球,也就是⑥(7)上半场打平,下半场也打平,那么净胜球数为0,也就是⑦上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在我们大家仔细观察比较这7个算式,看能不能从这些算式中得到启发,想办法归纳出进行有理数加法的法则?也就是结果的符号怎么定?绝对值怎么算?【知识导航】1.有理数加法法则:⑴同号两数相加,取的符号,并把相加;⑵绝对值不相等的异号两数相加,取符号,并用的绝对值减去的绝对值,互为相反数的两个数相加得;⑶一个数同0相加,仍得。

注:有理数加法的运算步骤:(1)先判断两个加数的符号(是同号还是异号,确定用哪条法则)(2)再确定和的符号(是“+”还是“—”号)(3)求各加数的绝对值,并确定绝对值是相加还是相减2.有理数加法运算律:①有理数的加法交换律是:两个数相加,交换两个加数的位置,和不变.式子表示为:②有理数的加法结合律是:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.式子表示为:③交换律和结合律可以推出:三个以上有理数相加,可以任意交换加数的位置,也可先把其中的几个数相加,无论各数相加的先后次序如何,其和不变。

第二讲有理数的运算

第二讲有理数的运算

第2讲 有理数的运算一、知识梳理1.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

(3)一个数同0相加,仍得这个数。

2.有理数的加法步骤: (1).确定和的符号; (2).求加数的绝对值; (3).确定两个数的绝对值的和或差。

3.加法交换律、结合律在有理数的加法中仍然适用加法交换律:a + b = b + a 结合律:(a + b) +c = a +(b + c) =( a + c) + b 灵活运用加法运算律,可以使运算简便,通常有下列情形:① 把互为相反数的数结合在一起,称“相反数结合法”; ② 把同分母的分数结合在一起,称“同分母结合法”; ③ 把能凑整的数结合在一起,称“凑整结合法”; ④ 把同号的数结合在一起,称“同号结合法”。

1.有理数减法的意义:已知两个数的和及其中一个加数,求另一个加数的运算,叫做减法运算。

减法是加法的逆运算,即减法运算可以转化为加法运算.2.有理数减法法则:减去一个数等于加上这个数的相反数。

3.减法运算的步骤是: (1)将减法转化为加法:a -b =a +(-b );(2)按有理数的加法法则运算.注意:(1) 在运用减法法则时,注意两个符号的变化,一是运算符号减号变为加号,二是性质符号减数变成它的相反数;(2)减法法则不能与加法法则中的两个异号的数相加混淆;(3)有理数的减法法则中,被减数与减数不能互换,减法没有交换律。

1.乘法的符号法则: 两数相乘,“同号得正,异号得负”,并把绝对值相乘。

任何数与0相乘,积仍为0。

2.有理数的乘法运算的步骤:(1)先确定积的符号; (2)求出积的绝对值相。

3.几个有理数相乘的积的符号确定:(1)几个有理数相乘,只要有一个数为0,则积为0;(2)几个不为0的有理数相乘,积的符号由负因数的个数决定,当负因数的个数为奇数个时,积为负;当负因数的个数为偶数个时,积为正。

六年级第二学期数学第二课 有理数的加减法

六年级第二学期数学第二课 有理数的加减法

预备年级第二学期数学第二课 有理数的加减法知识要点:1、有理数的加减法的运算法则2、有理数的加法与减法的互逆关系3、利用运算律进行有理数的加减法的简便运算4、去括号法则:括号前是正号,去括号时括号内的各个加数的符号不变;括号前是负号,去括号时括号内的各个加数的符号都改变符号。

5、符号“—”有两重性:如在53-中“—”是运算符号——减号;在3+(-5)中“—”是性质符号——负号。

例题讲解:例1、如果我们规定盈利为正,那么亏损为负。

如盈利-120元就是亏损120元。

一家商店2005年上半年盈利1.2万元,下半年盈利1.8万元;2006年上半年盈利-0.3万元,下半年盈利0.8万元;2007年上半年盈利-0.4万元,下半年盈利-0.2万元。

那么这家商店每年是盈利还是亏损?盈利或亏损各多少万元?例2计算:(1)()()1525-+- (2)⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-4332 (3)⎪⎭⎫⎝⎛-+5182.7(4)5-(-5) (5) ⎪⎭⎫⎝⎛--3210 (6)⎪⎭⎫ ⎝⎛---103352例3计算:(1)()()17152335-++-+ (2)⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-++512834.2375.0(3)()21432743---⎪⎭⎫⎝⎛-(4)⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛--432126117例4已知一辆小货车从A 地出发,先向东行驶5千米,卸货后再向西行驶23千米装上另一批货物,然后又向东行驶10千米后停下来,问小货车最后停在何处?例5一天早晨的气温是-2℃,中午气温上升8℃,傍晚气温又下降5℃,问傍晚的气温是多少?例6已知点A 、B 、C 在数轴上对应的数分别是a 、b 、c 化简c b c a b a +++++CO B A练习1、计算:()=+-03 ,=⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛-4131 ,=+⎪⎭⎫ ⎝⎛-312211 。

2、判断下列两数和的符号:()⎪⎭⎫ ⎝⎛-+-3255: ():0001.0+-;819918⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+()78-+-;3、计算:()()()=-+-++31316 ;=++⎪⎭⎫ ⎝⎛-326513328 ;()()=-+-+5.767.4 ;()=⎪⎭⎫ ⎝⎛-+-+4119925.2 ;=+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+25.065211431;=⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-+4161534361;=⎪⎭⎫ ⎝⎛---433535; =⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛---8121434、在下列各式的空格中填入适当的数,是使等式成立。

有理数的乘除运算ppt课件

B.乘积是1的两个数互为相反数
C.积比每个因数都大
D.几个不是0的数相乘,负因数的个数是偶数时,积为正
04
课堂练习
【知识技能类作业】选做题:
3. 计算:(1)(−75)÷(−25);


(2)2 ÷(−1 );



(3)0÷(−7 )

解:(1)(−75)÷(−25)
=75÷25
=3.


(2)2 ÷(−1 )
-25
5÷(− )=____

0
0÷(-2)=____
观察上面的算式及计算结果,你有什么发现?换一些算式再试一试,
并与同伴进行交流。
03
新知讲解
有理数的除法法则
两数相除,同号得 正 ,异号得 负 ,并把绝对值 相除 ;
0除以任何一个非0的数都得 0
.
0不能作除数
03
新知讲解
例4计算
(1)(-15)÷(-3);
第二章 有理数及其运算
2.3 有理数的乘除运算
01
教学目标
1.了解有理数除法的意义,掌握有理数除法法则,会进行有理数的
除法运算,体会除法与乘法的转化关系;
2.学生理解有理数倒数的意义,能熟练地进行有理数加减乘除混合
运算;
3.能够利用有理数的除法法则进行准确计算,同时能够进行有理数
的混合运算;
4.经历探索有理数的除法法则及运算的过程,培养学生观察、归纳、

(− );

(− )( Nhomakorabea ÷(2)原式=

(− )

÷

(− )


16×(− )×

第二讲 有理数的乘、除、乘方运算

第二讲 有理数的运算课前小测:1、一个数的绝对值是 6 ,这个数是 。

2、绝对值小于3的整数有 个。

3、119-的相反数的倒数是 。

4、最小的正整数是____,最大的负整数是_____,绝对值最小的有理数是_______5、 河道中的水位比正常水位低0.2m 记作-0.2m ,那么比正常水位高0.1m 记作________。

6、一潜艇所在深度是-80米,一条鲨鱼在艇上30m 处,鲨鱼所在的深度是________。

7、在数轴上,a 表示的点在b 表示的点的右边,且6,3a b ==,则a b -的值为( )。

8、计算 (1) 24-(-16)+(-25)-15 (2) -7.2+3.9-8.4+12(3) 53141553266767⎛⎫⎛⎫⎛⎫⎛⎫-+-++--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(4)(-1.5)+134⎛⎫+ ⎪⎝⎭+(+3.75)+142⎛⎫- ⎪⎝⎭学习目标:1.复习有理数的乘、除运算;2.复习有理数的乘方运算;3.复习有理数混合运算法则;学习重点:有理数的乘、除、乘方运算。

学习难点:有理数的混合运算法则的理解。

学习方法:启发式教学。

知识梳理:考点一:有理数的乘法知识点:乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数和0相乘都得0。

几个不等于0的数相乘,积的符号由负因数的个数决定;当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。

几个数相乘,有一个因数为0,积就为0。

乘法交换律:ab=ba 乘法结合律:abc=a (bc ) 乘法分配律:a (b+c )=ab+bc典例分析:【例1】计算 1) )43()16(-⨯-; 2) (215-)×313; 3) )5(4)3(2)1(-⨯⨯-⨯⨯- ;4))2016(0)25.0(8-⨯⨯-⨯ 【例2】用乘法运算律进行简便运算:1))51()67(15)76(-⨯-⨯⨯-; 2))12()216141(-⨯+-【变式训练】计算:1))(313-⨯; 2))245()48(-⨯-;3))2(4)5()5(-⨯⨯-⨯-; 4))323(0)323()5(-⨯⨯-⨯-5))125.0()7()8(-⨯-⨯-;6)3177317123175⨯-⨯+⨯-考点二:有理数的除法知识点:除法法则1:除以一个数等于乘上这数的倒数,即a ÷b=b a =a ·b1(b ≠0即0不能做除数)。

山东省六年级第二章有理数知识点总结

有理数是指可以表示为两个整数的比值的数,包括正整数、负整数和零。

1.有理数的表示:-正有理数:可以用正整数表示,如1、2、3等。

-负有理数:可以用负整数表示,如-1、-2、-3等。

-零:可以用0表示。

2.有理数的比较:-正数比较大小:数越大,值越大。

-负数比较大小:数越小,值越小。

绝对值越大,值越小。

-正数和负数比较大小:正数大于负数。

-负数和负数比较大小:绝对值越大,值越小。

3.有理数的运算:-加法:正数加正数为正数,负数加负数为负数,正数加负数取绝对值较大的数的符号。

-减法:正数减正数为正数,负数减负数为负数,正数减负数取绝对值较大的数的相反数的符号。

-乘法:正数乘正数为正数,负数乘负数为正数,正数乘负数为负数。

-除法:正数除以正数为正数,负数除以负数为正数,正数除以负数为负数。

4.有理数的四则运算:-加法:将两个有理数的绝对值相加,结果的符号由原数的符号决定。

-减法:将第二个有理数取相反数,再进行加法运算。

-乘法:将两个有理数的绝对值相乘,结果的符号由原数的符号决定。

-除法:将第二个有理数取倒数,再进行乘法运算。

5.有理数的绝对值:-正数的绝对值是它本身,如3,=3-负数的绝对值是它的相反数,如-3,=3-零的绝对值是0,如0,=0。

6.有理数的相反数:-正数的相反数是负数,如-3是3的相反数。

-负数的相反数是正数,如-(-3)=37.有理数的数轴表示:-正数在数轴上的表示是向右的箭头。

-负数在数轴上的表示是向左的箭头。

8.有理数的比例关系:-正数之间的比例关系:数越大,比值越大。

-正数和负数之间的比例关系:负数的绝对值越大,比值越小。

总结一下,有理数是指可以表示为两个整数的比值的数,包括正整数、负整数和零。

有理数的比较可以根据正数和负数的大小关系进行判断,有理数的四则运算则遵循相应的规则进行运算。

有理数也可以通过绝对值和相反数的概念进行处理。

在数轴上,正数和负数分别用向右和向左的箭头表示。

有理数的运算法则和运算顺序

加法:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;一个数同零相加,仍得这个数。

减法:减去一个数等于加上这个数的相反数。

乘法:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同零相乘都得零。

几个不为零的有理数相乘,负因数有偶数个时积为正,负因数有奇数个时积为负,如果有一个因数为零,积就为零。

除法:除以一个不为零的数,等于乘以这个数的倒数;两数相除,同号得正,异号为负;零除以任意非零的数都得零。

在数学的学习中,你肯定会学到一个概念,这就是有理数。

有理数是整数和分数的统称,要想熟练地对有理数进行运算,这就需要我们学会有理数的运算法则。

有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加。

⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

⑶一个数和0 相加,仍然得这个数。

两个数相加,交换加数的位置,和不变。

有理数减法法则:减去一个数,等于加这个数的相反数。

如a-b=a+-b 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0 相乘,都得0。

乘积是1 的两个数互为倒数。

几个不是0 的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。

两个数相乘,交换因数的位置,积不变。

如ab=ba。

三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。

如(ab)c=a(bc)一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

如a(b+c)=ab+ac 用字母x 表示任意一个有理数,3 与x 的乘积记为3x,4 与x 的乘积记为4x,则式子3x+4x 是3x 与4x 的和,3x 与4x 叫做这个式子的项,3和4分别是着两项的系数。

通常,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,如ax +bx=(a+b)x 上式中x 是字母因数,a 与b 分别是ax 与bx 这两项的系数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二讲 有理数的运算【知识网络】⎧⎪⎨⎪⎩有理数的加、减运算法则有理数的运算有理数的乘、除法运算法则混合运算模块一:有理数的加、减运算法则【引例】观察下面实例:足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”,它们的和叫做净胜球.比如,赢3球记为+3,输2球记为-2.学校足球队在一场比赛中的净胜球数可能有以下各种不同的情形:(1)上半场赢了3球,下半场赢了2球,那么净胜球数为5球.也就是(+3)+(+2)=+5 ①(2)上半场输了2球,下半场输了1球,那么净胜球数为3球.也就是②(3)上半场赢了3球,下半场输了2球,那么净胜球数为1球,也就是③(4)上半场输了3球,下半场赢了2球,那么净胜球数为1球,也就是④(5)上半场赢了3球,下半场不输不赢,那么净胜球数为3球,也就是⑤(6)上半场输了2球,下半场两队都没有进球,那么净胜球数为2球,也就是⑥(7)上半场打平,下半场也打平,那么净胜球数为0,也就是⑦上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在我们大家仔细观察比较这7个算式,看能不能从这些算式中得到启发,想办法归纳出进行有理数加法的法则?也就是结果的符号怎么定?绝对值怎么算?【知识导航】1.有理数加法法则:⑴同号两数相加,取的符号,并把相加;⑵绝对值不相等的异号两数相加,取符号,并用的绝对值减去的绝对值,互为相反数的两个数相加得;⑶一个数同0相加,仍得。

注:有理数加法的运算步骤:(1)先判断两个加数的符号(是同号还是异号,确定用哪条法则)(2)再确定和的符号(是“+”还是“—”号)(3)求各加数的绝对值,并确定绝对值是相加还是相减2.有理数加法运算律:①有理数的加法交换律是:两个数相加,交换两个加数的位置,和不变.式子表示为:②有理数的加法结合律是:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.式子表示为:③交换律和结合律可以推出:三个以上有理数相加,可以任意交换加数的位置,也可先把其中的几个数相加,无论各数相加的先后次序如何,其和不变。

式子表示为:注:对于三个以上有理数相加,按下列过程计算比较简便:(1)凑零、凑整:互为相反数的两个数结合先加;和为整数的加数结合先加;(2)同号集中:按加数的正负分成两类分别结合相加,再求和;(3)同分母结合:把分母相同或容易通分的结合起来;(4)带分数拆开:计算含带分数的加法时,可将带分数的整数部分和分数部分拆开,分别结合相加。

注意带分数拆开后的两部分要保持原来分数的符号。

3.有理数的减法:减去一个数,等于加上这个数的。

用式子表示为:。

①进行有理数运算时,首先应弄清减数的符号(是“+”,还是“-”)。

②将有理数减法转化为加法时,要同时改变两个符号:一个是运算符号由“-”变为“+”,另一个是减数的性质符号。

③今天学习有理数减法和小学减法意义相同,就是:已知两数和与其中一个加数,求另一个加数的运算。

④数轴上表示有理数a,b的两点间距离等于|a-b|(或|b-a|)【典型例题】例1.填表:加数加数和的组成和-12 3 符号 绝对值18 8 -9 16 -9-5例2.计算:(1)(﹣3)+(﹣9); (2) (﹣21)+(﹢31)例3. 计算:(1)(-9)+(-8); (2)(﹢465)+(﹣321);(3)(﹣5.25)+541; (4)(﹣20032002)+0。

例4. 一天,小明上午到银行从存折上取出80元,下午又存入了50元,结果存折上的钱是多了还是少了?多(少)多少?例5.(1) 16+(-45)+ 24 +(-32) (2)()110.125220.2548⎛⎫++-+- ⎪⎝⎭(3)(-2.8)+3+1+(-3)+2.8+(-4) (4)(+66)+(―12)+(+11.3)+(―7.4)+(+8.1)+(―2.5)例6. 10筐苹果,以每筐30千克为准,超过的千克数记作正数,不足的千克数记作负数,记录如下:2,-4,2.5,3,-0.5 ,1.5,3,-1,0,-2.5。

问这10筐苹果总共重多少?例7.计算:(1) (-3)―(―5); (2)0-7; (3) 7.2―(―4.8); (4)-341521 .例8.在数轴上表示-2和+1的两点间距离.例9.用算式表示:珠穆朗玛峰的海拔高度是8848米,吐鲁番盆地的海拔高度是-155米,两处高度相差 多少米___ _______。

例10. 全班学生分为五个组进行游戏,每组的基本分为100分,答对一题加50分,答错一题扣50分,游戏结束时,各组的分数如下:第一组 第二组 第三组 第四组 第五组 100150-400350-100⑴第一名超出第二名多少分? ⑵第一名超出第五名多少分?【精练精学】1.请你细心填一填:(1)(+5)+(-8)=______. ( )+(-2)=-6. ____+(-101)=0, (-2003)+_____=-2003. (2)第三赛季,泰山足球队第一场比赛输了3个球,第二场比赛赢了2个球,该队这两场比赛的净胜球 是 __________。

(3)土星表面的夜间平均温度为-150℃,白天比夜间高27℃,那么白天的平均气温是______。

(4)请你写出两个有理数,并把它们相加,使它们的和小于每一个加数___________。

(5)3与-5的和的相反数是 。

(6)A 地的海拔高度是-21米,B 地比A 地高68米,那么B 地海拔高度是 .2.绝对值小于5的所有整数的和等于 ;绝对值不大于10的整数有_____个,这些整数的和为_____.绝对值不大于100的整数有_____个,这些整数的和为_____.有理数中最小的正整数和最大负整数的和是_____. 3.填空(1)3-(-3)=____________; (2)(-11)-2=______________; (3)0-(-6)=____________; (4)(-7)-(+8)=____________; (5)-12-(-5)=____________; (6)3比5大____________; (7)-8比-2小___________; (8)-4-( )=10; (9)如果0>a ,0<b ,则b a -的符号是___________; 4.判断(1)两数相减,差一定小于被减数。

( ) (2)(-2)-(+3)=2+(-3)。

( ) (3)零减去一个数等于这个数的相反数。

( ) (4)方程58=+x 在有理数范围内无解。

( ) (5)若0<a ,0<b ,b a >,0<-b a .( )5.小于2003且大于-2002所有整数的和是( ).(A)2002 (B)1 (C)0 (D)-2002 6.如果a+b+c<0,那么( ).(A) 三个数中最少有两个负数 (B)三个数中有且只有一个负数 (C)三个数中最少有一个负数 (D)三个数中两个是正数或者两个是负数 7.计算:(1)-16+(+3) (2)(-22)+(-17) (3)(+16)+(-3) (4)(-22)+(+17)(5)(-1.3)+(+2.7) (6)(-1.3)+(+0.6) (7)(-1.3)+(-2.5) (8)(+1.3)+(-2.5)(9))75.0()411(++- (10))413()731(++- (11))81()125.0(++- (12))411()75.1(-+-8.某天早晨的气温是—7℃,中午上升了11℃,则中午的气温是多少? 9.计算:(1)(+14)+(-4)+(-1)+(+16)+(-5) (2)(-18.65)+(-7.25)+18.75+7.25(3)(-2.25)+(-85)+(-43)+0.125 (4)(-3.5)+[3+(-1.5)](5)(-2004)+(+29)+2004 (6)(+352)+(―287)+(―3125)+(―181)+(+553)+(+5125)10.有一批货物标准质量为每袋100克,现抽取10袋样品进行检测,其结果 99,102,101,101,98,99,100,97,99,103.求这10袋货物的总质量是多少?(用两种方法计算)11.计算:(1)(-37)-(-47); (2)(-53)-16; (3)(-210)-87; (4)1.3-(-2.7);(5)6.08-(-2.83); (6)(-2.7)-3.7; (7)⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-4341;(8)(-243)-(-121); (9)(-6-6)-7; (10)(1-5)-(2-8).12.分别求出数轴上,下列两点间的距离:(1)表示数8的点与表示数3的点; (2)表示数-2的点与表示数-3的点.13.出租车司机小石某天下午营运全是在东西走向的人民大街上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+15,-3,+14,-11,+10,-12,+4,-15,+16,-18.(1) 将最后一名乘客送到目的地时,小石距下午出发地点的距离是多少千米? (2) 若汽车耗油量为a 升/千米,这天下午汽车耗油共多少升?模块二:有理数的乘、除法运算法则【引例】有理数的乘法如图,一只蜗牛沿直线l 爬行,它现在的位置在直线l 的点O.问题: (1)如果蜗牛一直以每分2cm 的速度向右爬行,3分钟后它在什么位置?3分钟后它在l 上点O 右边6cm 位处,用式子表示为Ol(2)如果蜗牛一直以每分2cm 的速度向左爬行,3分钟后它在什么位置? 3分钟后它在l 上点O 左边6cm 位处,用式子表示为(3)如果蜗牛一直以每分2cm 的速度向右爬行,3分钟前它在什么位置? 3分钟前它在l 上点O 左边6cm 位处,用式子表示为O 2 4 6O-2 - 4 - 6 O-2 - 4 - 6(4)如果蜗牛一直以每分2cm 的速度向左爬行,3分钟前它在什么位置?3分钟前它在l 上点O 右边6cm 位处,用式子表示为注:以上问题为区分方向,规定向左为负,向右为正;为区分时间,规定现在前为负,现在后为正.通过对上面问题的研究,发现有理数的运算有下面几个方面:(1)有理数的乘法分为:正数乘正数;负数乘正数;正数乘负数;负数乘负数;有理数与零相乘. (2)符号:正数乘正数为正数;负数乘正数为负数;正数乘负数为负数;负数乘负数为正数;即同号得正异号得负.(3)绝对值:各乘数的绝对值相乘是积的绝对值. (4) 任何数与0相乘,积仍为0.【知识导航】1.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

相关文档
最新文档