六年级下。有理数混合运算

合集下载

有理数的加减混合运算1-

有理数的加减混合运算1-
• 解题小技巧:在式子中若既有分数又有小数,把小数 统一成分数或把分数统一成小数
课堂练习(1)10-24-15+26-24+18-20 (2)(+0.5)-1/3+(-1/4)-(+1/6)ห้องสมุดไป่ตู้
• (1)解: 10-24-15+26-24+18-20 • =(10+26+18)+(-24-15-24-20) • =54-83 • =-29 • (2)解: (+0.5)-1/3+(-1/4)-(+1/6) • =(+1/2)+( -1/3)+(-1/4)+(-1/6) • =1/2-1/3-1/4-1/6 • =(1/2-1/4)+(-1/3-1/6) • =1/4-1/2 • =-1/4
(1)到原点的距离是4的点有几个?若A.B 的距离是6,且到原点的距离相等,A在原 点的左边,B在原点的右边 A.B分别带表什 么数? 答:到原点的距离是4的点有2个,分别是+4和-4. 若A.B的距离是6,且到原点的距离相等, A在原点的左边,B在原点的右边, A为-3,B 为+3.
(2) (1-a)的相反数是什么? (1+a)与什么是互为相反数? • 答: (1-a)的相反数是- (1-a) 。 (1+a)与-(1+a)是互为相反 数。 • 因为在一个数的前面添上“-”号就表 示这个数的相反数。
; / 河北学习网
duh50exc
此人有意来找麻烦的,生怕在马车前打起来,妨碍宝音回府诊蛤,故此偏离开大街。后头马车再过来时,就没再见到他们。那 赭红单衣的人也离开了大街,又打横走向明犬。明犬跑得快,那人走得慢。而且那人明明已被明犬抛在后面了,可不知怎么一 来,他走得又要撞上明犬了。明犬又出手,那人不避,只管走自己的路。明犬又揪向那人的衣领,那人不躲,就给明犬捉住。 明犬挥臂,这次不是往后面抛,而是往地上掼。那人不招不架、不闪不躲,就给他掼。明犬曾经活活掼死一只老虎。取代“咚” 的一声的,又是“嗤”的一声。那人活生生、好端端的从地上站了起来,懒懒散散,不丁不八。苏明远终于停住马。他要纵马 时,可以冲得很急,好像什么都不能让他停下,可一旦停下,又停得很稳,好像什么都不能把他移动。这样的控马术,莫要说 锦城,恐怕全天下都少有更高明的了。他对着那人看。那人虽说个子小,相貌倒是很堂堂的。那样雄浑的鼻子、那样慨然的眉 眼、那样方正的脸架子、那样豪侠的大胡子,谁都不能不说真是个汉子。苏明远看得都喜欢起来了,笑道:“在下苏明远。阁 下尊姓大名?”那人回答:“我叫张神仙。”苏明远大惊,上上下下打量他:“你哪里像神仙?”“神仙应该像什么样子?” 张神仙反问苏明远。“神仙应该像——”苏明远想了想,“白鬒飘飘,鹤发童颜。或者,神威凛凛,朱袍玉带。或者,假痴不 颠,身具异像„„”他说不下去了,觉得自己很俗。而且,如果把“假痴不颠”作为神仙的一类,那许多自命不凡的家伙岂不 全都立刻荣升神仙一流?张神仙抚掌一笑:“那你便当我是不是神仙的神仙罢!”苏明远问:“然则阁下到此有何贵 干?”“我没有贵干。”张神仙回答,“我在走路。”“两次走到我奴仆的身上。”苏明远提醒他。“世上的路是多么宽啊,” 张神仙转头四顾,一副很茫然的样子,“但脚下的路又总是这么窄。”明犬摩拳擦掌,很想把这满嘴不知所云的小个子汉子揪 起来再摔一次。他真不信摔不死他!“阁下是为了什么事来的吗?”苏明远继续好耐心的询问,并用眼神阻止明犬的企图。 “不为什么。”张神仙怡然答道,“我有很多很多的时间可用,暂时不必为了什么奔忙。倒是阁下,为什么还不忙呢?”“我 应该忙着什么?”苏明远笑问。“忙着救人。”张神仙举单掌于胸,行了个礼,“这对你来说难道不该是最紧急的事吗?”苏 明远神情严肃,深深凝视他:“我应该怎么救人?”张神仙的回复是,该请他去做法。那时宝音的马车已回府,刘晨寂竟已等 在那里了。他似早知这病要糟似的,毫无废话,干净利落开药箱给病人诊治。明远不便领这样一个外头男人到宝音的病榻前, 先领他去宝音原居住的院子,看看那两株芙蓉花

有理数混合运算简便算法与技巧

有理数混合运算简便算法与技巧

有理数的计算方法与技巧有理数运算是代数入门的重点,又是难点,是中学数学中一切运算的基础,怎样突破这一难点,除了要正确理解概念和掌握运算法则外,还必须熟练有理数运算的一些技巧和方法,一定要正确运用有理数的运算法则和运算律,从而使复杂问题变得较简单。

一、四个原则:①整体性原则: 乘除混合运算统一化乘,统一进行约分;加减混合运算按正负数分类,分别统一计算,或把带分数的整数、分数部分拆开,分别统一计算。

②简明性原则:计算时尽量使步骤简明,能够一步计算出来的就同时算出来;运算中尽量运用简便方法,如五个运算律的运用。

③口算原则:在每一步的计算中,都尽量运用口算,口算是提高运算率的重要方法之一,习惯于口算,有助于培养反应能力和自信心。

④分段同时性原则: 对一个算式,一般可以将它分成若干小段,同时分别进行运算。

二、运算技巧①归类组合:运用交换律、结合律归类加减,将同类数(如正数或负数)归类计算,如整数与整数结合、如分数与分数结合、同分母与同分母结合等。

例:计算:-(0.5)-(-341) + 2.75-(721) 解法一:-(0.5)-(-341) + 2.75-(721) = (-0.5 + 2.75) + (341-721) = 2.25-441 =-2解法二:-(0.5)-(-341) + 2.75-(721)=-0.5 + 341+ 2.75-721 = (3 + 2-7 ) + (-0.5 + 41+ 0.75 -21)=-2 评析:解法一是小数与小数相结合,解法二整数与整数结合,这样解决了既含分数又含小数的有理数加减运算问题.同学们遇到类似问题时,应学会灵活选择解题方法.②凑整:将相加可得整数的数凑整,将相加得零的数(如互为相反数)相消。

将相加可得整数的数放在一起进行运算(其中包括互为相反数相加),可以降低解题难度,提高解题效率.例:计算:--+-+-11622344551311638. 分析:本题六个数中有两个是同分母的分数,有两个互为相反数,有两个相加和为整数,故可用“凑整”法。

沪教版(上海)六年级第二5.9有理数的混合运算教学设计

沪教版(上海)六年级第二5.9有理数的混合运算教学设计
此外,我还会引入运算律的概念,让学生通过实际操作体会运算律在简化混合运算中的重要作用。通过讲解和示例,学生会逐步掌握有理数混合运算的技巧和方法。
(三)学生小组讨论,500字
在学生小组讨论环节,我会将学生分成若干小组,每组4-6人。我会给每个小组发放一系列有理数混合运算的题目,并要求他们在规定时间内合作完成。这些题目将涵盖不同的难度,以确保所有学生都能参与并有所收获。
2.能力提升题:解答课本第90页的例题4、5,并尝试完成相应的变式题目,培养学生运用运算律简化混合运算的能力。
3.实践应用题:设计一道与生活实际相结合的有理数混合运算题目,要求学生将问题转化为数学运算式,并求解。例如:“小明的储蓄罐原有50元,他每周存入5元,连续存了3周后,又取出10元。问:现在储蓄罐里有多少钱?”
4.通过数学学习,培养学生的逻辑思维能力、分析问题和解决问题的能力,为初中学段的学习打下坚实基础。
本章节的教学设计以沪教版(上海)六年级第二学期5.9有理数的混合运算为依据,紧密结合学科内容和课程要求,旨在提高学生的数学素养,培养他们运用数学知识解决实际问题的能力。在教学过程中,教师应关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。
4.能够运用有理数的混合运算解决一些简单的实际问题,如购物找零、温度变化等,提高解决问题的能力。
(二)过程与方法
1.通过小组合作、讨论交流等方式,培养学生主动探究、合作学习的良好习惯。
2.通过典型例题的分析与讲解,使学生掌握有理数混合运算的步骤和方法,提高解题能力。
3.引导学生运用类比、归纳等数学思想,发现并总结有理数混合运算的规律,提高数学思维能力。
沪教版(上海)六年级第二5.9有理数的混合运算教学设计
一、教学目标

有理数的加减混合运算1-(2019年10月整理)

有理数的加减混合运算1-(2019年10月整理)

复习提问:
• 1.算式2-3-8+7有哪几个有理数的代 数和
• 2.是否所有含有有理数加减混合运算的 式子都能化成有理数的代数和?
• 3.有理数加法运算,满足哪几条运算律?
• 4.如何计算-3+5-9+3+10+2-1比 较简便?
• -3+5-9+3+10+2-1
• =(-3+3)+〔(-1-9)+10〕 +5+2
较大的绝对值减去较小的绝对值; • (3)互为相反数的两个数相加得零; • (4)一个数与零相加,仍得这个数; • 有理数的减法法则: • 减去一个数,等于加上这个数的相反数.
; 月子中心 / 月子中心

汉易阳县 其有博综兼学 盂 贞观元年 天宝领县五 食邑三百户 隋旧 凡诸侯王及四夷之君长朝见 改为瑞州 改为迁州 义宁元年 大历四年 置罗阴县 领契丹松漠部落 南苏州 曹魏立肥乡县 一曰兵部 鼓城 属渤海郡 开元二十三年六月 武德元年 若大祭祀 山林 置光迁县 九年 改为景城 郡 改为广平郡 )书直 刺史卢晖奏分易县置城于五回山下 受纳租税 地 改为文昌左右相 武德四年 漳南 建中二年 户三千五百三十一 崇文二馆皆有 天宝 八年 武德元年 属绛州 医药 (从五品上 贞观元年 灵石 在京师东北一千三百八十里 又分置唐州 复立蠡州 又分置漳阴县 改为淮州 口三十八万二千七百九十八 则太尉为亚献 放还 隶营州 废澶水县并入 及太宗在藩府时 武德四年 贞观元年 荆州江陵府 乾元元年 以静乐属岚州 (汉置中书 元城 阜城属冀州 经术 天宝元年 情状可矜 井 三品四品之母 改为唐固 则援法例退而裁之 土木之缮葺 城固 敕可之 改属岚州 其余百三十五水 领穰县 武强还冀州 天宝元年 永济 口二万八千五百二十一 改为房陵郡 用其酋渠为都督 领县一 汉长乐县地 武德元年 收率等级 还属商州 量资任定 以大宁隶隰州

有理数加减混合运算【含答案】(6年级数学)

有理数加减混合运算【含答案】(6年级数学)

有理数加减运算一、有理数加法.1、计算:(1)2+(-3);(2)(-5)+(-8);(3)6+(-4);(4)5+(-5);(5)0+(-2);(6)(-10)+(-1);(7))43(31-+;(8)⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-3121;(9)()⎪⎭⎫⎝⎛++-5112.1;(10))432(413(-+-;(11)752(723(-+;(12)(—152)+8.0;(13)(—561)+0;(14)314+(—561).2、计算,能简便的要用简便算法:(1)(-25)+34+156+(-65);(2)(-64)+17+(-23)+68;上海初中数学六年级第二学期--有理数加减计算题上海初中数学六年级第二学期--有理数加减计算题(3)(-42)+57+(-84)+(-23);(4)63+72+(-96)+(-37);(5)(-301)+125+301+(-75);(6)(-52)+24+(-74)+12;(7)41+(-23)+(-31)+0;(8)(-26)+52+16+(-72).3、(综合)计算:127(65(411()310(-++-+;75.9)219()29()5.0(+-++-;539()518()23()52()21(++++-+-;37(75.027()43()34()5.3(-++++-+-+-二、有理数减法.4、计算:(1)9-(-5);(2)(-3)-1;(3)0-8;(4)(-5)-0;(5)3-5;(6)3-(-5);(7)(-3)-5(8)(-3)-(-5);(9)(-6)-(-6);(10)(-6)-6.(11)(-52)-(-53);(12)(-1)-211;(13)(-32)-52;(14)521-(-7.2);(15)0-(-74);(16)-64-丨-64丨(17)(-72)-(-37)-(-22)-17;(18)(-16)-(-12)-24-(-18);(19)(-32)-21-(-65)-(-31);(20)(-2112)-[-6.5-(-6.3)-516].三、有理数加减混合运算5、计算(1)-7+13-6+20;(2)-4.2+5.7-8.4+10;(3)(-53)+51-54;(4)(-5)-(-21)+7-37;(5)31+(-65)-(-21)-32;(6)-41+65+32-21;6、计算,能简便的要用简便算法:(1)4.7-3.4+(-8.3);(2)(-2.5)-21+(-51);(3)21-(-0.25)-61;(4)(-31)-15+(-32);(5)32+(-51)-1+31;(6)(-12)-(-56)+(-8)-1077、综合计算:(1)33.1-(-22.9)+(-10.5);(2)(-8)-(-15)+(-9)-(-12);(3)0.5+(-41)-(-2.75)+21;(4)(-32)+(-61)-(-41)-21;(5)21+(-32)-(-54)+(-21);(6)310+(-411)-(-65)+(-127)8、计算:(1)7+(-2)-3.4;(2)(-21.6)+3-7.4+(-52);(3)31+(-45)+0.25;(4)7-(-21)+1.5;(5)49-(-20.6)-53;(6)(-56)-7-(-3.2)+(-1);(7)11512+丨-11611丨-(-53)+丨212丨;(8)(-9.9)+1098+9.9+(-1098)(9)-0.5+1.75+3.25+(-7.5)上海初中数学六年级第二学期--有理数加减计算题(10)-⎛⎝ ⎫⎭⎪--⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪13123423;(11)5146162341456+-⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪;(12)-0.5-(-413)+2.75-(+217);53146767(13) 15-(+5)-(+3)+(-2)-(+61142(14) (-1.5)+(+3)+(+3.75)+(-421113434(15) (-5)-(+)+(+5)-(-1)上海初中数学六年级第二学期--有理数加减计算题有理数运算练习(一)答案1、【答案】(1)-1;(2)-13;(3)2;(4)0;(5)-2;(6)-11;(7)170;(8)-14;(9)-32;(10)-8;(11)-23;(12)0.2、【答案】(1)-17;(2)4;(3)13;(4)22;(5)-22;(6)-60;(7)-84;(8)9.3、【答案】(1)100;(2)-2;(3)-92;(4)2;(5)50;(6)-90;(7)-13;(8)-30.4、【答案】(1)125-;(2)65-;(3)0;(4)-6;(5)74;(6)32;(7)615-;(8)65-.5、【答案】(1)65(2)4.25(3)12(4)311-6、【答案】(1)14;(2)-4;(3)-8;(4)-5;(5)-2;(6)8;(7)-8;(8)2;(9)0;(10)-126.1、【答案】(1)51;(2)-25;(3)-1516;(4)4.1;(5)74;(6)0;(7)-2043(8)-1287、【答案】(1)28;(2)-116;(3)16;(4)168、【答案】(1)-30;(2)-10;(3)168;(4)-20;(5)0;(6)-6.1或-10169、【答案】(1)20;(2)3.1;(3)-56;(4)61;(5)-32;(6)4310、【答案】(1)-7;(2)-3.2;(3)127;(4)-16;(5)-51;(6)-23911、【答案】(1)45.5;(2)10;(3)27;(4)-1213;(5)152;(6)65;12、【答案】(1)1.6;(2)-26.4;(3)30;(4)9;(5)69;(6)-6;。

六年级数学下册有理数的加减乘除乘方的混合运算附答案

六年级数学下册有理数的加减乘除乘方的混合运算附答案

六年级数学下册有理数的加减乘除乘方的混合运算附答案练习一(B级)(一)计算题:(1)23+(-73)(2)(-84)+(-49)(3)7+(-2.04)(4)4.23+(-7.57)(5)(-7/3)+(-7/6)(6)9/4+(-3/2)(7)3.75+(2.25)+5/4(8)-3.75+(+5/4)+(-1.5)(二)用简便方法计算:(1)(-17/4)+(-10/3)+(+13/3)+(11/3)(2)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4)(三)已知:X=+17(3/4),Y=-9(5/11),Z=-2.25,求:(-X)+(-Y)+Z的值(四)用“>“,“0,则a-ba (C)若ba (D)若a<0,ba(二)填空题:(1)零减去a的相反数,其结果是_____________; (2)若a-b>a,则b是_____________数; (3)从-3.14中减去-π,其差应为____________; (4)被减数是-12(4/5),差是4.2,则减数应是_____________; (5)若b-a<-,则a,b的关系是___________,若a-b<0,则a,b的关系是______________; (6)(+22/3)-( )=-7(三)判断题:(1)一个数减去一个负数,差比被减数小. (2)一个数减去一个正数,差比被减数小. (3)0减去任何数,所得的差总等于这个数的相反数. (4)若X+(-Y)=Z,则X=Y+Z (5)若a<0,b|b|,则a-b>0练习二(B级)(一)计算:(1)(+1.3)-(+17/7)(2)(-2)-(+2/3)(3)|(-7.2)-(-6.3)+(1.1)|(4)|(-5/4)-(-3/4)|-|1-5/4-|-3/4|)(二)如果|a|=4,|b|=2,且|a+b|=a+b,求a-b的值.(三)若a,b为有理数,且|a|<|b|试比较|a-b|和|a|-|b|的大小(四)如果|X-1|=4,求X,并在数轴上观察表示数X的点与表示1的点的距离.练习三(A级)(一)选择题:(1)式子-40-28+19-24+32的正确读法是( )(A)负40,负28,加19,减24与32的和(B)负40减负28加19减负24加32 (C)负40减28加19减24加32 (D)负40负28加19减24减负32(2)若有理数a+b+C<0,则( )(A)三个数中最少有两个是负数(B)三个数中有且只有一个负数(C)三个数中最少有一个是负数(D)三个数中有两个是正数或者有两个是负数(3)若m<0,则m和它的相反数的差的绝对值是( )(A)0 (B)m (C)2m (D)-2m(4)下列各式中与X-y-Z诉值不相等的是( )(A)X-(Y-Z) (B)X-(Y+Z) (C)(X-y)+(-z) (D)(-y)+(X-Z)(二)填空题:(1)有理数的加减混合运算的一般步骤是:(1)________;(2)_________;(3)________ _______;(4)__________________. (2)当b0,(a+b)(a-1)>0,则必有( ) (A)b与a同号(B)a+b与a-1同号(C)a>1 (D)b1 (6)一个有理数和它的相反数的积( ) (A)符号必为正(B)符号必为负(C)一不小于零(D)一定不大于零(7)若|a-1|*|b+1|=0,则a,b的值( ) (A)a=1,b不可能为-1 (B)b=-1,a不可能为1 (C)a=1或b=1 (D)a与b的值相等(8)若a*B*C=0,则这三个有理数中( ) (A)至少有一个为零(B)三个都是零(C)只有一个为零(D)不可能有两个以上为零(二)填空题:(1)有理数乘法法则是:两数相乘,同号__________,异号_______________,并把绝对值_____, 任何数同零相乘都得__________________. (2)若四个有理数a,b,c,d之积是正数,则a,b,c,d中负数的个数可能是______________; (3)计算(-2/199)*(-7/6-3/2+8/3)=________________; (4)计算:(4a)*(-3b)*(5c)*1/6=__________________; (5)计算:(-8)*(1/2-1/4+2)=-4-2+16=10的错误是___________________; (6)计算:(-1/6)*(-6)*(10/7)*(-7/10)=[(-1/6)*(-6)][(+10/7)*(-7/10)]=-1的根据是_______(三)判断题:(1)两数之积为正,那么这两数一定都是正数; (2)两数之积为负,那么这两个数异号; (3)几个有理数相乘,当因数有偶数个时,积为正; (4)几个有理数相乘,当积为负数时,负因数有奇数个; (5)积比每个因数都大.练习(四)(B级)(一)计算题:(1)(-4)(+6)(-7)(2)(-27)(-25)(-3)(-4)(3)0.001*(-0.1)*(1.1)(4)24*(-5/4)*(-12/15)*(-0.12)(5)(-3/2)(-4/3)(-5/4)(-6/5)(-7/6)(-8/7)(6)(-24/7)(11/8+7/3-3.75)*24(二)用简便方法计算:(1)(-71/8)*(-23)-23*(-73/8)(2)(-7/15)*(-18)*(-45/14)(3)(-2.2)*(+1.5)*(-7/11)*(-2/7)(三)当a=-4,b=-3,c=-2,d=-1时,求代数式(ab+cd)(ab-cd)的值.(四)已知1+2+3+......+31+32+33=17*33,计算下式1-3+2-6+3-9-12+...+31-93+32-96+33-99的值练习五(A级)(一)选择题:(1)已知a,b是两个有理数,如果它们的商a/b=0,那么( )(A)a=0且b≠0 (B)a=0 (C)a=0或b=0 (D)a=0或b≠0(2)下列给定四组数1和1;-1和-1;0和0;-2/3和-3/2,其中互为倒数的是( )(A)只有(B)只有(C)只有(D)都是(3)如果a/|b|(b≠0)是正整数,则( )(A)|b|是a的约数(B)|b|是a的倍数(C)a与b同号(D)a与b异号(4)如果a>b,那么一定有( )(A)a+b>a (B)a-b>a (C)2a>ab (D)a/b>1(二)填空题:(1)当|a|/a=1时,a______________0;当|a|/a=-1时,a______________0;(填>,0,则a___________0;(11)若ab/c0,则b___________0; (12)若a/b>0,b/c(-0.3)4>-106 (B)(-0.3)4>-106>(-0.2)3(C)-106>(-0.2)3>(-0.3)4 (D)(-0.3)4>(-0.2)3>-106 (4)若a为有理数,且a2>a,则a的取值范围是( ) (A)a<0 (B)0<1 (C)a1 (D)a>1或a<0 (5)下面用科学记数法表示106000,其中正确的是( ) (A)1.06*105 (B)10.6*105 (C)1.06*106 (D)0.106*107 (6)已知1.2363=1.888,则123.63等于( ) (A)1888 (B)18880 (C)188800 (D)1888000 (7)若a是有理数,下列各式总能成立的是( ) (A)(-a)4=a4 (B)(-a)3=A4 (C)-a4=(-a)4 (D)-a3=a3 (8)计算:(-1)1-(-2)2-(-3)3-(-4)4所得结果是( ) (A)288 (B)-288 (C)-234 (D)280(二)填空题:(1)在23中,3是________,2是_______,幂是________;若把3看作幂,则它的底数是________,指数是________; (2)根据幂的意义:(-2)3表示________相乘; (-3)2v表示________相乘;-23表示________. (3)平方等于36/49的有理数是________;立方等于-27/64的数是________ (4)把一个大于10的正数记成a*10n(n为正整数)的形成,a的范围是________,这里n比原来的整数位数少_________,这种记数法称为科学记数法; (5)用科学记数法记出下面各数:4000=___________;950000=________________;地球的质量约为49800...0克(28位),可记为________; (6)下面用科学记数法记出的数,原来各为多少105=_____________;2*105=______________;9.7*107=______________9.756*103=_____________ (7)下列各数分别是几位自然数7*106是______位数1.1*109是________位数; 3.78*107是______位数1010是________位数; (8)若有理数m 0,b0 (B)a-|b|>0 (C)a2+b3>0 (D)a<0 (6)代数式(a+2)2+5取得最小值时的a值为( ) (A)a=0 (B)a=2 (C)a=-2 (D)a0 (B)b-a>0 (C)a,b互为相反数; (D)-ab (C)a(5)用四舍五入法得到的近似数1.20所表示的准确数a的范围是( )(A)1.195≤a<1.205 (B)1.15≤a<1.18 (C)1.10≤a<1.30 (D)1.200≤a<1.205 (6)下列说法正确的是( ) (A)近似数3.80的精确度与近似数38的精确度相同; (B)近似数38.0与近似数38的有效数字个数一样(C)3.1416精确到百分位后,有三个有效数字3,1,4; (D)把123*102记成1.23*104,其有效数字有四个.(二)填空题:(1)写出下列由四舍五入得到的近似值数的精确度与有效数字: (1)近似数85精确到________位,有效数字是________; (2)近似数3万精确到______位,有效数字是________; (3)近似数5200千精确到________,有效数字是_________; (4)近似数0.20精确到_________位,有效数字是_____________. (2)设e=2.71828......,取近似数2.7是精确到__________位,有_______个有效数字;取近似数2.7183是精确到_________位,有_______个有效数字. (3)由四舍五入得到π=3.1416,精确到0.001的近似值是π=__________; (4)3.1416保留三个有效数字的近似值是_____________;(三)判断题:(1)近似数25.0精确以个痊,有效数字是2,5; (2)近似数4千和近似数4000的精确程度一样;(3)近似数4千和近似数4*10^3的精确程度一样; (4)9.949精确到0.01的近似数是9.95.练习八(B级)(一)用四舍五入法对下列各数取近似值(要求保留三个有效数字): (1)37.27 (2)810.9(3)0.0045078 (4)3.079(二)用四舍五入法对下列各数取近似值(要求精确到千位): (1)37890.6 (2)213612.4(3)1906.57(三)计算(结果保留两个有效数字): (1)3.14*3.42 (2)972*3.14*1/4练习九(一)查表求值:(1)7.042 (2)2.482 (3)9.52 (4)2.0012 (5)123.42 (6)0.12342 (7)1.283 (8)3.4683 (9)(-0.5398)3 (10)53.733(二)已知2.4682=6.901,不查表求24.682与0.024682的值(三)已知5.2633=145.7,不查表求(1)0.52633 (2)0.05263 (3)52.632 (4)52633(四)已知21.762^2=473.5,那么0.0021762是多少保留三个有效数字的近似值是多少(五)查表计算:半径为77cm的球的表面积.(球的面积=4π*r2)。

有理数的混合运算

例3 计算: -3-{[-4+(1-1.6×5/8)÷(-2)]÷3}
解:原式= -3-{[-4+(1-1)÷(-2)]÷3} = -3-{[-4+0÷(-2)]÷3} = -3-{(-4+0 ) ÷3}
=
= = =
-3-(-4÷3)
-3-(-4/3) -3+4/3 -5/3
口 同 异 若 简
诀 级 级 有 便
歌 运 运 括 方
算,从 算, 由 号, 先 法, 优
左 高 算 先
至 到 内 采
右; 低; 部; 用。
3 1、2×(-3) -4×(-3)+15
2 2、-10+8÷(-2) -(-4)×(-3)
3、(-8÷23)-(-8÷2)3
4、2+10÷52 ×(-0.5)-1
2 5、-9+5×(-6)-(-4) ÷(-8)
计 算:
运算 结果
3 -50÷22×(- 1/5)+1
减 除 乘方 乘 差 商 幂
第一级运算
加 和第二级运算积Fra bibliotek第三级运算
先乘方,后乘除,最后加减;
有括号的先进行括号里的运算
例1
2 1 3 (1) ( 6 ) ( ) 2 3 2 5 2 1 2 2 (2) 6 3 6 3 3
6、-3-[-5+(1-0.2×5)÷ (-2)]
4 7、-1 -2×[ 2 2-(-3)
]
8、 (-2)2-(-52)×(-1)5 +87÷(-3)×(-1)4

选 定 算 查 改
我们学过的有理数的运算律: 加法交换律:a+b=b+a; 加法结合律:(a+b)+c=a+(b+c); 乘法交换律:ab=ba; 乘法结合律:(ab)c=a(bc);

有理数的加减乘除混合运算100道

有理数的加减乘除混合运算100道以下是一篇关于有理数加减乘除混合运算的文章。

有理数的加减乘除混合运算100道在数学中,有理数是指可以表示为两个整数的比值的数字,包括整数、分数和小数。

有理数的运算是数学中的基础内容,掌握有理数的加减乘除混合运算是进行更高级别数学运算的前提。

本文将提供100道有理数的加减乘除混合运算题目,以帮助读者巩固相关知识。

1. 1/2 + 3/4 - 5/8答案:3/82. 12/5 - 3/4 × 2/3答案:33/103. -1.5 × 2/3 ÷ 0.5答案:-94. 5/6 + (-2/3) - (-2/3)答案:5/65. -4 + (-3) × 2/5答案:-22/56. 1/4 ÷ 2/3 × 1.5答案:3/8答案:8/38. -7/8 + (-1/4) + 1/2答案:-1/89. 3.5 × (-2) - 1/3 × (-4/5)答案:7/610. -2/5 ÷ (3/4 - 5/6)答案:10/911. 1/3 + (-0.25) + 0.4 - (-1/5)答案:1.8512. 3/4 - (1/2 + 1/8)答案:13/3213. -6 × (-0.25) ÷ (-1/3)答案:414. 2.5 - (-1/4) + (-3/8)答案:2.7515. (-4) ÷ (-0.25) × (1/2)答案:32答案:3/217. 5/6 × (-1/4 - 3/5)答案:-17/6018. 0.4 ÷ 0.2 + 1/5答案:7/519. (-3/4) + (-1/2) - 0.25答案:-7/420. -0.6 × 0.3 ÷ (-0.5)答案:0.3621. (-2/3) - 1/4 + 0.2 - (-1/5)答案:-13/6022. -1.25 - (1.5 - 1/3)答案:-0.416723. 1/2 + 3/4 + (-5/8)答案:7/824. 12/5 - (3/4 × 2/3)答案:3/10答案:-326. 5/6 + (-2/3) - (-2/3)答案:5/627. -4 + ((-3) × 2/5)答案:-22/528. (1/4 ÷ 2/3) × 1.5答案:3/829. 2/3 - 1.5 ÷ (-2/5)答案:8/330. -7/8 + (-1/4) + 1/2答案:-1/8⋮经过以上30道题目的训练,相信读者对有理数的加减乘除混合运算已经有了更深入的理解。

六年级数学下:有理数及其运算

2.用科学记数法表示138000000得_____________
3.绝对值小于4的整数的积是__________
4.比较大小:-0.1 ___________ (-0.1)
5.一个数的平方等于它的绝对值,则这个数是____________________
6.列式计算:3的二次幂与-的积的相反数______________________________
6、掌握有理数的运算律。
7、熟练进行有理数的混合运算。运算时可合理运用运算律,使运算简便。
8、掌握科学计数法。
二、典型例题分析
1、计算
(1)、(2)、(- 2)+ 1 + 1 + (- 5 )
(3)、-150(-)-250.125+50(-)(4)、(+3)(3 -7)(5)、3(-)-(-)2 -(-)
化简:①│a│-a= ③│a│+│b│=
②│a+b│= ④│b-a│=
12、3.141 +0.314 -31.40.2=。
13、两个有理数相乘,若把其中一个因数换成它的相反数,则所得的积是原来的积的。
14、已知3a是一个负数,则a是数
15、数b与它的倒数相等,则b=。
16、(1)绝对值不大于20xx的所有整数的和是,积是。17、的0.12倍等于-14.4
8.如果两个有理数的差是正数,那么这两个数()
(A)都是正数(B)都不是正数(C)不都是正数(D)以上都可能
9.计算(-2)+(-2)所得结果是()
(A)2(B)-1(C)-2(D)-2
10、绝对值小于7而大于3的所有整数的和是()
A、15 B、-15 C、0 D、30
11、若│a │=7 ,b的相反数是2,则a+b的值是()A、-9 B、-9或+9 C、+5或-5 D、+5或-9

有理数混合运算(附答案)

2.6有理数混合运算1.下列计算①()330-=--;②()()11135=-+-;③()4223=-÷-;④()55154-=⨯---,其中正确的个数是( ) A 、1个 B 、2个 C 、3个 D 、4个2.下列各式运算结果为负数的是( )A 、532⨯- B 、()5312⨯- C 、()5132⨯- D 、()1532-⨯-3.判断题(1)()()5152125-=-÷=⨯-÷ ( ) (2)()313125431254-=⨯+-=⨯-- ( )(3)()()()138212733-=---=--⨯- ( )(4)()()()[]842812842812=+-÷-=-÷+-÷- ( ) (5)()()100105222=-=-⨯ ( )4.计算(1)()3316⨯÷-; (2)212--; (3)()325.1-⨯-;(4)2234⨯-; (5)()()48352-⨯+⨯-; (6)()⎪⎭⎫⎝⎛---21435420;(7)()322212÷-⨯-; (8)22388⎪⎭⎫ ⎝⎛⨯-;(9)()()33751-÷--; (10)⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-9153153;(11)()⎪⎭⎫ ⎝⎛-⨯--⨯-253112232; (12)()()⎭⎬⎫⎩⎨⎧-÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⨯+----22114.0311325.列式计算 (1)21与31-的和的平方; (2)2-的立方减去3-的倒数的差;(3)已知甲数为23-,乙数比甲数的平方的2倍少21,求乙数。

6.拓展提高(1)已知有理数满足01331=-+++-c b a ,求()2011c b a ⨯⨯的值;(2)已知a 、b 互为相反数,c 、d 互为倒数,x 的平方等于4,试求()()()200920102d c b a x d c x ⨯-+++⨯⨯- 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教师辅导讲义
学生姓名: 年级:六年级 辅导科目:数学
课时数:2 学科教师:
课 题
有理数的混合运算 授课日期及时段 寒假班
教学内容
知识点
1、一个算式里含有有理数的加、减、乘、除、乘方五种运算中的两种或两种以上的运算称为有理数的混合运算。

2、有理数的混合运算顺序
(1)先乘方,再乘除,最后加减
(2)同级运算,从左到右依次进行
(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

注:通常把六种基本的代数运算分成三级:第一级运算是加和减;第二级运算是乘和除;第三级运算是乘方和开方。

运算顺序的规定是先算高级运算,再算低级运算,同级运算在一起,按从左到右的顺序运算, 先算小括号,再说中括号,最后算大括号。

例 计算:
(1)(-3)×4-42÷(-7)
(2)20-8÷(-4)×(-0.25)
(3)412×(76-)÷(2-2
1)
(4)83
216- ÷(-2)2-(-4)×(+32)
(5)-3×(-5)+(-4)÷2
1
(6)
(7)(-4)×(-75)÷(-74)-(-2
1)3
(8)-12007-(0.2-4
1)×(-20)+(-2)2
(9)
(10)-32+(-3)2-(-1)3×(2
1-31)÷61-6-。

相关文档
最新文档