气体动理论习题解答
第7章气体动理论习题解答

第7章 气体动理论7.1基本要求1.理解平衡态、物态参量、温度等概念,掌握理想气体物态方程的物理意义及应用。
2.了解气体分子热运动的统计规律性,理解理想气体的压强公式和温度公式的统计意义及微观本质,并能熟练应用。
3.理解自由度和内能的概念,掌握能量按自由度均分定理。
掌握理想气体的内能公式并能熟练应用。
4.理解麦克斯韦气体分子速率分布律、速率分布函数及分子速率分布曲线的物理意义,掌握气体分子热运动的平均速率、方均根速率和最概然速率的求法和意义。
5.了解气体分子平均碰撞频率及平均自由程的物理意义和计算公式。
7.2基本概念1 平衡态系统在不受外界的影响下,宏观性质不随时间变化的状态。
2 物态参量描述一定质量的理想气体在平衡态时的宏观性质的物理量,包括压强p 、体积V 和温度T 3 温度宏观上反映物体的冷热程度,微观上反映气体分子无规则热运动的剧烈程度。
4 自由度确定一个物体在空间的位置所需要的独立坐标数目,用字母i 表示。
5 内能理想气体的内能就是气体内所有分子的动能之和,即2iE RT ν= 6 最概然速率速率分布函数取极大值时所对应的速率,用p υ表示,p υ==≈其物理意义为在一定温度下,分布在速率p υ附近的单位速率区间内的分子在总分子数中所占的百分比最大。
7 平均速率各个分子速率的统计平均值,用υ表示,υ==≈8 方均根速率各个分子速率的平方平均值的算术平方根,用rms υ表示,rms υ==≈ 9 平均碰撞频率和平均自由程平均碰撞频率Z 是指单位时间内一个分子和其他分子平均碰撞的次数;平均自由程λ是每两次碰撞之间一个分子自由运动的平均路程,两者的关系式为:Zυλ==或λ=7.3基本规律1 理想气体的物态方程pV RT ν=或'm pV RT M=pV NkT =或p nkT =2 理想气体的压强公式23k p n ε=3 理想气体的温度公式21322k m kT ευ==4 能量按自由度均分定理在温度为T 的平衡态下,气体分子任何一个自由度的平均动能都相等,均为12kT 5 麦克斯韦气体分子速率分布律 (1)速率分布函数()dNf Nd υυ=表示在速率υ附近单位速率区间内的分子数占总分子数的百分比或任一单个分子在速率υ附近单位速率区间内出现的概率,又称为概率密度。
大学物理气体的动理论习题答案

(4)从微观上看,气体的温度表示每个气体分子的冷热程度。
上述说法中正确的是
(A)(1)、(2)、(4);(B)(1)、(2)、(3);(C)(2)、(3)、(4);(D)(1)、(3)、(4)。
2. 两 容 积 不 等 的 容 器 内 分 别 盛 有 He 和 N2 , 若 它 们 的 压 强 和 温 度 相 同 , 则 两 气 体
9.速率分布函数 f(v)的物理意义为:
[B ]
(A)具有速率 v 的分子占总分子数的百分比。
(B)速率分布在 v 附近的单位速率间隔中的分子数占总分子数的百分比。
(C)具有速率 v 的分子数。
(D)速率分布在 v 附近的单位速率间隔中的分子数。
1
10.设 v 代表气体分子运动的平均速率,vP 代表气体分子运动的最可几速率,( v2 )2 代表
℃升高到 177℃,体积减小一半。试求:
(1)气体压强的变化;
(2)气体分子的平均平动动能的变化;
(3)分子的方均根速率为原来的倍数。
解:
(1)由
p1V1 T1
p2V2 T2
,
代入T1
=300K,T2
=450K,V2
=
1 2
V1可得
p2 =3p1
即压强由p1变化到了3 p1。
(2)分子的平均平动动能
(D) 6 p1 。
5. 一瓶氦气和一瓶氮气,两者密度相同,分子平均平动动能相等,而且都处于平衡状态, 则两者[ C ]
(A)温度相同,压强相等; (B)温度,压强都不相同; (C)温度相同,但氦气的压强大于氮气压强; (D)温度相同,但氦气的压强小于氮气压强。
6.1mol 刚性双原子分子理想气体,当温度为 T 时,其内能为
大学物理第十一章气体动理论习题详细答案

第十一章 气体动理论习题详细答案一、选择题1、答案:B解:根据速率分布函数()f v 的统计意义即可得出。
()f v 表示速率以v 为中心的单位速率区间内的气体分子数占总分子数的比例,而dv v Nf )(表示速率以v 为中心的dv 速率区间内的气体分子数,故本题答案为B 。
2、答案:A解:根据()f v 的统计意义和p v 的定义知,后面三个选项的说法都是对的,后面三个选项的说法都是对的,而只有而只有A 不正确,气体分子可能具有的最大速率不是p v ,而可能是趋于无穷大,所以答案A 正确。
正确。
3、答案: A 解:2rms 1.73RT v v M ==,据题意得222222221,16H O H H H O O O T T T M M M T M ===,所以答案A 正确。
正确。
4、 由理想气体分子的压强公式23k p n e =可得压强之比为:可得压强之比为:A p ∶B p ∶C p =n A kA e ∶n B kB e ∶n C kC e =1∶1∶1 5、 氧气和氦气均在标准状态下,二者温度和压强都相同,而氧气的自由度数为5,氦气的自由度数为3,将物态方程pV RT n =代入内能公式2iE RT n =可得2iE pV =,所以氧气和氦气的内能之比为5 : 6,故答案选C 。
6、 解:理想气体状态方程PV RTn =,内能2iU RT n =(0m M n =)。
由两式得2UiP V =,A 、B 两种容积两种气体的压强相同,A 中,3i =;B 中,5i =,所以答案A 正确。
正确。
7、 由理想气体物态方程'm pV RT M=可知正确答案选D 。
8、 由理想气体物态方程pV NkT =可得气体的分子总数可以表示为PV N kT =,故答案选C 。
9、理想气体温度公式21322k m kT e u ==给出了温度与分子平均平动动能的关系,表明温度是气体分子的平均平动动能的量度。
9-气体动理论-习题分析与解答(第二版)

第9章 气体动理论 习题解答(一). 选择题1. 已知某理想气体的压强为p ,体积为V ,温度为T ,气体的摩尔质量为M ,k 为玻尔兹曼常量,R 为摩尔气体常量,则该理想气体的密度为(A )M/V (B )pM/(RT) (C )pM/(kT) (D )p/(RT) [ ] 【分析与解答】气体的密度V m =ρ,由理想气体状态方程 RT M m pV =得RT pMV m ==ρ 正确答案是B 。
2. 三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为()()()2/122/122/12::CB A v v v =1∶2∶4,则其压强之比A p ∶B p ∶C p 为:(A) 1∶2∶4. (B) 1∶4∶8.(C) 1∶4∶16. (D) 4∶2∶1. [ ] 【分析与解答】同种理想气体,分子数密度n 相同,由理想气体压强公式)21(322v m n p =()()()16:4:1v :v :v ::222==C B A C B A p p p正确答案是C 。
3. 已知氢气与氧气的温度相同,请判断下列说法哪个正确?(A) 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强. (B) 氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度. (C) 氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大. (D) 氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大. [ ] 【分析与解答】(A )温度相同,分子平均平动动能相等,wn p 32=,因无法比较单位体积分子数,故无法比较压强大小;(B)由一1密度公式RT pM V m ==ρ,压强不确定,故密度不能判定;(C)讨论分子速率一定要讨论统计平均值;(D) =,氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大. 正确答案是D 。
4. 关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度.(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义.(3) 温度的高低反映物质内部分子运动剧烈程度的不同. (4) 从微观上看,气体的温度表示每个气体分子的冷热程度. 这些说法中正确的是(A) (1)、(2) 、(4). (B) (1)、(2) 、(3). (C) (2)、(3) 、(4).(D) (1)、(3) 、(4). [ ] 【分析与解答】上述表述中(1)、(2) 、(3)是正确的。
《大学物理》第十章气体动理论习题参考答案

第十章 气体动理论一、选择题参考答案1. (B) ;2. (B );3. (C) ;4. (A) ;5. (C) ;6. (B );7. (C ); 8. (C) ;9. (D) ;10. (D) ;11. (C) ;12. (B) ;13. (B) ;14. (C) ;15. (B) ;16.(D) ;17. (C) ;18. (C) ;19. (B) ;20. (B) ;二、填空题参考答案1、体积、温度和压强,分子的运动速度(或分子的动量、分子的动能)2、一个点;一条曲线;一条封闭曲线。
3. kT 21 4、1:1;4:1 5、kT 23;kT 25;mol /25M MRT 6、12.5J ;20.8J ;24.9J 。
7、1:1;2:1;10:3。
8、241092.3⨯9、3m kg 04.1-⋅10、(1)⎰∞0d )(v v v Nf ;(2)⎰∞0d )(v v v f ;(3)⎰21d )(212v v v v v Nf m 11、氩;氦12、1000m/s ; 21000m/s13、1.514、215、12M M三、计算题参考答案1.解:氧气的使用过程中,氧气瓶的容积不变,压强减小,因此可由气体状态方程得到使用前后的氧气质量,进而将总的消耗量和每小时的消耗量比较求解。
已知atm 1301=p ,atm 102=p ,atm 13=p ;L 3221===V V V ,L 4003=V 。
质量分布为1m ,2m ,3m ,由题意可得RT Mm V p 11=RT Mm V p 22= RT M m V p 333=所以该瓶氧气使用的时间为h)(6.94000.132)10130(3321321=⨯⨯-=-=-=V p V p V p m m m t 2.解:设管内总分子数为N ,由V NkT nkT p ==有 1210611)(⨯==.kT pV N (个)空气分子的平均平动动能的总和= J 10238-=NkT 空气分子的平均转动动能的总和 = J 106670228-⨯=.NkT 空气分子的平均动能的总和 = J 10671258-⨯=.NkT3.解:(1)根据状态方程RT MRT MV m p RT M m pV ρ==⇒=得 ρp M RT = ,pRT M ρ= 气体分子的方均根速率为1-2s m 49533⋅===ρp M RT v (2)气体的摩尔质量为1-2m ol kg 108.2⋅⨯==-p RTM ρ所以气体为N 2或CO 。
第十二章 气体动理论 习题解答

专业班级
12.5
学号
5
姓名
一容器内储有氧气,其压强为 1.01 10 Pa ,温度为 300K。求:
(1)气体分子的数密度; (2)氧气的质量密度; (3)氧气分子的平均平动能。 1.01 105 P 2.45 10 25 m 3 kT 1.38 10 23 300 32 10 3 M 25 (2)方法一: nm n 2.45 10 1.3kg / m3 (注意摩尔质量的单位); 23 NA 6.02 10 解: (1) 物态方程 p nkT ,得 n
12.11 在常压下,把一定量的理想气体温度升高 50℃,需要 160J 的热量。在体积不变的情况 下,把此气体温度降低 100℃,将放出 240J 的热量,则此气体分子的自由度是_6_。 分析:本题为第十三章内容。 根据摩尔定体热容和摩尔定压热容公式: CV,m
dQ p i 2 dQV i R 和 C p,m R 得到 2 2 dT dT
m MP 32 10 3 1.01 105 m RT ,得到 1.3kg / m3 M V RT 8.31 300 3 3 (3)氧气分子的平均平动能: k kT 1.38 10 23 300 6.21 10 21 J 2 2 注意:物态方程中的参数都要使用国际单位,因此摩尔质量 M 的单位应该取 kg / mol ,例
专业班级
学号
§12.1~12.3
姓名
12.1 置于容器内的气体,如果气体内各处压强相等,或气体内各处温度相同,则这两种情 况下气体的状态 【B】 (A) 一定都是平衡态. (B) 不一定都是平衡态. (C) 前者一定是平衡态,后者一定不是平衡态. (D) 后者一定是平衡态,前者一定不是平衡态. 分析:一定量的气体,在不受外界的影响下,经过一定的时间,系统达到一个稳定的宏观 性质不随时间变化的状态称为平衡态.(第十二章复习提纲 P.5) 根据物态方程 pV RT 可知,当一定量的气体各处压强(或者温度)相等时,并不能保证 气体的体积和温度(或者压强)时时不变,因此不能说此时气体达到平衡态。 如果本题改为:一定量的气体,各处压强相同,并且各处温度也都相同,此时气体的体积 也就是确定的值,因此气体达到平衡态。 12.2 若理想气体的体积为 V,压强为 P,温度为 T,一个分子的质量为 m,k 为玻尔兹曼常 量,R 为普适气体常量,则该理想气体的分子数为【B】 (A)
华理工大学大学物理习题之气体动理论习题详解

华理工大学大学物理习题之气体动理论习题详解一、选择题1.用分子质量m ,总分子数N ,分子速率v 和速率分布函数()f v 表示的分子平动动能平均值为 [ ](A )0()Nf v dv ∞⎰; (B )201()2mv f v dv ∞⎰;(C )201()2mv Nf v dv ∞⎰;(D )01()2mvf v dv ∞⎰。
答案:B解:根据速率分布函数()f v 的统计意义即可得出。
()f v 表示速率以v 为中心的单位速率区间内的气体分子数占总分子数的比例,而dv v Nf )(表示速率以v 为中心的dv 速率区间内的气体分子数,故本题答案为B 。
2.下列对最概然速率p v 的表述中,不正确的是 [ ](A )p v 是气体分子可能具有的最大速率;(B )就单位速率区间而言,分子速率取p v 的概率最大; (C )分子速率分布函数()f v 取极大值时所对应的速率就是p v ;(D )在相同速率间隔条件下分子处在p v 所在的那个间隔内的分子数最多。
答案:A解:根据()f v 的统计意义和p v 的定义知,后面三个选项的说法都是对的,而只有A 不正确,气体分子可能具有的最大速率不是p v ,而可能是趋于无穷大,所以答案A 正确。
3.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是 [ ](A )氧气的温度比氢气的高; (B )氢气的温度比氧气的高;(C )两种气体的温度相同; (D )两种气体的压强相同。
答案:Arms v =222222221,16H O H H H O O O T T T M M M T M ===,所以答案A 正确。
4.如下图所示,若在某个过程中,一定量的理想气体的热力学能(内能)U 随压强p 的变化关系为一直线(其 延长线过U —p 图的原点),则该过程为[ ](A )等温过程; (B )等压过程; (C )等容过程; (D )绝热过程。
《大学物理》第8章气体动理论练习题及答案

《大学物理》第8章气体动理论练习题及答案练习1一、选择题1. 在一密闭容器中,储有A、B、C三种理想气体,处于平衡状态。
A种气体的分子数密度为n1,它产生的压强为p1,B种气体的分子数密度为2n1,C种气体的分子数密度为3n1,则混合气体的压强p为( )A. 3p1;B. 4p1;C. 5p1;D. 6p1.2. 若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为( )A. pVm⁄; B. pVkT⁄; C. pV RT⁄; D. pV mT⁄。
3. 一定量某理想气体按pV2=恒量的规律膨胀,则膨胀后理想气体的温度( )A. 将升高;B. 将降低;C. 不变;D. 升高还是降低,不能确定。
二、填空题1. 解释下列分子动理论与热力学名词:(1) 状态参量:;(2) 微观量:;(3) 宏观量:。
2. 在推导理想气体压强公式中,体现统计意义的两条假设是:(1) ;(2) 。
练习2一、选择题1. 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p 1和p 2,则两者的大小关系是 ( )A. p 1>p 2;B. p 1<p 2;C. p 1=p 2;D. 不能确定。
2. 两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数为n ,单位体积内的气体分子的总平动动能为E k V ⁄,单位体积内的气体质量为ρ,分别有如下关系 ( )A. n 不同,E k V ⁄不同,ρ不同;B. n 不同,E k V ⁄不同,ρ相同;C. n 相同,E k V ⁄相同,ρ不同;D. n 相同,E k V ⁄相同,ρ相同。
3. 有容积不同的A 、B 两个容器,A 中装有刚体单原子分子理想气体,B 中装有刚体双原子分子理想气体,若两种气体的压强相同,那么,这两种气体的单位体积的内能E A 和E B 的关系( )A. E A <E B ;B. E A >E B ;C. E A =E B ;D.不能确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 气体动理论一 选择题1. 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子总数为( )。
A. pV /mB. pV /(kT )C. pV /(RT )D. pV /(mT )解 理想气体的物态方程可写成NkT kT N RT pV ===A νν,式中N =??N A 为气体的分子总数,由此得到理想气体的分子总数kTpVN =。
故本题答案为B 。
2. 在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态。
A 种气体的分子数密度为n 1,它产生的压强为p 1,B 种气体的分子数密度为2n 1,C 种气体的分子数密度为3 n 1,则混合气体的压强p 为 ( )A. 3p 1B. 4p 1C. 5p 1D. 6p 1 解 根据nkT p =,321n n n n ++=,得到 故本题答案为D 。
3. 刚性三原子分子理想气体的压强为p ,体积为V ,则它的内能为 ( ) A. 2pV B.25pV C. 3pV 27解 理想气体的内能RT iU ν2=,物态方程RT pV ν=,刚性三原子分子自由度i =6,因此pV pV RT i U 3262===ν。
因此答案选C 。
4. 一小瓶氮气和一大瓶氦气,它们的压强、温度相同,则正确的说法为:( ) A. 单位体积内的原子数不同 B. 单位体积内的气体质量相同 C. 单位体积内的气体分子数不同 D. 气体的内能相同 解:单位体积内的气体质量即为密度,气体密度RTMpV m ==ρ(式中m 是气体分子质量,M 是气体的摩尔质量),故两种气体的密度不等。
单位体积内的气体分子数即为分子数密度kTpn =,故两种气体的分子数密度相等。
氮气是双原子分子,氦气是单原子分子,故两种气体的单位体积内的原子数不同。
根据理想气体的内能公式RT iU 2ν=,两种气体的内能不等。
所以答案选A 。
5. 麦克斯韦速率分布曲线如题图所示,图中A 、B 两部分的面积相等,则该图表示( )A. v 0为最可几速率选择题5图B. v 0为平方速率C. v 0方均根速率D. 速率大于v 0和速率小于v 0的分子各占一半解:根据速率分布曲线的意义可知,分子速率大于v 0和小于v 0的概率相等。
所以答案选D 。
6. 在一定温度下分子速率出现在v p 、v 和2v 三值附近d v 区间内的概率( ) A. 出现在2v 附近的概率最大,出现在v p 附近的概率最小 B. 出现在v 附近的概率最大,出现在2v 附近的概率最小 C. 出现在v p 附近的概率最大,出现在v 附近的概率最小 D. 出现在v p 附近的概率最大,出现在2v 附近的概率最小解:v p 是最概然速率,2v 值最大,根据麦克斯韦速率分布可知,分子速率出现在v p 值的概率最大,出现在2v 值的概率最小。
所以答案选D 。
7. 在容积不变的封闭容器内理想气体分子的平均速率若提高为原来的2倍,则 ( ) A. 温度和压强都为原来的2倍B. 温度为原来的2倍, 压强为原来的4倍C. 温度为原来的4倍, 压强为原来的2倍D. 温度和压强都为原来的4倍解:根据分子的平均速率M RT π8=v ,及理想气体公式VRTp ν=,若分子的平均速率若提高为原来的2倍,则温度和压强都为原来的4倍。
所以答案选D 。
8. 三个容器A 、B 、C 装有同种理想气体,其分子数密度n 相同,而方均根速率之比为212121)( :)( :)( 2C 2B 2A v v v =1:2:3,则其压强之比p A :p B :p C 为 ( ) A. 1:2:4 B. 4:2:1 C 1:4:16 D. 1:4:9解:方均根速率与T 成正比,因此三个容器的温度之比为T A : T B : T C =1:4:9,而压强nkT p =,故p A :p B :p C =1:4:9。
所以答案选D 。
9. 一定量的理想气体贮于某一容器内,温度为T ,气体分子的质量为m 。
根据理想气体分子模型和统计假设,分子速度在x 方向分量的平均值为( )解:在热平衡时,分子在x 正反两个方向上的运动是等概率的,故分子速度在x 方向分量的平均值为零。
所以答案选D 。
10. 气缸内盛有一定量的氢气(可视作理想气体),当温度不变而压强增大一倍时,氢气分子的平均碰撞频率Z 和平均自由程λ的变化情况为 ( )A. Z 和λ都增大一倍。
B. Z 和λ都减为原来的一半。
C. Z 增大一倍而λ减为原来的一半。
D. Z 减为原来的一半而λ增大一倍解:温度不变,分子的平均速率不变,而压强增大一倍时,根据公式nkT p =,气体的分子数密度也增大一倍。
而Z 与n 成正比,λ与n 成反比,故Z 增大一倍而λ减为原来的一半。
所以答案选C 。
二 填空题1. 氢分子的质量为×10?24g ,如果每秒有1023个氢分子沿着与容器器壁的法线成对45?角的方向以10 3 m ? s ?1的速率撞击在2.0cm 2面积上(碰撞是完全弹性的),则此氢气的压强为 。
解:tS mv N t S I N t S t Nf S Nf p x ∆∆=∆∆=∆∆==)(,取?t =1s ,将题中数据代入可计算出压强 343327231033.21100.2)]45cos 10(45cos 10[103.310⨯=⨯⨯︒⨯--︒⨯⨯⨯⨯=--p 帕。
2. 在常温常压下,摩尔数相同的氢气和氮气,当温度相同时,下述量是否相同,分子每个自由度的能量 ;分子的平均平动动能 ;分子的平均动能 ;气体的内能 。
解:分子每个自由度的能量与具体分子无关,故分子每个自由度的能量相同;分子的平均平动动能都是kT 23t =ε,故相同;氢和氮都是双原子分子,分子的平均动能kT 25k =ε,故相同;内能RT U ν25=,故摩尔数相同、温度相同的气体内能也相同。
3. 储有氢气的容器以某速度v 作定向运动,假设该容器突然停止,全部定向运动动能都变为气体分子热运动的动能,此时容器中气体的温度上升,求容器作定向运动的速度 m ? s –1,容器中气体分子的平均动能增加了 J 。
解:氢气是双原子分子,其分子自由度等于5。
设容器内的气体有? 摩尔,则气体的内能为RT U ν25=,内能的增量T R U ∆=∆ν25。
所有分子的定向运动动能为)21(2H A 2v m N ν。
若此动能全部变为气体分子热运动的动能,使容器中气体的温度上升,则有 整理上式得到容器作定向运动的速度3.1201067.127.01038.1552723H 2=⨯⨯⨯⨯⨯=∆=--m T k v m/s因分子的平均动能kT 25k =ε,所以气体分子的平均动能增加了 2323k 1042.27.01038.12525--⨯=⨯⨯⨯=∆=∆T k εJ4. 1mol 氧气(视为刚性双原子分子的理想气体)贮于一氧气瓶中,温度为27℃,这瓶氧气的内能为 J ;分子的平均平动动能为 J ;分子的平均动能为 J 。
解:1mol 氧气的内能5.623230031.812525=⨯⨯⨯==RT U νJ分子的平均平动动能2123t 1021.63001038.12323--⨯=⨯⨯⨯==kT εJ分子的平均动能2023k 10035.13001038.12525--⨯=⨯⨯⨯==kT εJ5. 若用f (v )表示麦克斯韦速率分布函数,则某个分子速率在v ?v +d v 区间内的概率为 ,某个分子速率在0?v p 之间的概率为 ,某个分子速率在0??之间的概率为 。
解: d )(v v f ;⎰pd )(v v v f ;1d )(0=⎰∞f v v6. 假设某种气体的分子速率分布函数f (v )与速率v 的关系如图所示,分子总数为N ,则()=⎰023d v v v f ;而()⎰d v v v Nf 的意义是 。
解:根据分子速率分布函数的物理意义,()1d 0230=⎰v v v f ;()⎰d v v v Nf 的意义是速率在0~ v 0区间内的分子数。
填空题6图0v7. 一密度为?,摩尔质量为M 的理想气体的分子数密度为 。
若该气体分子的最概然速率为v p ,则此气体的压强为 。
解:MN V m M N V M mN VN n A A Aρ====; 8. 密闭容器中贮有一定量的理想气体,若加热使气体的温度升高为原来的4倍,则气体分子的平均速率变为原来的 倍,气体分子的平均自由程变为原来的 倍。
解:因MRTπ8=v ,则气体分子的平均速率变为原来的2倍。
nd 2π21=λ,因为密闭容器中气体分子数密度n 不变,故平均自由程不变,即变为原来的1倍。
三 计算题8. 设N 个粒子系统的速率分布函数为 d N = R d v (0 < v < u , R 为常数) d N = 0 (v ?u )试:(1)画出分布函数图;(2)用N 和u 定出常数R ;(3)用u 表示出平均速率和方均根速率。
解:(1)我们将分布函数d N = R d v 写成如下一般形式常数===NRN N f v v d d)( 其分布函数如图。
(2)对d N = R d v 积分, 得RV N = 即uN R =(3)平均速率2d d 0u NR NN uN=⋅=⋅=⎰⎰v v v v方均根速率3d 022u NR u=⋅=⎰vvvR /。