浙教版数学八年级下册 第三章 数据分析初步 单元检测
浙教版八年级数学下《第3章数据分析初步》检测题含答案(初中 数学试卷)

第3章检测题(时间:100分钟 满分:120分)一、精心选一选(每小题3分,共30分)1.某校对九年级6个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h ):3.5,4,3.5,5,5,3.5.这组数据的众数是( B )A .3B .3.5C .4D .52.在端午节到来之前,学校食堂推荐了A ,B ,C 三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购.下面的统计量中,最值得关注的是( D )A .方差B .平均数C .中位数D .众数3.在样本方差的计算公式S 2=110[(x 1-20)2+(x 2-20)2+…+(x 10-20)2]中,数字10与20分别表示样本的( A )A .容量,平均数B .平均数,容量C .容量,方差D .标准差,平均数 4.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映的统计量是( D )A .众数和平均数B .平均数和中位数C .众数和方差D .众数和中位数5.某班组织了一次读书活动,统计了10名同学在一周内的读书时间,他们一周内的读书时间累计如表,则这10名同学一周内累计读书时间的中位数是( C )A.8 B .7 C .9 D .106.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是( C )A .21,21B .21,21.5C .21,22D .22,22 7.今年,我省启动了“关爱留守儿童工程”.某村小学为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误的是( C )A .平均数是15B .众数是10C .中位数是17D .方差是4438.某学校举行理科(含数学、物理、化学、生物四科)综合能力比赛,四科的满分都为100分.甲、乙、丙三人四科的测试成绩如下表,综合成绩按照数学、物理、化学、生物四科测试成绩的1.2∶1∶1∶0.8的比例计分,则综合成绩第一名是( A )A.甲 B .乙 C .丙 D .不确定9.一组数据6,4,a ,3,2的平均数是5,这组数据的标准差为( A )A .2 2B .5C .8D .310.在某中学举行的演讲比赛中,八年级5名参赛选手的成绩如下表所示,请你根据表中提供的数据,计算出这5名选手成绩的方差为( B )A.2 B .6.8 C .34 D .93二、细心填一填(每小题3分,共24分)11.甲、乙两人进行射击测试,两人10次射击成绩的平均数都是8.5环,方差分别是:S 甲2=2,S 乙2=1.5,则射击成绩较稳定的是__乙__.(填“甲”或“乙”)12.数据1,2,3,a 的平均数是3,数据4,5,a ,6的众数是5,则a +b =__11__.13.已知一组数据3,1,5,x ,2,4的众数是3,那么这组数据的标准差是3. 14.某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理占40%计算.已知小明数学得分为95分,综合得分为93分,那么小明物理得分是__90__分.15.某校抽样调查了七年级学生每天体育锻炼时间,整理数据后制成了如下所示的频数分布表,这个样本的中位数在第__2__组.16.一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组⎩⎨⎧x -3≥0,5-x >0,的整数,则x 的值为__4__.17.两组数据m ,6,n 与1,m ,2n ,7的平均数都是6,若将这两组数据合并成一组数据,则这组新数据的中位数为__7__.18.已知一组数据1,2,3,…,n(从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n 个数是n).设这组数据的各数之和是s ,中位数是k ,则s =__nk __.(用只含有n ,k 的代数式表示)三、耐心做一做(共66分)19.(8分)在“全民读书月活动”中,小明调查了全班40名同学本学期计划购买课外书的花费情况,并将结果绘制如图所示的统计图.请根据相关信息,解答下列问题:(直接填写结果)(1)这次调查获取的样本数据的众数是__30元__;(2)这次调查获取的样本数据的中位数是__50元__;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有__250__人.20.(10分)为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?解:(1)被抽检的电动汽车共有30÷30%=100(辆),补全条形统计图略(2)x=1 100(10×200+30×210+40×220+20×230)=217(千米)21.(10分)某公司员工的月工资情况统计如下表:(1)(2)你认为用(1)中计算出的哪个数据来代表该公司员工的月工资水平更为合适?请简要说明理由.解:(1)平均数=3800元,中位数=3500元,众数=3500元(2)用众数代表该公司员工的月工资水平更为合适,因为3500出现的次数最多,能代表大部分人的工资水平22.(12分)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为__40__,图①中m 的值为__15__;(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?解:(2)众数为35 中位数为36+362=36(3)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60(双)为35号23.(12分)甲、乙两人是NBA 联盟凯尔特人队的两位明星球员,两人在前五个赛季的罚球命中率如下表所示:(1)分别求出甲、乙两位球员在前五个赛季罚球的平均命中率;(2)在某场比赛中,因对方球员技术犯规需要凯尔特人队选派一名队员进行罚球,你认为甲、乙两位球员谁来罚球更好?(请通过计算说明理由)解:(1)x 甲=(87+86+83+85+79)÷5=84;x 乙=(87+85+84+80+84)÷5=84.所以甲、乙两位球员罚球的平均命中率都为84% (2)S 甲2=[(87-84)2+(86-84)2+(83-84)2+(85-84)2+(79-84)2]÷5=8 S 乙2=[(87-84)2+(85-84)2+(84-84)2+(80-84)2+(84-84)2]÷5=5.2 由x 甲=x 乙,S 甲2>S 乙2可知,乙球员的罚球命中率比较稳定,建议由乙球员来罚球更好24.(14分)如图,A ,B 两个旅游点从2012年至2016年“五一”的旅游人数变化情况分别用实线和虚线表示.根据图中所有示信息,解答以下问题:(1)B 旅游点的旅游人数相对上一年来说,增长最快的是哪一年?(2)求A ,B 两个旅游点从2012年至2016年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;(3)A 旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A 旅游点的最佳接待人数为4万人,为控制游客数量,A 旅游点决定提高门票价格.已知门票价格x(元)与游客人数y(万人)满足函数关系y =5-x100.若要使A 旅游点的游客人数不超过4万人,则门票价格至少应提高多少?解:(1)B 旅游点的旅游人数相对上一年来说,增长最快的是 2 013年 (2)x A =1+2+3+4+55=3(万人),x B =3+3+2+4+35=3(万人).S A 2=15×[0+0+(-1)2+12+0]=25(万人2).从2012年至2016年,A ,B 两个旅游点平均每年的旅游人数均为3万人,但A 旅游点较B 旅游点的旅游人数波动大 (3)由题意得5-x100≤4,解得x ≥100,100-80=20(元).答:门票价格至少应提高20元。
浙教版八年级下数学第三章 数据分析初步单元测试卷(附答案)

浙教版八年级下数学第3章数据分析初步单元测试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)如果一组数据﹣3,﹣2,0,1,x,6,9,12的平均数为3,则x为()A.2B.3C.﹣1D.12.(3分)一小组8位同学一分钟跳绳的次数如下:150,176,168,183,172,164,168,185,则这组数据的中位数为()A.172B.171C.170D.1683.(3分)已知一组数据x1,x2,x3的平均数为7,则x1+3,x2+2,x3+4的平均数为()A.7B.8C.9D.104.(3分)某鞋店先后卖出7双某品牌的运动鞋,其尺码依次为(单位:码):40,39,40,41,42,41,41,则这组数据的众数是()A.39B.40C.41D.425.(3分)某校在“爱护地球,绿化祖国”的创建活动中,组织了100名学生开展植树造林活动,其植树情况整理如下表:植树棵树(单位:棵)456810人数(人)302225158则这100名学生所植树棵树的中位数为()A.4B.5C.5.5D.66.(3分)一次演讲比赛中,小明的成绩如下:演讲内容为70分,演讲能力为60分,演讲效果为88分,如果演讲内容、演讲能力、演讲效果的成绩按4:2:4计算,则他的平均分为()分.A.74.2B.75.2C.76.2D.77.27.(3分)某选手在比赛中的成绩(单位:分)分别是90,87,92,88,93,方差是5.2(单位:分2),如果去掉一个最高分和一个最低分,那么该选手成绩的方差会()A.变大B.不变C.变小D.不确定8.(3分)已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的中位数是()A.2B.3C.4D.59.(3分)样本方差的计算公式S2=[(x1﹣20)2+(x2﹣20)2+…+(x30﹣20)2]中,数字30和20分别表示样本的()A.众数、中位数B.方差、标准差C.数据的个数、中位数D.数据的个数、平均数10.(3分)一个民营企业10名员工的月平均工资如下表,则能较好反映这些员工月平均工资水平的是()(工资单位:万元)人次1112113工资3032 1.5 1.220.8 A.平均数B.中位数C.众数D.标准差二.填空题(共6小题,满分24分,每小题4分)11.(4分)小明某次月考语文、数学、英语的平均成绩是93分,其中语文成绩是90分,英语成绩是95分,则数学成绩是分.12.(4分)已知样本数据1,2,3,4,5,这组数据的标准差S=.13.(4分)某公司决定招聘经理一名,一位应聘者三项素质测试的成绩如下表:测试项目创新能力综合知识语言表达测试成绩(分数)808090将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是分.14.(4分)已知一组数据是3,4,7,a,中位数为4,则a=.15.(4分)甲、乙两名男同学练习投掷实心球,每人投了10次,平均成绩均为7.5米,方差分别为s甲2=0.2,S乙2=0.08,成绩比较稳定的是(填“甲”或“乙”)16.(4分)某鞋店一周内销售了某种品牌的男鞋60双,各种尺码的销售量统计如下:尺码/cm23.52424.52525.52626.5销量/双376161882由此你能给这家鞋店提供的进货建议是.三.解答题(共8小题,满分66分)17.(6分)2018年12月4日是第五个国家宪法日,也是第一个“宪法宣传周”.甲、乙两班各选派10名学生参加宪法知识竞赛(满分100分),成绩如下:成绩859095100甲班参赛学生/人1153乙班参赛学生/人1234分别求甲、乙两班参赛学生竞赛成绩的平均数和方差.18.(6分)某工厂甲、乙两名工人参加操作技能培训,现分别从他们在培训期间参加的若干次测试成绩中随机抽取5次,记录如下:甲8588848583乙8387848685(1)请你分别计算这两组数据的平均数;(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.19.(8分)某中学积极倡导阳光体育运动,提高中学生身体素质,开展跳绳比赛,下表为该校6年1班40人参加跳绳比赛的情况,若标准数量为每人每分钟100个.跳绳个数与标准数量的差值﹣2﹣10456人数61216105(1)求6年1班40人一分钟内平均每人跳绳多少个?(2)规定跳绳超过标准数量,每多跳1个绳加3分;规定跳绳未达到标准数量,每少跳1个绳,扣1分,若班级跳绳总积分超过250分,便可得到学校的奖励,通过计算说明6年1班能否得到学校奖励?20.(8分)数学老师全老师选派了班上8位同学去参加年级组的数学知识竞赛,试卷满分100分,我们将成绩中超过90分的部分记为正,低于90分的部分记为负,则这八位同学的得分如下:+8,+3,﹣3,﹣11,+4,+9,﹣5,﹣1.(1)请求出这8为同学本次数学竞赛的平均分是多少?(2)若得分95以上可以获得一等奖,请求出这8位同学获得一等奖的百分比是多少?21.(8分)甲乙两位同学参加数学综合素质测试,各项成绩如下表:(单位:分)数与代数空间与图形统计与概率综合与实践学生甲93938990学生乙94929486(1)分别计算甲、乙同学成绩的中位数;(2)如果数与代数,空间与图形,统计与概率,综合与实践的成绩按4:3:1:2计算,那么甲、乙同学的数学综合素质成绩分别为多少分?22.(10分)一次期中考试中,A、B、C、D、E五位同学的数学、英语成绩有如下信息:A B C D E平均分标准差数学7172696870英语888294857685(1)求这五位同学在本次考试中数学成绩的平均分和英语成绩的标准差;(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式:标准分=个人成绩﹣平均成绩)÷成绩标准差.从标准分看,标准分高的考试成绩更好,请问A同学在本次考试中,数学、英语哪个学科考得更好?23.(10分)某服装厂对服装进行二次加工,现有工人16人,工厂为了合理制定服装的每月生产定额,统计了16人某月的加工服装数如表:加工服装数/件590550300240210120人数113542(1)写出这16人该月加工服装数的平均数、中位数和众数;(2)假如服装厂负责人把每位工人的月加工服装件数定为270件,你认为这个定额是否合理?为什么?24.(10分)为参加11月23日举行的丹东市“我爱诗词”中小学生诗词大赛决赛,某校每班选25名同学参加预选赛,成绩分别为A、B、C、D四个等级,其中相应等级的得分依次记为10分、9分、8分、7分,学校将八年级的一班和二班的成绩整理并绘制成如下统计图:根据以上提供的信息解答下列问题(1)请补全一班竞赛成绩统计图;(2)请直接写出a、b、c、d的值;班级平均数(分)中位数(分)众数(分)一班a=b=9二班8.76c=d=(3)请从平均数和中位数两个方面对这两个班级的成绩进行分析.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.D2.C 3.D 4.C 5.B 6.B 7.C 8.B 9.D 10.B 二.填空题(共6小题,满分24分,每小题4分)11.94 12..13.82 14.4 15.乙16.25.5cm三.解答题(共8小题,满分66分)17.解:甲班参赛学生的平均数是:(85×1+90×1+95×5+100×3)=95(分),乙班参赛学生的平均数是:(85×1+90×2+95×3+100×4)=95(分),则S甲2=[(85﹣95)2+(90﹣95)2+5(95﹣95)2+3(100﹣95)2]=20(分2),S乙2=[(85﹣95)2+2(90﹣95)2+3(95﹣95)2+4(100﹣95)2]=25(分2),答:甲、乙两班参赛学生竞赛成绩的平均数都是95分,方差分别为20分2,25分2.18.解:(1)甲平均数:×(85+88+84+85+83)=×425=85,乙平均数:×(83+87+84+86+85)=×425=85;(2)选派乙工人参加合适.理由如下:S甲2=×[(85﹣85)2+(88﹣85)2+(84﹣85)2+(85﹣85)2+(83﹣85)2],=×(0+9+1+0+4),=2.8,S乙2=×[(83﹣85)2+(87﹣85)2+(84﹣85)2+(86﹣85)2+(85﹣85)2],=×(4+4+1+1+0),=2,∵2.8>2,∴S甲2>S乙2,∴乙成绩更稳定,∴选派乙工人参加合适.19.解:(1)6(1)班40人中跳绳的平均个数为100+=102个,答:40人一分钟内平均每人跳绳102;(2)依题意得:(4×6+5×10+6×5)×3﹣(﹣2×6﹣1×12)×(﹣1)=288>250.所以6(1)班能得到学校奖励.20.解:(1)∵八位同学的得分如下:+8,+3,﹣3,﹣11,+4,+9,﹣5,﹣1,∴这8为同学本次数学竞赛的平均分是90+(8+3﹣3﹣11+4+9﹣5﹣1)=90+0.5=90.5分;(2)∵得分95以上可以获得一等奖,∴获得一等奖的只有98分和99分,两名同学,∴这8位同学获得一等奖的百分比是==25%.21.解:(1)甲的中位数=,乙的中位数=;(2)甲的数学综合成绩=93×0.4+93×0.3+89×0.1+90×0.2=92,乙的数学综合成绩=94×0.4+92×0.3+94×0.1+86×0.2=91.8.22.解:(1)数学平均分是:×(71+72+…+70)=70分,英语标准差为:==6;(2)∵数学标准分==,英语标准分==0.5,>0.5,∴数学更好.23.解:(1)平均数:=270(件);将表中的数据按照从大到小的顺序排列,则中位数是第8名工人和第9名工人加工零件数的平均数,则中位数是240件;∵240出现了5次,出现的次数最多,∴众数是240件;答:这16人该月加工零件数的平均数为270件,中位数为240件,众数为240件.(2)不合理:因为表中的数据显示,每月就完成270件的人数一共是5人,还有11人不能达到此定额,尽管270件是平均数,但不利于调动多数员工的积极性,因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.24.解:(1)一班C等级的人数为25﹣6﹣12﹣5=2(人),统计图为:(2)a=8.76;b=9;c=8;d=10,故答案为:8.76,9,8,10.(3)一班的平均分和二班的平均分都为8.76分,两班平均成绩都一样;一班的中位数9分大于二班的中位数8分,一班成绩比二班好.综上,一班成绩比二班好.。
浙教版八年级数学下册第3章数据分析初步单元综合测试题(Word版含答案)

浙教版八年级数学下册《第3章数据分析初步》单元综合测试题(附答案)一.选择题(共8小题,满分40分)1.一组数据1,x,5,7的中位数与众数相等,则该组的平均数是()A.3.5B.4.5C.5.5D.62.下表是某地援鄂医疗人员的年龄分布年龄/岁29303132频数152018﹣m m 对于不同的m,下列关于年龄的统计量不会发生改变的是()A.众数、中位数B.众数、方差C.平均数、方差D.平均数、中位数3.某校九年级(3)班全体学生2021年中考体育模拟考试的成绩统计如下表:成绩(分)36404346485054人数(人)2567875根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是48分C.该班学生这次考试成绩的中位数是47分D.该班学生这次考试成绩的平均数是46分4.小华统计了自己过去五个学期期末考试数学成绩,分别为87,84,90,89,95,这组数据的中位数和方差分别为()A.90,66B.90,13.2C.89,66D.89,13.25.面试时,某应聘者的学历、经验和工作态度的得分分别是72分、86分、60分,若依次按照1:3:2的比例确定成绩,则该应聘者的最终成绩是()A.75B.72C.70D.656.已知数据x1,x2,x3,x4,x5的平均数为k1;数据x6,x7,x8,x9,x10的平均数为k2;k1与k2的平均数是k;数据x1,x2,x3,…,x8,x9,x10的平均数为m,那么k与m的关系是()A.k>m B.k=m C.k<m D.不能确定7.小亮要计算一组数据80,82,74,86,79的方差s12,在计算平均数的过程中,将这组数据中的每一个数都减去80,得到一组新数据0,2,﹣6,6,﹣1,记这组新数据的方差为s22,则s12与s22的大小关系为()A.s12<s22B.s12>s22C.s12=s22D.无法确定8.从数字“3、4、5、6、7、8、9”这七个数中选了21个数字(数字可重复,但每个数字至少选一次).结果发现这21个数字的平均数、中位数及唯一的众数都是“7”,则数字“8”最多出现的次数是()A.5B.6C.7D.8二.填空题(共8小题,满分40分)9.小刚同学投掷实心球训练,测得他8次投掷成绩(单位:m)为:8,8,5,8,8,9,7,5.这组数据的众数是,中位数是,方差是.10.已知一组不全等的数据:x1,x2,x3,……,x n,平均数是2020,方差是2021,则新数据:2020,x1,x2,x3,……,x n的平均数是,方差2021(填“=、>或<”).11.某班有50人,一次数学测试后,老师对测试成绩进行了统计.由于小颖没有参加此次集体测试,因此计算其他49人的平均分为92分,方差s2=23.后来小颖进行了补测,成绩是92分,则该班50人的数学测试成绩的方差(填“变小”、“不变”、“变大”).12.某芭蕾舞团新进一批女演员,她们的身高及其对应人数情况如表所示:身高(cm)163164165166168人数12311那么,这批女演员身高的方差为.13.已知一组数据:a、4、5、6、7的平均数为5,则这组数据的中位数是.14.已知五个数a,b,c,d,e,它们的平均数是90,a,b,c的平均数是80,c,d,e的平均数是95,那么你可以求出(a,b,c,d,e选填一个),它等于.15.某公司招聘一名公关人员,对甲进行了笔试和面试,面试和笔试的成绩分别为85分和90分,面试成绩和笔试成绩的权分别是6和4,则甲的平均成绩为.16.如果一组数据a1,a2,a3,…,a n的平均数为5,方差为2,那么数据3a1+1,3a2+1,3a3+1,…,3a n+1的平均数为方差为.三.解答题(共4小题,满分40分)17.小明八年级上学期的数学成绩如下表所示:测验平时期中期末类别测验1测验2测验3测验4考试考试106102115109112110成绩(分)(1)计算小明该学期的数学平时平均成绩;(2)如果学期的总评成绩是根据如图所示的权重计算的,请计算出小明该学期的数学总评成绩.18.为纪念2021年3月22﹣28日“中国水周”﹣﹣珍惜水•爱护水•节约水.某校七八年级进行“珍惜水资源”知识竞赛,成绩分为优秀,良好,及格,不合格四个等级,其相应等级得分分别为10分,8分,6分,4分.随机抽查了七、八年级各40人,将抽查出来的七年级和八年级的成绩整理并绘制成统计图.根据以上信息回答下列问题:(1)分别求出七年级和八年级的平均成绩;(2)从平均数、中位数、众数的角度进行分析,你将如何评价这两个年级的成绩?请说明理由.19.某中学举行“中国共产党建党一百周年•校园好声音”歌赛,七、八年级根据初赛成绩,各选出5名选手组成七年级代表队和八年级代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.年级平均分(分)中位数(分)众数(分)八85七8510020.为了从小华和小亮两人中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射击6次,命中的环数如下(单位:环):小华:7,8,7,8,9,9;小亮:5,8,7,8,10,10.(1)下面表格中,a=;b=;c=;平均数(环)中位数(环)方差(环2)小华a8c小亮8b3(2)根据以上信息,你认为教练会选择谁参加比赛,理由是什么?(3)若小亮再射击2次,都命中8环,则小亮这8次射击成绩的方差.(填“变大”、“变小”、“不变”)参考答案一.选择题(共8小题,满分40分)1.解:①当众数是1时,这组数据为:1,1,5,7,中位数是(1+5)÷2=3,∵中位数与众数不相等,∴不符合题意;②当众数是5时,这组数据为:1,5,5,7,中位数是5,∵中位数与众数相等,∴该组的平均数是(1+5+5+7)÷4=4.5;③当众数是7时,这组数据为:1,5,7,7,中位数是(5+7)÷2=6,∵中位数与众数不相等,∴不符合题意;则该组的平均数是4.5.故选:B.2.解:由题意,这组数据的众数是30,中位数也是30,平均数,方差不确定,所以发生改变的是平均数和方差,则不发生改变的为中位数和众数,故选:A.3.解:A.该班的总人数为2+5+6+7+8+7+5=40(人),故本选项正确,不符合题意;B.该班学生这次考试成绩的众数是48分,故本选项正确,不符合题意;C.该班学生这次考试成绩的中位数是=47(分),故本选项正确,不符合题意;D.该班学生这次考试成绩的平均数是×(36×2+40×5+43×6+46×7+48×8+50×7+54×5)=46.4(分),故本选项错误,符合题意;故选:D.4.解:五个数从小到大为84,87,89,90,95,∴中位数为89.平均数=(84+87+89+90+95)=89,∴S2=[(89﹣84)2+(89﹣87)2+(89﹣89)2+(89﹣90)2+(89﹣95)2]=13.2,故选:D.5.解:该应聘者的最终成绩==75(分),故选:A.6.解:∵数据x1,x2,x3,x4,x5的平均数为k1,∴x1+x2+x3+x4+x5=5k1,∵数据x6,x7,x8,x9,x10的平均数为k2,∴x6+x7+x8+x9+x10=5k2,∵k1与k2的平均数是k,∴k1+k2=2k,∴x1+x2+x3+x4+x5+x6+x7+x8+x9+x10=5k1+5k2=5(k1+k2)=10k,∵数据x1,x2,x3,…,x8,x9,x10的平均数为m,∴x1+x2+x3+x4+x5+x6+x7+x8+x9+x10=10m,∴k=m.故选:B.7.解:∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,方差不变,∴s12=s22,故选:C.8.解:假设这21个数字中3、4、5、6,9的个数都是一个,7的个数为x个,8的个数为y个.则根据这21个数据的平均数是7,可以列出方程组.解得.与题干中唯一的众数都是“7”不相符.减少一个8,就要增加某一个数使得这个数为“8”,才能使得21个数的和不变,以保证这21个数的平均数为“7”.减少两个8,就要增加两个数,使得这两个数的和为16,很显然我可以增加一个“7”,一个“9”,变能达到目的.这样8的个数最多为6个.故选:B.二.填空题(共8小题,满分40分)9.解:8,8,5,8,8,9,7,5这组数据的众数是8,中位数是8,平均数=(8+8+5+8+8+9+7+5)=7.25方差=[4×(8﹣7.25)2+2×(5﹣7.25)2+(9﹣7.25)2+(7﹣7.25)2]≈1.9,故答案为:8,8,1.910.解:∵x1,x2,x3…x n,平均数是2020,方差是2021,∴×(x1+x2+x3+…+x n)=2020,S2=•[(x1﹣2020)2+(x2﹣2020)2+……+(x n﹣2020)2]=2021,∴x1+x2+x3+…+x n=2020n,(x1﹣2020)2+(x2﹣2020)2+……+(x n﹣2020)2=2021n,则2020,x1,x2,x3…x n的平均数是•(2020+x1+x2+x3+…+x n)=•(2020n+2020)=2020,S′2=•[(2020﹣2020)2+(x1﹣2020)2+(x2﹣2020)2+……+(x n﹣2020)2]=•[(x1﹣2020)2+(x2﹣2020)2+……+(x n﹣2020)2]<S2,即S′2<2021,故答案为:2020,<.11.解:∵小颖的成绩和其他49人的平均数相同,都是92分,∴该班50人的测试成绩的平均分为92分,方差变小,故答案为:变小.12.解:==165(cm), s2=×[(163﹣165)2×1+(164﹣165)2×2+(165﹣165)2×3+(166﹣165)2×1+(168﹣165)2×1]=2(cm2),故答案为:2cm2.13.解:∵这组数据的平均数为5,则,解得:a=3,将这组数据从小到大重新排列为:3,4,5,6,7,观察数据可知最中间的数是5,则中位数是5.故答案为:5.14.解:∵a,b,c,d,e,这五个数的平均数是90,∴这五个数的和是90×5=450,∵a,b,c的平均数是80,∴这三个数的和是80×3=240,∴d,e的和是450﹣240=210,∵c,d,e的平均数是95,∴c=95×3﹣210=75.∴可以求出c,它等于75.故答案为:c,75.15.解:甲的平均成绩为=87(分),故答案为:87分.16.解:由数据可知,两个数据之间满足关系y=3x+1,则根据平均数的运算性质可知,=3×5+1=16,根据方差的关系可知,s2=32×2=18,故答案为:16,18.三.解答题(共4小题,满分40分)17.解:(1)小明该学期的数学平时平均成绩=×(106+102+115+109)=×432=108(分);答:小明该学期的数学平时平均成绩是108分;(2)小明该学期的数学总评成绩是:108×10%+112×20%+110×70%=10.8+22.4+77=110.2(分),答:小明该学期的数学总评成绩是110.2分.18.解:(1)七年级的平均成绩为:×(9×10+20×8+5×6+6×4)=7.6;八年级的平均成绩为:×(40×40%×10+40×25%×8+40×20%×6+40×15%×4)=7.8;(2)由题意得:七年级的中位数是:,八年级的中位数是:,七年级的众数是:8,八年级的众数是:10;从平均数上看,7.8>7.6,则八年级的成绩比七年级的成绩较好;从中位数上看,8=8,则两个年级的成绩一样;从众数上看,10>8,则八年级的成绩比七年级的要好.19.解:(1)由条形统计图可得,八年级5名选手的平均分是:=85,众数是85,七年级五名选手的成绩是:70,75,80,100,100,故中位数是80,平均分(分)中位数(分)众数(分)八年级858585七年级8580100故答案为:85,85,80;(2)由表格可知,七年级与八年级的平均分相同,八年级的中位数高,故八年级决赛成绩较好;(3)由题意可得,s2八年级==70,s2七年级==160,∵70<160,故八年级代表队选手成绩比较稳定.20.解:(1)小华的平均成绩a=(7+8+7+8+9+9)÷6=8(环),小华的方差c=[(7﹣8)2×2+(8﹣8)2×2+(9﹣8)2×2]=(环2),把小亮的成绩从小到大排列为5,7,8,8,10,10,则中位数b==8(环),故答案为:8,8,;(2)小亮再射击后的平均成绩是(5+7+8×4+10×2)÷8=8(环),射击后的方差是:[(5﹣8)2+(7﹣8)2+4×(8﹣8)2+(10﹣8)2×2]=2.25(环2),∵2.25<3,∴小亮这8次射击成绩的方差变小.故答案为:变小.。
浙教版数学八年级下第三章数据分析单元检测卷及答案

最新浙教版数学八年级下册第三章数据分析单元检测卷及答案班级_____________考号______________姓名_______________总分_________________一、选择题(10小题,每小题3分,共30分。
)1.某市5月上旬的最高气温如下(单位℃)28,29,30,31,29,33,对这组数据下列说法错误的是()A.平均数是30 B.众数是29 C.中位数是31 D.极差是52.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是()A.30和 20 B.30和25 C.30和22.5 D.30和17.53.数据21,22,23,24,25,...,40的标准差是S1,数据302,303,304,304,305, (321)标准差是S2,则( ).A.S1<S2 B.S1=S2 C.S1>S2 D.不能确定S1、S2的大小4.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3 B.中位数是0 C.平均数3 D.方差是2.85.若样x1+1,x2+1,…,x n+1的平均数为10,方差为2,则对于样本,x1+2,…,x n+2,下列结论正确的是()A.平均数为10,方差为2 B.平均数为11,方差为3C.平均数为11,方差为2 D.平均数为12,方差为46.如果数据x1,x2,……x n的平均数为a;数据y1,y2,……,y n的平均数为b;那么数据3 x1+ y1,3 x2+ y2,……,3 x n+ y n的平均数为()A.3a+2b B.2a+3b C.3a+b D.5(a+b)7.在端午节到来之前,学校食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购,下面的统计量中最值得关注的是()A.方差 B.平均数 C.中位数 D.众数8.张鹏同学为了了解胜利小区居民的用水情况,随机调查了20户居民的月用水量,统计结果如下表:月用水量/吨 4 5 6 7 8 9 10户数 1 2 4 6 3 2 2关于这20个用户的用水量,下列说法错误的是()A.中位数是7吨 B.众数是7吨 C.平均数是7.1吨 D.众数是29.某校九年级一、二班学生参加同一次数学测验,经统计计算后得到下表:小亮根据右表分析得出如下结论:①一、二两班学生的平均水平相同;②二班的优秀人数多于一班的优秀人数(成绩≥80分为优秀);③一班成绩波动情况比二班成绩波动大. 上述结论正确的是()A.①②③ B.①② C.①③ D.②③10.下图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/小时)情况,则下列关于车速描述错误的是( )A.平均数是23 B.中位数是25 C.众数是30 D.方差是129二、填空题(8小题,每小题3分,共24分。
浙教版八年级(下册)数学第三章数据分析初步检测题含答案

浙教新版八年级下第三章数据剖析初步检测题:__________班级: __________考号: __________一、选择题(本大题共 12 小题)1. 某合作学习小组的 6 名同学在一次数学测试中,成绩散布为76,88, 96,82, 78, 96,这组数据的中位数是()A. 82B. 85C. 88D.962. 数据﹣ 1, 0, 1, 2,3 的均匀数是()A.﹣1B. 0C. 1D.53.2014 年 8 月 26 日,第二届青奥会将在举行,甲、乙、丙、丁四位跨栏运动员在为该运动会踊跃准备.在某天“ 110米跨栏”训练中,每人各跑 5 次,据统计,他们的均匀成绩都是13.2 秒,甲、乙、丙、丁的成绩的方差分别是0. 11、 0.03 、 0.05 、0.02 .则当日这四位运动员“ 110米跨栏”的训练成绩最稳固的是()A.甲B.乙C.丙D.丁4.一组数据﹣ 1、 2、 3、 4 的极差是()A. 5B. 4C. 3D. 25.有 19 位同学参加歌唱竞赛,所得的分数互不同样,获得前10 位同学进入决赛.某同学知道自己的分数后,要判断自己可否进入决赛,他只要知道这19 位同学的()A.均匀数B.中位数C.众数D.方差6.已知一组数据的方差是 3,则这组数据的标准差是 ( )A. 9B. 3C.D.7.2015 年 7 月份,某市一周空气质量报告中某项污介入数的数据是:31,35,3 1,33,30,33,31.則以下对于这列数据表述正确的选项是()A.众数是 30B.中位教是 31C.均匀数是 33D.极差是 358.以下说法中正确的选项是()A.掷一枚均匀的骰子,骰子停止转动后 3 点向上是不行能事件B.认识一批电视机的使用寿命,适适用抽样检查的方式C.若a为实数,则|a|>0是必定事件D.甲、乙两人各进行10 次射击,两人射击成绩的方差分别为S=2, S=4,则乙的射击成绩更稳固9.某班抽取6 名同学参加体能测试,成绩以下:85,95,85,80,80, 85.以下表述错误是()A.众数是85B.均匀数是85C.方差是20D.极差是1510. 为认识某社区居民的用电状况,随机对该社区10 户居民进行检查,下表是这10 户居民 2015 年4月份用电量的检查结果:居民(户)1234月用电量(度/ 户)30425051那么对于这10 户居民月用电量(单位:度),以下说法错误的选项是()A.中位数是50B.众数是51C.方差是42D.极差是2111.在“大家跳起来”的学校跳操竞赛中,九年级参赛的10 名学生成绩统计以下图,对于这10名学生的参赛成绩,以下说法中错误的选项是( )A.众数是90 分B.中位数是90 分 C .均匀数是90 分 D .极差是15 分12.某市 6 月份日均匀气温统计以下图,则在日均匀气温这组数据中,众数和中位数分别是()A. 21,21B.21,21.5C.21,22D.22,22二、填空题(本大题共 6 小题)13.某学习小组有8 人,在一次数学测试中的成绩分别是:102,115,100, 105,92, 105,85,104,则他们成绩的均匀数是.14.商场决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如表:测试项目创新能力综合知识语言表达测试成绩(分数)708092将创新能力、综合知识和语言表达三项测试成绩按5: 3: 2 的比率计入总成绩,则该应聘者的总成绩是分.15. 数据499,500, 501 , 500 的中位数是.16.某校 2013( 3)班的四个小组中,每个小组同学的均匀身高大概同样,若:第一小组同学身高的方差为 1.7 ,第二小组同学身高的方差为 1.9 ,第三小组同学身高的方差为 2.3 ,第四小组同学身高的方差为 2.0 ,则在这四个小组中身高最齐整的是第______小组.17. 甲、乙两人在同样条件下各射击10 次,他们成绩的均匀数同样,方差分别是 s=0.2 ,s=0.5 ,则设两人中成绩更稳固的是______ (填“甲”或“乙”)18. 某校抽样检查了七年级学生每日体育锻炼时间,整理数据后制成了以下所示的频数散布表,这个样本的中位数在第组.组别时间(小时)频数(人)第 1组0≤t < 0.512第 2组0.5 ≤t < 124第 3组1≤t < 1.518第 4组 1.5 ≤t < 210第 5组2≤t < 2.56三、解答题(本大题共8 小题)19.我市某中学为了深入学习社会主义中心价值观,特对本校部分学生(随机抽样)进行了一次有关知识的测试(成绩分为A.B、 C、 D、E、五个组, x 表示测试成绩),经过对测试成绩的剖析,获取以下图的两幅不完好的统计图,请你依据图中供给的信息解答以下问题.A 组: 90≤ x≤ 100 B组:80≤ x<90 C组:70≤ x<80D 组: 60≤ x< 70 E组:x<60( 1)参加检查测试的学生共有人;请将两幅统计图增补完好.( 2)本次检查测试成绩的中位数落在组.( 3)本次检查测试成绩在80 分以上为优异,该中学共有3000 人,请预计全校测试成绩为优异的学生有多少人?20.甲、乙两名队员参加射击训练,成绩分别被制成以下两个统计图:依据以上信息,整理剖析数据以下:均匀成绩 /环中位数 /环众数/环方差甲a77 1.2乙7b8c(1)写出表格中 a, b, c 的值;(2)分别运用表中的四个统计量,简要剖析这两名队员的射击训练成绩.若选派此中一名参赛,你以为应选哪名队员?21. 检查作业:认识你所住小区家庭 5 月份用肚量状况。
浙教版八年级数学下册:第3章 数据分析初步测试卷

第3章数据分析初步测试卷时间:120分钟班级:________姓名:________得分:________一、选择题(每小题4分,共40分)1.一组数据:5,4,6,5,6,6,3,这组数据的众数是( A)A.6 B.5 C.4 D.32.在端午节到来之前,学位食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家的粽子作调查,以决定最终向哪家店采购,下面的统计量中最值得关注的是( D ) A.方差B.平均数C.中位数D.众数3.如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是( B )A.16,10.5 B.8,9C.16,8.5 D.8,8.54.若数据10,9,a,12,9的平均数是10,则这组数据的方差是( B )A.1 B.1.2 C.0.9 D.1.45.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表如图,比较5月份两组家庭用水量的中位数,下列说法正确的是( B )甲组12户家庭用水量统计表用水量(吨)4569户数452乙组12户家庭用水量统计图A.甲组比乙组大B.甲、乙两组相同C.乙组比甲组大D.无法判断6.某校举行“我爱我校”演讲比赛,由7名学生组成评委组.小明统计了每位评委对某参赛选手的评分并制成如下表格:众数中位数平均数方差7.98.38.20.3如果以去掉一个最高分和一个最低分后其他5名评委的平均分记为选手的最后得分,那么表中的数据一定不发生变化的是( B )A.众数B.中位数C.平均数D.方差7.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动,为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数01234人数41216171关于这组数据,下列说法正确的是( A )A.中位数是2 B.众数是17 C.平均数是2 D.方差是28.一样本的各数据都减少4,则新数据的( C)A.平均数与标准差都不变B.平均数减少4,标准差减少2C.平均数减少4,标准差不变D.平均数减少4,方差减少29.甲、乙两地去年12月前5天的日平均气温如图所示,下列描述错误的是( C) A.两地气温的平均数相同B.甲地气温的中位数是6℃C.乙地气温的众数是4℃ D.乙地气温相对比较稳定第9题图第10题图10.对某校八年级学生随机抽取若干名进行体能测试,成绩记为1分、2分、3分、4分共4个等级,将调查结果绘制成条形统计图和扇形统计图,根据图中信息,这些学生的平均分数是( C )A.2.25 B.2.5 C.2.95 D.3二、填空题(每小题4分,共24分)11.某招聘考试分笔试和面试两种,其中笔试按60%,面试按40%计算加权平均数作为总成绩,小王笔试成绩90分,面试成绩85分,那么小王的总成绩是__88__分.12.有13位同学参加学校组织的才艺表演比赛,已知他们所得的分数互不相同,共设7个获奖名额,某同学知道自己的比赛分数后,要判断自己能否获奖,在这13名同学成绩的统计量中只需知道一个量,它是__中位数__.(填“众数”“方差”“中位数”或“平均数”)13.一组数据2,3,x,y,12中,唯一众数是12,平均数是6,这组数据的中位数是__3__.14.为选择一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数x及其方差S2如下表所示:甲乙丙丁x1′05″331′04″261′04″261′07″29S2 1.1 1.1 1.3 1.6如果选拔一名学生去参赛,应派__乙__去.15.当五个整数从小到大排列后,其中位数是4,如果这组数据的唯一众数是6,那么这组数据可能的最大的和是__21__.16.下列几种说法:①数据2,2,3,4的众数是2;②数据1,0,0,1,0的中位数和众数相等;③数据11,11,11,11,11的方差为1;④若一组数据a,b,c的平均数为10,则新数据a+1,b+1,c+1的平均数为10;⑤已知一组数据x1,x2,…,x n 的方差是S2,则新的一组数据ax1+1,ax2+1,…,ax n+1(a为常数,a≠0)的方差是a2S2.其中正确的有__①②⑤__.(填序号即可)三、解答题(共56分)17.(6分)为了估计西瓜、苹果和香蕉三种水果一个月的销售量,某水果店对三种水果7天的销售量进行了统计,统计结果如图所示:(1)若西瓜、苹果和香蕉的售价分别为6元/千克、8元/千克和3元/千克,则这7天销售额最大的水果品种是__A__.A.西瓜B.苹果C.香蕉(2)估计一个月(按30天计算)该水果店可销售苹果多少千克?解:1407×30=600(千克)18.(8分)在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分钟)得到如下样本数据:140146143175125164134155152168162148(1)计算该样本数据的中位数和平均数;(2)如果一名选手的成绩是147分钟,请你依据样本数据的中位数,推断他的成绩如何?解:(1)中位数为150分钟,平均数为151分钟;(2)由(1)可得,中位数为150,可以估计在这次马拉松比赛中,大约有一半选手的成绩快于150分钟,有一半选手的成绩慢于150分钟,这名选手的成绩为147分钟,快于中位数150分钟,可以推断他的成绩估计比一半以上选手的成绩好.19.(8分)某市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成如下表格.请回答下列问题:时间第一天7:00~8:00第二天7:00~8:00第三天7:00~8:00第四天7:00~8:00第五天7:00~8:00需要租用自行车却未租到车的人数(人)15001200130013001200(1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00~8:00,需要租用公共自行车的人数是多少?解:(1)表格中5个数据按从小到大的顺序排列为1200,1200,1300,1300,1500,所以中位数是1300(2)平均每天需要租用自行车却未租到车的人数:(1500+1200+1300+1300+1200)÷5=1300,∵某市首批一次性投放公共自行车700辆供市民租用出行,∴平均每天需要租用公共自行车的人数是1300+700=200020.(10分)为了参加“市中小学生首届诗词大会”,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(1)班86,85,77,92,85;八(2)班79,85,92,85,89.通过数据分析,列表如下:班级平均分中位数众数方差八(1)85b c22.8八(2)a858519.2(1)直接写出表中a,b,c的值;(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.解:(1)a=79+85+92+85+895=86,b=85,c=85,(2)∵22.8>19.2,∴八(2)班前5名同学的成绩较好.21.(12分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用,减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识,某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A,B,C,D四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计表组别分数/分频数各组总分/分A60<x≤70382581B70<x≤80725543C80<x≤90605100D90<x≤100m2796依据以上统计信息解答下列问题:(1)求得m=________,n=________;(2)这次测试成绩的中位数落在________组;(3)求本次全部测试成绩的平均数.解:(1)∵被调查的学生总人数为72÷36%=200人,∴m=200-(38+72+60)=30,n=38200×100%=19%;(2)∵共有200个数据,其中第100、101个数据均落在B组,∴中位数落在B组;(3)本次全部测试成绩的平均数为2581+5543+5100+2796200=80.1(分).22.(12分)某学校有两个校区:南校和北校,这两个校区九年级学生各有300名,为了解这两个校区九年级学生的英语单词掌握情况,进行了抽样调查,过程如下:①收集数据,从南校和北校两个校区的九年级各随机抽取10名学生,进行英语单词测试,测试成绩(百分制)如下:南校92 100 86 89 73 98 54 95 98 85北校100 100 94 83 74 86 75 100 73 75②整理、描述数据,按如下分数段整理、描述这两组样本数据:成绩x人数部门50≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100南校10135北校00424(说明:成绩90分及以上为优秀,80~89分为良好,60~79分为合格,60分以下为不合格)③分析数据,对上述数据进行分析,分别求出了两组样本数据的平均数、中位数、众数、方差如下表:校区平均数中位数众数方差南校8790.5________179.4北校86________________121.6④得出结论.结合上述统计全过程,回答下列问题:(1)补全③中的表格;(2)请估计北校九年级学生英语单词掌握优秀的人数;(3)你认为哪个校区的九年级学生英语单词掌握得比较好?说明你的理由.(至少从两个不同的角度说明推断的合理性)解:(1)由题可得,南校区的九年级随机抽取的10名学生的成绩的众数为98,北校区的九年级随机抽取的10名学生的成绩为:73、74、75、75、83、86、94、100、100、100,∴北校区的九年级随机抽取的10名学生的成绩的中位数为:84.5;而众数为100;(2)北校区九年级学生英语单词掌握优秀的人数为:410×300=120(人).(3)我认为南校区的九年级学生英语单词掌握得比较好,理由如下:①南校区的九年级学生在英语单词测试中,平均数较高,表示南校区的九年级学生的英语单词掌握情况较好;②南校区的九年级学生在英语单词测试中,中位数较高,表示南校区英语单词掌握优秀的学生较多.(答案不唯一)。
浙教版下学期八年级数学(下册) 第三章数据分析初步 单元测试卷及答案

最新浙教版数学八年级下册第三章测试卷及答案班级__________ 姓名__________ 得分_________一、选择题(本题有10小题,每小题3分,共30分)1.若一组数据2,3,x,5,7的众数为7,则这组数据的中位数为()A.2 B.3 C.5 D.72.某班六名同学在一次知识抢答赛中,他们答对的题数分别是:7,5,6,8,7,9,这组数据的平均数和众数分别是()A.7,7 B.6,8 C.6,7 D.7,23.九(2)班15名男同学进行引体向上测试,每人只测一次,测试结果统计如下:这15A.2 B.3 C.4 D.54.已知一组数据x1、x2、x3、x4、x5的平均数是4,方差是5;那么另一组数据3x1-2、3x2-2、3x3-2、3x4-2、3x5-2的平均数和方差分别是()A.10,45 B.10,13 C.12,45 D.10,435.在某中学举行的演讲比赛中,七年级5名参赛选手的成绩如下表所示,你根据表中提供的数据,计算出这5名选手成绩的方差()A.26.某校九年级(1)班全体学生2015年初中毕业体育学业考试的成绩统计如下表:A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分7.某中学规定学生的学期体育成绩满分100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95,90,94,则小彤这学期的体育成绩为()A.89 B.90 C.92 D.938.某班50名学生的一次英语听力测试成绩分布如下表所示(满分10分):这次听力测试成绩的众数是( )A .5分B .6分C .9分D .10分9. 10名学生的平均成绩是x ,如果另外5名学生每人得84分,那么整个组的平均成绩是( )分A .x +842B .10x +42015C .10x +8415D .10+4201510.已知样本数据101,98,102,100,99,则这个样本的标准差是( )A .0B .1C .2D .2二、填空题(本题有10小题,每小题3分,共30分)11.某中学随机抽查了50名学生,了解他们一周的课外阅读时间,结果如右表所示:则这50名学生一周的平均课外阅读时间是__________h .12.一组数据2,4,x ,-1的平均数为3,则x 的值是__________.13.一个样本为1,3,2,2,a ,b ,c .已知这个样本的众数为3,平均数为2,则这组数据的中位数为__________. 14.某校规定学生的期末学科成绩由三部分组成,将课堂、作业和考试三项得分按1︰3︰6的权重确定每个人的期末成绩.小明同学本学期数学这三项得分分别是:课堂98分,作业95分,考试85分,那么小明的数学期末成绩是__________分.15.为筹备班级毕业晚会,班长对全班同学爱吃哪几种水果作了民意调查,最终买什么水果该由调查数据的__________决定.(填“平均数”或“中位数”或“众数”)16.一组数据3,4,5,8,x 的中位数是x ,且x 是满足不等式组⎩⎪⎨⎪⎧x -3≥0,5-x >0的整数,则这组数据的平均数是__________.17.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是__________. 18.已知一组数据:3,3,4,5,5,则它的方差为__________. 19.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,方差是13,那么另一组数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数是__________,方差是__________. 20.小明用S 2=110[(x 1-3)2+(x 2-3)2+…+(x 10-3)2]计算一组数据的方差,那么x 1+x 2+…+x 10=__________.三、解答题(本题有4小题,共40分)21.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛,现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录,甲、乙、丙三个小组各项得分如下表:(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%,计算各小组的成绩,哪个小组的成绩最高?22.作为宁波市政府民生实事之一的公共自行车建设工作基本完成,某部门对4月份中的7天进行了公共自行车租车量的统计,结果如图所示:(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中平均数估计4月份(30天)共租车多少万车次;(3)宁波市政府在公共自行车建设项目中共投入9600万元,估计全年共租车3200万车次,每车次平均收入租车费0.1元,求全年租车费收入占总投入的百分率(精确到0.1%).乙 81 74 85 丙 79 83 9023.甲、乙两名队员参加射击训练,成绩分别被制成如图的两个统计图:根据以上信息,整理分析数据如表所示:平均成绩(环)中位数(环)众数(环)方差甲a7 7 1.2乙7 b8 c (1(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?24.下表是西昌市到攀枝花市两条线路的有关数据:(1)若小车在高速路上行驶的平均速度为90千米/小时,在108国道上行驶的速度为50千米/小时,则小车走高速路比走108国道节省多少时间?(2)若小车每千米的油耗为x升,汽油价格为7.00元/升,问x为何值时,走那条线路总费用较少?(总费用=过路费+油耗费)(3)公路管理部门在高速路口对从西昌市到攀枝花市五类不同油耗的小车进行统计,得到平均每小时通过的车辆数的频数分布图如图所示,请估算10侠士内这五类小车走高速公路比走108国道节省了多少升汽油?(以上结果均保留两位有效数字)线路高速公路108国道路程185千米250千米过路费120元0元一、选择题(本题有10小题,每小题3分,共30分)1. 若一组数据2,3,x ,5,7的众数为7,则这组数据的中位数为( C )A .2B .3C .5D .72. 某班六名同学在一次知识抢答赛中,他们答对的题数分别是:7,5,6,8,7,9,这组数据的平均数和众数分别是( A ) A .7,7 B .6,8 C .6,7 D .7,2 3. 九(2这15A .2 B .3 C .4 D .54. 已知一组数据x 1、x 2、x 3、x 4、x 5的平均数是4,方差是5;那么另一组数据3x 1-2、3x 2-2、3x 3-2、3x 4-2、3x 5-2的平均数和方差分别是( A ) A .10,45 B .10,13 C .12,45 D .10,435. 在某中学举行的演讲比赛中,七年级5名参赛选手的成绩如下表所示,你根据表中提供的数据,计算出这5A .2 6. 某校九年级(1A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分7. 某中学规定学生的学期体育成绩满分100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95,90,94,则小彤这学期的体育成绩为( D ) A .89 B .90 C .92 D .93 8. 某班50A .5分B .6分C .9分D .10分9. 10名学生的平均成绩是x ,如果另外5名学生每人得84分,那么整个组的平均成绩是( B )分A .x +842B .10x +42015C .10x +8415D .10+4201510.已知样本数据101,98,102,100,99,则这个样本的标准差是( C )A .0B .1C .2D .2二、填空题(本题有10小题,每小题3分,共30分)11.某中学随机抽查了50则这5012.一组数据2,4,x ,-1的平均数为3,则x 的值是7__________. 13.一个样本为1,3,2,2,a ,b ,c .已知这个样本的众数为3,平均数为2,则这组数据的中位数为2__________. 14.某校规定学生的期末学科成绩由三部分组成,将课堂、作业和考试三项得分按1︰3︰6的权重确定每个人的期末成绩.小明同学本学期数学这三项得分分别是:课堂98分,作业95分,考试85分,那么小明的数学期末成绩是89.3__________分.15.为筹备班级毕业晚会,班长对全班同学爱吃哪几种水果作了民意调查,最终买什么水果该由调查数据的众数__________决定.(填“平均数”或“中位数”或“众数”)16.一组数据3,4,5,8,x 的中位数是x ,且x 是满足不等式组⎩⎪⎨⎪⎧x -3≥0,5-x >0的整数,则这组数据的平均数是 4.8__________.17.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是乙__________.18.已知一组数据:3,3,4,5,5,则它的方差为45__________.19.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,方差是13,那么另一组数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数是4__________,方差是3__________.20.小明用S 2=110[(x 1-3)2+(x 2-3)2+…+(x 10-3)2]计算一组数据的方差,那么x 1+x 2+…+x 10=30__________.三、解答题(本题有4小题,共40分)21.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛,现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分(1(2)如果按照研究报告占40%,小组展示占30%,答辩占30%,计算各小组的成绩,哪个小组的成绩最高?解:(1)甲:(91+80+78)÷3=83;乙:(81+74+85)÷3=80;丙:(79+83+90)÷3=84, ∴小组的排名顺序为丙、甲、乙.(2)甲:91×40%+80×30%+78×30%=83.8; 乙:81×40%+74×30%+85×30%=80.1; 丙:79×40%+83×30%+90×30%=83.5, ∴甲组的成绩最高.22.作为宁波市政府民生实事之一的公共自行车建设工作基本完成,某部门对4月份中的7天进行了公共自行车租车量的统计,结果如图所示:(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中平均数估计4月份(30天)共租车多少万车次;(3)宁波市政府在公共自行车建设项目中共投入9600万元,估计全年共租车3200万车次,每车次平均收入租车费0.1元,求全年租车费收入占总投入的百分率(精确到0.1%).解:(1)=9+8+8+7.5+8+9+107=8.5(万车次).答:这7天日租车量的众数、中位数和平均数分别为8,8,8.5万车次; (2)30×8.5=255(万车次). 答:4月份共租车255万车次; (3)3200×0.1÷9600≈3.3%.答:全年租车费收入占总投入的3.3%.23.甲、乙两名队员参加射击训练,成绩分别被制成如图的两个统计图:(1(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?解:(1)a =5×1+6×2+7×4+8×2+9×11+2+4+2+1=7(环),∵乙射击的成绩按从小到大的顺序排列为3,4,6,7,7,8,8,8,9,10,∴b =7+82=7.5(环),c =110[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]=4.2; (2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定,综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.24(千米/小时,在108国道上行驶的速度为50千米/小时,则小车走高速路比走108国道节省多少时间?(2)若小车每千米的油耗为x 升,汽油价格为7.00元/升,问x 为何值时,走那条线路总费用较少?(总费用=过路费+油耗费)(3)公路管理部门在高速路口对从西昌市到攀枝花市五类不同油耗的小车进行统计,得到平均每小时通过的车辆数的频数分布图如图所示,请估算10侠士内这五类小车走高速公路比走108国道节省了多少升汽油?(以上结果均保留两位有效数字)解:(1)25050-18590≈2.9(小时)即小车走高速路比走108国道节省约2.9小时.(2)设小车走高速路总费用为y 1元,走108国道总费用为y 2元, 则y 1=7×185x +120即y 1=1295x +120, y 2=7×250x 即y 2=1750x .当y 1=y 2时,即1295x +120=1750x ,解得x ≈0.26; 当y 1>y 2时,即1295x +120>1750x ,解得x <0.26; 当y 1<y 2时,即1295x +120<1750x ,解得x >0.26. ∴当x ≈0.26时,走两条路的总费用相等; 当x <0.26时,走108国道的总费用较少; 当x >0.26时,走高速公路的总费用较少.(3)10×(250-185)×(100×0.26+200×0.28+500×0.30+500×0.32+100×0.34) =276900≈2.8×105(升)即10小时内这五类小车走高速路比走108国道大约节省2.8×105升汽油.。
浙教版八年数学下册第三章数据分析初步单元检测试卷

浙教版八年数学下册第三章数据分析初步单元检测试卷一、单选题1. 某班50名同学的数学成绩为:5人100分,30人90分,10人75分,5人60分,则这组数据的众数和平均数分别是()A.90,85B.30,85C.30, 90D.90,822. 已知一组数据为:10,8,10,12, 10.其中中位数、平均数和众数的大小关系是()A.众数=中位数=平均数B.中位数V众数V平均数C.平均数>中位数〉众数D.平均数V中位数V众数3. 某校数学兴趣小组12名成员的年龄情况如下:则这个小组成员年龄的中位数、平均数分别是()A. 13、14B. 14、14C. 14、15D. 16、134. 数学兴趣小组设计并组织了生活中的全等”的比赛,全班同学的比赛结果统计如下表:则得分的众数和中位数分别为()A. 70 分,70 分B. 80 分,80 分C. 70 分,80 分D. 80 分,70 分5•期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:我们组成绩是86分的同学最多”,小英说:我们组的7位同学成绩排在最中间的恰好也是86分”上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数6. 在社会实践活动中,某同学对甲、乙、丙、丁四个城市一至五月份的白菜价格进行调查•四个城市5个月白菜的平均值均为3.50元,方差分别为S甲2= 18.3,S乙2= 17.4,S丙2= 20.1,S丁2= 12.5. 一至五月份白菜价格最稳定的城市是()A.甲B.乙C.丙D. 丁7. 七年级学生完成课题学习从数据谈节水”后,积极践行节约用水,从我做起”下表是从七年级400名学生中选出10名学生统计各自家庭一个月的节水情况:)A. 0. 4 和0. 34B. 0. 4 和0. 3C. 0. 25 和0. 34D. 0. 25 和0. 38. 为了调查某一路口某时段的汽车流量,记录了10天这一时段通过该路口的汽车辆数,其中有2天是142A. 148B. 149C. 150D. 151 辆,2天是145辆,3天是150辆,1天是154辆,2天是156辆.那么这10天在该时段通过该路口汽车 平均辆数为()9.有19位同学参加歌咏比赛,成绩互不相同,前 10名的同学进入决赛•某同学知道自己的分数后,要判断 自己能否进入决赛,他只需知道这 19位同学成绩的() A.平均数B.中位数C.众数D.方差10•商厦信誉楼女鞋专柜试销一种新款女鞋,一个月内销售情况如下表所示:经理最关心的是,哪种型号的鞋销量最大•对他来说, 下列统计量中最重要的是•() A.众数B.平均数C.中位数D.方差二、填空题11. 一组数据2 , 4, a , 7, 7的平均数 =5,则方差S 2= _____________ •12. 一组数据25, 28, 20, X , 14,它们的中位数是 23,则这组数据的平均数是 ______________ .13•某校体育期末考核 立定跳远” “ 80米”、仰卧起坐”三项,并按3: 5: 2的比重算出期末成绩•已知 小林这三项的考试成绩分别为80分、90分、100分,则小林的体育期末成绩为 ____________ 分.14. 10名学生的体重分别是:41, 48, 50, 53, 49, 50, 53, 51 , 67, 53 (单位:kg ),这组数据的极差 是 kg . 15•某班共有学生50人,平均身高为168cm ,其中30名男生平均身高为170cm ,则20名女生的平均身高 为 _______ .16.已知一组数据X 1, X 2, X 3,平均数和方差分别是 2 ,-,那么另一组数据 2X 1 -1,2X 2 -,2X 3 -的平均数和方差分别是 ___________ , _________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版数学八年级下册第三章数据分析初步单元检测
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 已知样本的数据如下:,,,,,,,,样本的数据恰好是样本数据每个都加,则,两个样本的下列统计量对应相同的是()
A.平均数B.标准差C.中位数D.众数
2 . 郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:
则下列叙述正确的是()
A.这些运动员成绩的众数是5
B.这些运动员成绩的中位数是2.30
C.这些运动员的平均成绩是2.25
D.这些运动员成绩的方差是0.072 5
3 . 在一次爱心义卖活动中,某中学九年级6个班捐献的义卖金额(单位:元)分别为800、820、930、860、820、850,这组数据的众数和中位数分别是()
A.820,850B.820,930C.930,835D.820,835
4 . 已知一组数据6、2、4、、5,它们的平均数是4,则这一组数据的方差为()
A.1B.2C.3D.4
5 . 小明用手机软件记录了最近30天的运动步数,并将记录结果制作成了如下统计表:
步数/万步 1.1 1.2 1.3 1.4 1.5
天数395a b
小明这30天平均每天走1.3万步,在每天所走的步数中,众数和中位数分别是()
A.1.3,1.3B.1.4,1.3C.1.4,1.4D.1.3,1.4
6 . 在对某社会机构的调查中收集到以下数据,你认为最能够反映该机构年龄特征的统计量是()
年龄13141525283035其他
人数30533171220923
A.平均数B.众数C.方差D.标准差
7 . 如果一组数据a1,2,a3,,an,方差是2,那么一组新数据2a1,2a2,,2an的方差是()
A.2B.4C.8D.16
8 . 要使二次根式有意义,的值可以是()
A.B.C.D.
9 . 在汶上县纪念抗日战争暨世界反法西斯战争胜利周年歌咏比赛中,我校选手的得分情况如下:,,
,,,,.这组数据的众数和中位数分别是()
A.94,94B.95,95C.94,95D.95,94
10 . 如果两个图形全等,则这个图形必定是()
A.形状相同,但大小不同B.形状大小均相同
C.大小相同,但形状不同D.形状大小均不相同
二、填空题
11 . 如果样本方差s2=[(x1-2)2+(x2-2)2+(x3-2)2+(x4-2)2],那么这个样本的平均数为__________,样本容量为________.
12 . 已知x,y满足方程组,则9x2﹣y2的值为_____.
13 . 一组数据2.2,3.3,4.4,11.1,.其中整数是这组数据中的中位数,则这组数据的平均数是_____.
14 . 高一新生参加军训,一学生进行五次实弹射击的成绩(单位:环)如下:,,,,,则这五次射击的中位数是________环,方差是________.
15 . 今天5月甲、乙两种股票连续10天开盘价格如下:(单位:元)
甲 5.23 5.28 5.35 5.3 5.28 5.2 5.08 5.31 5.44 5.46
乙 6.3 6.5 6.7 6.52 6.66 6.8 6.9 6.83 6.58 6.55
则在10天中,甲.乙两种股票波动较大的是______.
16 . 已知数据1,2,3,4,5的方差为2,则11,12,13,14,15的方差为,标准差为.
17 . 有两名学员小林和小明练习射击,第一轮10枪过后,经过统计,小明的平均成绩是9.2环,标准差为0.35环;小林的平均成绩是9.2环,标准差是1.23环.根据经验,新手的成绩通常不太稳定,因此,可以推断_______是新手.
18 . 如图所示是某校初中生物兴趣小组年龄结构条形统计图,该小组年龄最小为13岁,最大为16岁,根据
统计图所提供的数据,该小组组员年龄的中位数为_____岁.
三、解答题
19 . 某校九年级学生集体表示“2019年要继续努力奋斗,争取中考取得优异成绩”.为此,小明抽取了部分九年级学生,针对他们晚上学习时间的情况进行调査,根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(1)本次统计的九年级学生人数为____________,图①中m的值为__________;
(2)求统计的九年级学生晚上学习时间的平均数、众数和中位数;
(3)若该校九年级共有900人,请估计该校九年级的学生中,晚上学习时间为2小时的学生有多少人?
20 . 2018年12月4日是第五个国家宪法日,也是第一个“宪法宣传周”.甲、乙两班各选派10名学生参加宪法知识竞赛(满分100分),成绩如下:
成绩859095100
甲班参赛学生/人1153
乙班参赛学生/人1234
分别求甲、乙两班参赛学生竞赛成绩的平均数和方差.
21 . 分解因式:
(1)
(2)a3﹣2a2b+ab2
22 . 为了了解家庭日常生活消费情况,小亮记录了他家一年中7周的日常生活消费费用.数据如下(单位:元):
230 l 95 180 250 270 455 170
请你用统计初步的知识,计算小亮家平均每年(每年按52周计算)的日常生活消费总费用.
23 . 某公司销售部有营销员15人,销售部为了制定关于某种商品的每位营销员的个人月销售定额,统计了这15人某月关于此商品的个人月销售量(单位:件)如下:
个人月销售量1800510250210150120
营销员人数113532
(1)求这15位营销员该月关于此商品的个人月销售量的平均数,并直接写出这组数据的中位数和众数;
(2)假设该销售部负责人把每位营销员关于此商品的个人月销售定额确定为320件,你认为对多数营销员是否合理?并在(1)的基础上说明理由.
24 . 5分)八(2)班组织了一次环保知识竞赛,甲乙两队各5人的成绩如下表所示(10分制).
甲981069
乙878910
(1)指出甲队成绩的中位数;
(2)指出乙队成绩的众数;
(3)若计算出方差为:=1.84,=1.04,判断哪队的成绩更整齐?
25 . 某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.
根据以上信息,解答下列问题:
(1)被调查的学生共有人,并补全条形统计图;
(2)在扇形统计图中,m= ,n= ,表示区域C的圆心角为度;(3)全校学生中喜欢篮球的人数大约有.
参考答案一、单选题
1、
2、
3、
4、
5、
6、
7、
8、
9、
10、
二、填空题
1、
2、
3、
4、
5、
6、
7、
8、
三、解答题1、
2、
3、
4、
5、
6、
7、。