导数大题方法总结(实用)
导数知识点各种题型归纳方法总结

导数知识点各种题型归纳方法总结导数知识点和题型总结一、导数的定义:1.函数y=f(x)在x=x处的导数为f'(x)=y'|x=x=lim(Δy/Δx),其中Δy=f(x+Δx)-f(x)。
2.求导数的步骤:①求函数的增量:Δy=f(x+Δx)-f(x);②求平均变化率:Δy/Δx;③取极限得导数:f'(x)=lim(Δy/Δx),其中Δx→0.二、导数的运算:1.基本初等函数的导数公式及常用导数运算公式:① C'=0(C为常数);② (xn)'=nxn-1;③ (1/x)'=-1/x^2;④ (ex)'=ex;⑤ (sinx)'=cosx;⑥ (cosx)'=-sinx;⑦ (ax)'=axlna(a>0,且a≠1);⑧ (lnx)'=1/x;⑨ (loga x)'=1/(xlna)(a>0,且a≠1)。
2.导数的运算法则:法则1:[f(x)±g(x)]'=f'(x)±g'(x)(和与差的导数等于导数的和与差);法则2:[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)(前导后不导相乘+后导前不导相乘);法则3:[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/[g(x)]^2(分母平方要记牢,上导下不导相乘,下导上不导相乘,中间是负号)。
3.复合函数y=f(g(x))的导数求法:①换元,令u=g(x),则y=f(u);②分别求导再相乘,y'=g'(x)·f'(u);③回代u=g(x)。
题型:1.已知f(x)=1/x,则lim(Δy/Δx),其中Δx→0,且x=2+Δx,f(2)=1/2.答案:C。
2.设f'(3)=4,则lim(f(3-h)-f(3))/h,其中h→0.答案:A。
导数大题解题技巧

导数大题解题技巧
1. 嘿,知道吗?导数大题有个超重要的解题技巧,那就是要先搞清楚题目到底要咱干啥!就像你找东西,得先明白要找啥不是?比如求函数的极值点,咱就得麻溜地找出导数为零的点呀!这不是很简单的道理嘛!
2. 哇塞,还有哦!要学会从复杂的式子中找到关键信息呀!这就好比在一堆乱七八糟的东西里找出你最想要的宝贝一样。
比如看到一个复合函数,咱就得机智地把它拆开,分别求解,这样问题不就迎刃而解啦!
3. 嘿呀!你可别小瞧了画图这个步骤,这简直太有用啦!它就像给你个导航,让你清楚地看到函数的走向。
比如说一个函数的单调性,一画出来,那不是一目了然嘛!
4. 哎呀呀,千万别忘了特殊值法呀!有时候用这个简直绝了!就跟走捷径一样。
比如给你个函数,先试试几个特殊值,说不定一下子就能找到突破口呢!
5. 喂喂喂,注意细节呀!很多同学就输在不注意细节上。
就好比盖房子,一丁点儿差错都可能让房子不稳当。
比如求导的时候可别粗心大意算错咯!
6. 哈哈,记得多总结呀!把做过的题都好好想想,总结出规律来。
这就像收集宝藏,收集得越多,你就越厉害!下次碰到类似的题目,你就能轻松搞定啦!
我觉得呀,只要掌握了这些导数大题解题技巧,那面对难题咱也不怕啦!。
导数大题20种主要题型总结及解题方法

导数大题20种主要题型总结及解题方法导数是微积分中的一个重要概念,用于描述函数在某一点处的变化率。
掌握导数的计算和应用方法对于解决各种实际问题具有重要意义。
下面将对导数的20种主要题型进行总结并给出解题方法。
1.求函数在某点的导数。
对于给定的函数,要求在某一点处的导数,可以使用导数的定义或者基本求导法则。
导数的定义是取极限,计算函数在这一点的变化率。
基本求导法则包括常数、幂函数、指数函数、对数函数、三角函数的求导法则。
2.求函数的导数表达式。
已知函数表达式,要求其导数表达式。
可以使用基本求导法则,并注意链式法则和乘积法则的应用。
3.求高阶导数。
如果已知函数的导数表达式,要求其高阶导数表达式。
可以反复应用求导法则,每次对函数求导一次得到导数表达式。
4.求导数的导函数。
导数的导函数是指对导数再进行求导的过程。
要求导函数时,可以反复应用求导法则,迭代求取导数的导数。
5.利用导数计算函数极值。
当函数的导数为0或不存在时,可能是函数的极值点。
可以利用导数求函数的极值。
6.利用导数判定函数的增减性。
根据函数的导数正负性可以判定函数的增减性。
如果导数大于0,则函数在该区间上递增;如果导数小于0,则函数在该区间上递减。
7.利用导数求函数的最大最小值。
当函数在某一区间内递增时,在区间的左端点处取得最小值;当函数在某一区间内递减时,在区间的右端点处取得最小值。
要求函数全局最大最小值时,可以使用导数判定。
当导数从正数变为负数时,可能是函数取得最大值的点。
8.利用导数求函数的拐点。
如果函数的导数在某一点发生变号,该点可能是函数的拐点。
可以使用导数的二阶导数判定。
9.利用导数求函数的弧长。
曲线的弧长可以通过积分求取,而曲线的弧长元素是由导数表示的。
通过导数求取弧长元素,并积累求和得到曲线的弧长。
10.利用导数求函数的曲率。
曲率表示曲线弯曲程度的大小,可以通过导数求取。
曲率的求取公式是曲线的二阶导数与一阶导数的比值。
11.利用导数求函数的速度和加速度。
导数大题题型归纳解题方法

导数大题题型归纳解题方法
导数大题题型主要包括求函数的导数、求函数的极值、求曲线的切线方程和法线方程等。
下面给出这些题型的解题方法:
1. 求函数的导数:
- 根据导数的定义,逐项求导;
- 利用乘法法则、复合函数法则、除法法则等求导法则简化计算;
- 对于含有多项式函数、指数函数、对数函数、三角函数等函数的复合函数,可以根据相应的求导法则和运算规律进行求导。
2. 求函数的极值:
- 首先求函数的导数,得到导函数;
- 解导函数的方程,求得导函数的零点,即函数的驻点;
- 利用二阶导数判别法来判断驻点的类型(极大值点、极小值点或拐点);
- 如果导函数的零点为函数的一个极值点,则该极值点对应的函数值为极值。
3. 求曲线的切线方程:
- 首先求曲线上一点的切线斜率,可以通过求导得到;
- 然后利用一般点斜式的切线方程公式,以该点和斜率为参数,得到切线方程。
4. 求曲线的法线方程:
- 首先求曲线上一点的切线斜率,可以通过求导得到;
- 利用切线斜率与法线斜率的关系(切线斜率与法线斜率的乘积等于-1),由此得到法线的斜率;
- 然后以该点和法线斜率为参数,利用一般点斜式的法线方程公式得到法线方程。
以上是导数大题题型的一般解题方法,根据具体题目特点和要求,可能需要结合其他数学知识和技巧进行推导和计算。
选修2-2如何把导数大题做好

如何把导数大题做好主要分四个步骤:1、求定义域2、判定单调性3、求极值4、求最值。
下面是对上面四步进行系统的分析。
1、求定义域。
(无论我们做什么类的函数题,第一步必须是求定义域,在定义域内进行求解和讨论,只有在定义域内讨论才有意义)2、函数求导并判断函数的单调性。
方法:①令()f x'=0 ②列表或画导函数图像分析函数单调性说明一点:在某一区间,导数>0,能推出在此区间内函数为增函数,但是在某区间内函数为增函数,推出的是导数>=0,但是导数不能恒等于0函数单调性的判定:对于大题中,导函数的形式一般有一次函数、二次函数、指数函数和对数函数。
主要拿二次函数来举例子,经常出现的导函数的形式就是二次函数如果定义域为R内。
如果导函数是一次函数,斜率大于零,一定是先减后增,间断点为横轴的截距。
如果含有参数,讨论导函数根在定义域内,和定义域外2种情况来讨论参数。
如果导函数是二次函数:1、不含参数,直接利用二次函数的单调性质解。
可用数轴标根法。
2、含参数,判定 。
若 ≤0 ,则无极值点,如果二次项系数>0 则增,反之减。
>0,解除出函数的两个根,用数轴标根法(或者画出一次函数的图像),注意要再定义域内来讨论。
如果是指对数函数,根据指对数函数的性质来讨论。
判断函数单调应的应用2点,函数极值判断和零点判断。
函数零点的判断,如果函数在某一区间单调,且在区间的两端函数值异号,那么在这区间里一定存在零点。
3、判断函数的极值点,极值点的判定两个条件:1、导数为零的点,既导数的根2、导函数的根两侧导数值异号(先增后减为极大值,先减后增为极小值)问大家一个问题:导数为零的点一定是极值点?错,导函数的根两侧导数值异号。
可以列表看着直观,也可以不列出来4、由函数的最值可判断最值。
比较函数的极值和区间的端点大小,最大的为函数最大值,最小为函数最小值。
1)如果函数在区间单调,那最大值和最小值在区间端点取,画个草图解释。
高考导数大题解题方法

高考导数大题解题方法高考导数大题解题方法高考导数大题解题方法一、学生存在的问题:1、切线问题,没有设切点的意识,带入解析式不全面还纠缠不清。
2、求导后不变形,导致难以判断导数的正负,或者不会判断导数的正负,产生思维中断现象。
3、忽略定义域,导致失分。
4、不能发现参数引起的分歧,不会对参数引起的分歧进行讨论。
5、没有进行逆向思维的习惯,或者逆向思维经验不足,无法破解题意。
二、导数的基本问题1.题型:1).切线问题。
2).单调性,极值,值域,最值问题。
3).函数零点(方程的根)的个数和分布问题。
4).不等式恒成立、存在性、不等式证明问题。
5).与数列、不等式、解析几何的综合问题。
2.常规步骤:1)求导数并变形,写出定义域。
变形的方法:①.整式:因式分解或配方。
②.分式:通分母,并因式分解。
③.指数式:提取公因式。
④根式:分子有理化2)解方程 , 判断导数的正负判断导数正负的方法:①.检验法。
②.图像法。
③.单调性法。
④.求导数的导数。
3)列表由导函数的正负确认原函数的单调性和极值、最值4)画函数草图解决问题。
三、难点分布及突破难点的方法1.难点分布:1).无切点的切线问题;2).含参讨论,分段讨论;3).不等式证明、恒成立、存在性问题;4).与数列、不等式、解析几何的综合问题。
2.突破难点的方法:1)切线问题,函数y=f(x):①设切点为(x0,y0)②求导, y'=f'(x),③三代入:2).参数影响到导数的正负,就根据分歧分类讨论,绝对值函数变为分段函数,分两部分讨论研究。
一般的`分歧有:①参数对整体正负的影响。
②参数对有根无根、根的大小的影响,不能自认为有根。
③参数对根在区间内外的影响,不能自认为根在区间内。
3).构造函数解决不等式证明、恒成立和存在性问题。
有两种构造函数的方法:①主变量法,在那个变量的区间上恒成立,就以这个变量为主变量构造函数。
②分离法,把两个变量分离到不等式两边,构造函数。
高考数学导数大题技巧(精选5篇)

高考数学导数大题技巧(精选5篇)高考数学导数大题技巧【篇1】1、选择题部分,高考的选择题部分题型考试的方向基本都是固定的,当你在一轮二轮复习过程中总结出题目的出题策略时,答题就变得很简单了。
比如立体几何三视图,概率计算,圆锥曲线离心率等等试题中都有一些特征,只要掌握思考的切入方法和要点,再适当训练基本就可以全面突破,但是如果不掌握核心方法,单纯做题训练就算做很多题目,突破也非常困难,学习就会进入一个死循环,对照答案可以理解,但自己遇到新的题目任然无从下手。
2、关于大题方面,基本上三角函数或解三角形、数列、立体几何和概率统计应该是考生努力把分数拿满的题目。
对于较难的原则曲线和导数两道题目基本要拿一半的分数,考生复习时可把数学大题的每一道题作为一个独立的版块章节,先总结每道大题常考的几种题型,再专项突破里面的运算方法,图形处理方法以及解题的思考突破口,只要把这些都归纳到位,那么总结的框架套路,都是可以直接秒刷的题目的高考数学导数大题技巧【篇2】1个、多项选择部分,高考选择题的方向基本是固定的,当你在二轮复习过程中总结出题策略时,答案变得很简单。
比如三维几何三视图,概率计算,试题中存在圆锥截面偏心等特点,只要掌握了入门方法和思维要点,经过适当的训练,基本可以全面突破,但是如果不掌握核心方法,单纯做练习题也算做了很多题,也很难突破,学习会进入死循环,比对答案,但是遇到新问题还是无从下手。
2个、关于大话题,基本上是三角函数或求解三角形、顺序、三维几何和概率统计应该是考生努力拿满分的科目。
比较难的原理曲线和导数,基本要一半分,考生在复习时可以将数学大题的每一题作为一个独立的section,先总结一下每个大题经常考的几类题型,然后在计算方法上特别突破,解题的图形处理方法与思维突破,把它全部放在适当的位置,然后总结框架套路,都是可以直接秒刷的话题高考数学导数大题技巧【篇3】1、函数与导数主要考查数学集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
导数题的十大解题技巧

导数题的十大解题技巧一、导数概念1、先了解基本的导数概念,掌握常用的求导法则,如链式规则、技术分解法之类的解题方法。
二、根据定义式求导数2、若检验某函数的连续性,则可以用极限的方法求出导数,考虑函数的不同取值求导数的变化。
三、图像的理解运用3、利用函数图像求取导数,判断函数的性质,进而探究关于函数的性质,例如凸凹形态等。
四、反比例函数求导4、利用反比例函数求导,了解反比例函数的导数特征,能快速求得反比例函数的导数的函数,有效提高解题效率。
五、指数函数求导5、利用指数函数求导,弄清楚指数函数的导数特点,掌握求取指数函数导数的方法,做到心中有数,有助于提高解题效率。
六、复合函数求导6、利用复合函数求导,它的求导需要利用到链式规则和技术分解法等方法,能够准确求取复合函数的导数,配合其他解题方式,可以准确解出复杂的复合函数的导数。
七、导数的几何意义7、根据函数的解析式对曲线进行分析,用导数的几何意义可以很好的分析函数的凹凸性,分别解决凸函数和凹函数的情况,利用几何图形可以直观的确定曲线的凹凸性。
八、极值点8、从求导的角度出发,考虑一元函数的极值点,掌握求极值点的基本方法,主要是求解一阶导数的极限即可,结合函数的定义域可以判断函数的极值点分布情况。
九、积分函数求导9、由于积分函数可以形成函数,而函数求导可以利用积分函数求导,根据求积分的原则可以对积分函数进行求导,如分部积分法、积分反演法等,考虑函数在定义域的变化,可以熟练掌握积分函数的求导方法。
十、椭圆函数求导10、考虑函数的特点,可以把椭圆函数拆分为有限多个单独的函数,再利用求导法则求取导数,合并求得得出椭圆函数的导数,熟练掌握椭圆函数的求导方法,可以有效提高解题的效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数大题方法汇总报告
一总论
一般来说,导数的大题有两到三问。
每一个小问的具体题目虽然并不固定,但有相当的规律可循,所以在此我进行了一个答题方法的汇总报告。
二主流题型及其方法
*()求函数中某参数的值或给定参数的值求导数或切线
一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若()在时取得极值,试求所给函数中参数的值。
或者是()在( , ())处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。
虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。
这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是:先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令,()的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。
注意:①导函数一定不能求错,否则不只第一问会挂,整个题目会一并挂掉。
保证自己求导不会求错的最好方法就是求导时不要光图快,一定要小心谨慎,另外就是要将导数公式记牢,不能有马虎之处。
②遇到例子中的情况,一道要记得检验,尤其是在求解出来两个解的情况下,更要检验,否则有可能会多解,造成扣分,得不偿失。
所以做两个字来概括这一类型题的方法就是:淡定。
别人送分,就不要客气。
③求切线时,要看清所给的点是否在函数上,若不在,要设出切点,再进行求解。
切线要写成一般式。
*()求函数的单调性或单调区间以及极值点和最值
一般这一类题都是在函数的第二问,有时也有可能在第一问,依照题目的难易来定。
这一类题问法都比较的简单,一般是求()的单调(增减)区间或函数的单调性,以及函数的极大(小)值或是笼统的函数极值。
一般来说,由于北京市高考不要求二阶导数的计算,所以这类题目也是送分题,所以做这类题也要淡定。
这类问题的方法是:
首先写定义域,求函数的导函数,并且进行通分,变为假分式形式。
往下一般有两类思路,一是走一步看一步型,在行进的过程中,一点点发现参数应该讨论的范围,一步步解题。
这种方法我认为比较累,而且容易丢掉一些情况没有进行讨论,所以比较推荐第二种方法,就是所谓的一步到位型,先通过观察看出我们要讨论的参数的几个必要的临介值,然后以这些值为分界点,分别就这些临界点所分割开的区间进行讨论,这样不仅不会漏掉一些对参数必要的讨论,而且还会是自己做题更有条理,更为高效。
极值的求法比较简单,就是在上述步骤的基础上,令导函数为零,求出符合条件的根,然后进行列表,判断其是否为极值点并且判断出该极值点左右的单调性,进而确定该点为极大值还是极小值,最后进行答题。
最值问题是建立在极值的基础之上的,只是有些题要比较极值点与边界点的大小,不能忘记边界点。
注意:①要注意问题,看题干问的是单调区间还是单调性,极大值还是极小值,这决定着你最后如何答题。
还有最关键的,要注意定义域,有时题目不会给出定义域,这时就需要你自己写出来。
没有注意定义域问题很严重。
②分类要准,不要慌张。
③求极值一定要列表,不能使用二阶导数,否则只有做对但不得分的下场。
*()恒成立或在一定条件下成立时求参数范围
这类问题一般都设置在导数题的第三问,也就是最后一问,属于有一定难度的问题。
这就需要我们一定的综合能力。
不仅要对导数有一定的理解,而且对于一些不等式、函数等的知识要有比较好的掌握。
这一类题目不是送分题,属于扣分题,但掌握好了方法,也可以百发百中。
方法如下:
做这类恒成立类型题目或者一定范围内成立的题目的核心的四个字就是:分离变量。
一定要将所求的参数分离出来,否则后患无穷。
有些人总是认为不分离变量也可以做。
一些简单的
题目诚然可以做,但到了真正的难题,分离变量的优势立刻体现,它可以规避掉一些极为繁琐的讨论,只用一些简单的代数变形可以搞定,而不分离变量就要面临着极为麻烦的讨论,不仅浪费时间,而且还容易出差错。
所以面对这样的问题,分离变量是首选之法。
当然有的题确实不能分离变量,那么这时就需要我们的观察能力,如果还是没有简便方法,那么才会进入到讨论阶段。
分离变量后,就要开始求分离后函数的最大或者最小值,那么这里就要重新构建一个函数,接下来的步骤就和()中基本相同了。
注意:①分离时要注意不等式的方向,必要的时候还是要讨论。
②要看清是求分离后函数的最大值还是最小值,否则容易搞错。
③分类要结合条件看,不能抛开大前提自己胡搞一套。
最后,这类题还需要一定的不等式知识,比如均值不等式,一些高等数学的不等数等等。
这就需要我们有足够的知识储备,这样做起这样的题才能更有效率。
()构造新函数对新函数进行分析
这类题目题型看似复杂,但其实就是在上述问题之上多了一个步骤,就是将上述的函数转化为了另一个函数,并没有本质的区别,所以这里不再赘述。
()零点问题
这类题目在选择填空中更容易出现,因为这类问题虽然不难,但要求学生对与极值和最值问题有更好的了解,它需要我们结合零点,极大值极小值等方面综合考虑,所以更容易出成填空题和选择题。
如果出成大题,大致方法如下:
先求出函数的导函数,然后分析求解出函数的极大值与极小值,然后结合题目中所给的信息与条件,求出在特定区间内,极大值与极小值所应满足的关系,然后求解出参数的范围。
三汇总报告
以上就是导数大题的主要题型及方法,当然有很多题型不能完全的照顾到,有很多的创新题型没有涉及,那么如何解决这个问题呢?就是我们要明白导数题的核心是什么。
导数题的核心就是参数,就是对参数的把握,而对参数的理解与分析正是每一道题目的核心。
只要我们能够从参数入手,能够对参数进行分析,那么不论一道题有多么的繁琐,我们都能够把握这道题的主线,能有一个明确的脉络,做出题目。
所以我汇总报告的导数题的八字大纲,不一定对,但
我认为对于解决北京市的高考题有一定的帮助,那就是“分离变量,一步到位”。
一切的一切,都应该围绕着参量来展开。
相信导数虽然是第或者题,但也一定会被我们大家淡定的斩于马下。