稳压二极管的分类

合集下载

二极管的分类及参数(精)

二极管的分类及参数(精)

二极管的分类及参数一.半导体二极管的分类半导体二极管按其用途可分为:普通二极管和特殊二极管。

普通二极管包括整流二极管、检波二极管、稳压二极管、开关二极管、快速二极管等;特殊二极管包括变容二极管、发光二极管、隧道二极管、触发二极管等。

二.半导体二极管的主要参数1.反向饱和漏电流IR指在二极管两端加入反向电压时,流过二极管的电流,该电流与半导体材料和温度有关。

在常温下,硅管的IR 为纳安(10-9A)级,锗管的IR为微安(10-6A)级。

2.额定整流电流IF指二极管长期运行时,根据允许温升折算出来的平均电流值。

目前大功率整流二极管的IF值可达1000A。

3. 最大平均整流电流IO在半波整流电路中,流过负载电阻的平均整流电流的最大值。

这是设计时非常重要的值。

4. 最大浪涌电流IFSM允许流过的过量的正向电流。

它不是正常电流,而是瞬间电流,这个值相当大。

5.最大反向峰值电压VRM即使没有反向电流,只要不断地提高反向电压,迟早会使二极管损坏。

这种能加上的反向电压,不是瞬时电压,而是反复加上的正反向电压。

因给整流器加的是交流电压,它的最大值是规定的重要因子。

最大反向峰值电压VRM指为避免击穿所能加的最大反向电压。

目前最高的VRM值可达几千伏。

6. 最大直流反向电压VR上述最大反向峰值电压是反复加上的峰值电压,VR是连续加直流电压时的值。

用于直流电路,最大直流反向电压对于确定允许值和上限值是很重要的.7.最高工作频率fM由于PN结的结电容存在,当工作频率超过某一值时,它的单向导电性将变差。

点接触式二极管的fM 值较高,在100MHz以上;整流二极管的fM较低,一般不高于几千赫。

8.反向恢复时间Trr当工作电压从正向电压变成反向电压时,二极管工作的理想情况是电流能瞬时截止。

实际上,一般要延迟一点点时间。

决定电流截止延时的量,就是反向恢复时间。

虽然它直接影响二极管的开关速度,但不一定说这个值小就好。

也即当二极管由导通突然反向时,反向电流由很大衰减到接近IR时所需要的时间。

二极管分类和使用场合

二极管分类和使用场合

二极管1.二极管分类和使用场合● 硅整流二极管:硅整流二极管的主要型号有IN4001~IN4007、IN5391~IN5399、IN5100~IN5406,它主要用途有在电源电路上做整流元件,还可以灵活的构成限幅、钳位、抑制反向电动势、双电源实现数据保护等电路。

典型应用如图1.6.8。

● 硅整流桥:硅整流桥的主要型号有3N246~3N245,分为单相半桥、单相全桥和三相全桥,其中单相全桥主要用在小功率整流电路中,三相全桥在电力整流和逆变器等大功率设备中使用。

硅整流桥也可以用硅整流二极管搭接而成。

● 检波二极管:它电流小,结电容小,主要用在在小信号、高频率的电路中。

● 肖特基二极管:它的反响恢复时间极短可达几个纳秒,压降可达0.4V ,主要在开关稳压电源和逆变器中作续流二极管用,主要型号有IN5817~IN5825等。

● 快恢复二极管:它的正向压降较低,反应时间较快(0.2~0.75μs ),比肖特基二极管耐压高得多,在逆变电源中作整流元件。

主要型号有IN4933~IN4937。

● 变容二极管:它是一种电容随外加偏压改变有较大非线性变化的二极管,通常工作于反向偏置状态,在调频电路中有较大应用。

● 发光二极管:它是一种主动发光器件,简称LED ,和普通二极管类似,也具有单向导电性,发光响应速度可快到几十纳秒,颜色和外形种类很多。

现在还有一种复合发光二极管,一只二极管在不同的控制条件下发出不同颜色的光。

发光二极管多用于电子电路中作信号和状态的显示,也可作为光传感器的光源。

● 红外发光二极管:和发光二极管类似,只不过它发出是我们肉眼不能直接看到的红外光,在电子产品中常用作红外光源,还经常用于光通讯等领域。

● 稳压二极管:属于硅管,在反向击穿区具有极陡的击穿曲线,在很大的电流变化范围内,只有极小的电压变化。

一般用于电路中的基准电压。

2.二极管的参数识别和使用注意钳位抑制反向电动势D 1~D 4构成整流桥 限幅数据保护图1.6.8 硅整流二极管典型应用二极管的型号直接标注在它的上面,选用二极管时要考虑二极管的功率和反向耐压值,使用时注意二极管的正、负极,有环状标志的一端为正极,加正电压,另一端为负极,加负电压。

二极管分类

二极管分类

二极管分类1>按结构材料分:(1)锗二极管(2)硅二极管2>按制作工艺分:(1)点接触型二极管:pn结面积小,结电容小,用于检波和变频等高频电路。

(2)面接触型二极管:结面积大,用于工频大电流整流电路。

(3)平面型二极管:往往用于集成电路制造工艺中。

pn结面积可大可小,用于高频整流和开关电路中。

3>按功能用途分:(1)硅整流二极管:硅整流二极管除主要应用于电源电路做整流元件外,还可用作限幅、保护、钳位等。

(常用整流二极管主要是1n、2cz系列)(2)检波二极管:检波二极管的结点容小、工作频率高、正向压降小,但允许流过的最大正向电流小、内阻大。

多用于小信号、高频率的电路,用作检波、鉴频、限幅。

(常用检波二极管主要是2ap系列) (3)稳压二极管:利用稳压二极管的反向击穿特性,用作稳压基准电压、保护、限幅、电平转换等。

其中2dw230~2dw232稳压管内部具有温度补偿,电压温度系数低,可用于精密稳压电路。

(常用稳压二极管主要是1n、2cw、2dw系列)(4)光敏二极管:利用光敏二极管在光的照射下,反向电流与光照成正比的特性,应用于光电转换及光控、测光等自动控制电路中。

(常用硅光敏二极管主要是2cu、2du系列)(5)变容二极管:变容二极管的结电容可以随外加偏压的不同而变化,主要应用于lc调谐、自动频率控制稳频等场合。

(常用变容二极管主要是2cc、1n系列)(6)发光二极管:发光二极管能把电能直接快速地转换成光能,在电子仪器、仪表中用作显示器件、状态信息指示、光电开关和光辐射源等。

(常用发光二极管主要是2ef系列)(7)肖特基二极管:肖特基二极管具有反向恢复时间很短、正向压降较低的特性,可用于高频整流、检波、高速脉冲箱位等。

(常用肖特基二极管主要是1n、mbr系列)(8)快速恢复二极管:快速恢复二极管的正向压降与普通硅整流二极管相似,但反向恢复时间小,耐压比肖特基二极管高得多,用作中频整流元件。

二极管的分类及参数

二极管的分类及参数

二极管的分类及参数二极管是电子器件中最简单的一种,广泛应用于电子电路中。

它具有单向导通性,即只有在正向电压作用下才会导电,而在反向电压作用下则会截止电流。

根据二极管的结构和功能,可以将其分为普通二极管、恒压二极管、整流二极管和特殊二极管等多个类别。

下面分别介绍这些二极管的分类及参数。

1.普通二极管:普通二极管是最基础、最常见的一类二极管。

它主要由一个PN结构组成,一般用硅(Si)或砷化镓(GaAs)等半导体材料制作而成。

普通二极管具有正向压降特性,即在正向电压作用下,从P区到N区的电子会流动,形成电流;而在反向电压作用下,由于P区的导电性差,电流无法流动,二极管截止。

普通二极管的主要参数有以下几个:-数字型号:例如1N4148、1N4007等;-最大正向电流:最大能够通过的正向电流;-最大反向电压:最大能够承受的反向电压;-正向压降:正向导通时的电压降;-反向漏电流:反向电压作用下的漏电流。

2.恒压二极管:恒压二极管,也称为稳压二极管或Zener二极管,是一种特殊的二极管。

它基本上与普通二极管相同,但能够在逆向击穿时产生一个稳定的电压(即Zener电压),并以此为参考进行稳压。

恒压二极管广泛应用于电源稳压电路、测量电路和放大器的偏置电路等。

恒压二极管的主要参数有以下几个:-数字型号:例如BZX55C5V1、BZV55-C24等;- Zener电压:逆向击穿时稳定的电压值;- 最大反向电流:在Zener电压下能够通过的最大反向电流;-最大功耗:能够承受的最大功耗,一般由封装类型决定。

3.整流二极管:整流二极管,也称为信号二极管或电势二极管,是一种特殊的二极管,用于将交流信号转换为直流信号。

整流二极管通常用于电源电路、继电器、调制解调器等电子器件中。

整流二极管的主要参数有以下几个:-数字型号:例如1N4148、1N4007等;-最大正向电流:最大能够通过的正向电流;-最大反向电压:最大能够承受的反向电压;-正向压降:正向导通时的电压降。

稳压二极管 符号

稳压二极管 符号

稳压二极管符号
摘要:
1.稳压二极管的定义和作用
2.稳压二极管的符号表示
3.稳压二极管的分类及特点
4.稳压二极管的工作原理
5.稳压二极管的应用领域
正文:
稳压二极管(Voltage Regulator Diode),顾名思义,是一种能够稳定输出电压的二极管。

在电子电路中,稳压二极管主要用于将输入电压转换为稳定的输出电压,为其他电子元件提供稳定的工作电压,从而保证电路的正常运行。

稳压二极管的符号是一个箭头,箭头的一端表示二极管的阴极(Anode),另一端表示二极管的阳极(Cathode)。

在符号的旁边,有时还会标明二极管的型号和额定电压值。

稳压二极管根据材质和结构的不同,可以分为硅稳压二极管、锗稳压二极管等。

其中,硅稳压二极管由于性能稳定、可靠性高,应用最为广泛。

硅稳压二极管根据额定电压的不同,又可分为低压稳压二极管(如1N4735A)、中压稳压二极管(如1N4744A)和高压稳压二极管(如1N4757A)等。

稳压二极管的工作原理是利用其内部PN结的特性。

当输入电压变化时,稳压二极管的PN结会发生相应的导通与截止,从而调整输出电压。

这种调整
作用使得稳压二极管能够为电路提供稳定的工作电压。

稳压二极管广泛应用于各种电子设备中,如电源、充电器、电视机、收音机等。

在电源电路中,稳压二极管用于稳定输出电压,确保电源为其他电子元件提供稳定的工作电压。

在充电器电路中,稳压二极管则用于稳定输出电压,保证充电器能够为电池提供恒定的充电电压。

总之,稳压二极管作为一种重要的电子元件,在电子电路中发挥着稳定输出电压的关键作用。

二极管的分类及选型

二极管的分类及选型

二极管的分类及选型 (2011-09-06 10:45)分类:电源技术一.半导体二极管的分类半导体二极管按其用途可分为:普通二极管和特殊二极管。

普通二极管包括整流二极管、检波二极管、稳压二极管、开关二极管、快速二极管等;特殊二极管包括变容二极管、发光二极管、隧道二极管、触发二极管等。

二.半导体二极管的主要参数1.反向饱和漏电流IR指在二极管两端加入反向电压时,流过二极管的电流,该电流与半导体材料和温度有关。

在常温下,硅管的IR为纳安(10-9A)级,锗管的IR为微安(10-6A)级。

2.额定整流电流IF指二极管长期运行时,根据允许温升折算出来的平均电流值。

目前大功率整流二极管的IF值可达1000A。

3. 最大平均整流电流IO在半波整流电路中,流过负载电阻的平均整流电流的最大值。

这是设计时非常重要的值。

4. 最大浪涌电流IFSM允许流过的过量的正向电流。

它不是正常电流,而是瞬间电流,这个值相当大。

5.最大反向峰值电压VRM即使没有反向电流,只要不断地提高反向电压,迟早会使二极管损坏。

这种能加上的反向电压,不是瞬时电压,而是反复加上的正反向电压。

因给整流器加的是交流电压,它的最大值是规定的重要因子。

最大反向峰值电压VRM指为避免击穿所能加的最大反向电压。

目前最高的VRM值可达几千伏。

6. 最大直流反向电压VR上述最大反向峰值电压是反复加上的峰值电压,VR是连续加直流电压时的值。

用于直流电路,最大直流反向电压对于确定允许值和上限值是很重要的.7.最高工作频率fM由于PN结的结电容存在,当工作频率超过某一值时,它的单向导电性将变差。

点接触式二极管的fM值较高,在100MHz以上;整流二极管的fM较低,一般不高于几千赫。

8.反向恢复时间Trr当工作电压从正向电压变成反向电压时,二极管工作的理想情况是电流能瞬时截止。

实际上,一般要延迟一点点时间。

决定电流截止延时的量,就是反向恢复时间。

虽然它直接影响二极管的开关速度,但不一定说这个值小就好。

二极管稳压电压

二极管稳压电压一、概述二极管稳压电压是指通过二极管实现电压稳定的一种电路。

在电子设备中,电压的稳定性是非常重要的,因为电压的波动会影响电子元器件的工作效果,甚至会损坏电子元器件。

因此,二极管稳压电压在电子设备中得到了广泛的应用。

二、二极管稳压电路的原理二极管稳压电路的原理是利用二极管的正向导通特性和反向截止特性来实现电压的稳定。

当二极管的正向电压大于其正向导通电压时,二极管会导通,电流通过二极管,电压稳定在二极管的正向导通电压值。

当二极管的反向电压大于其反向击穿电压时,二极管会发生击穿,电流急剧增大,电压也会急剧下降,从而保护电子元器件不受过高的电压损害。

三、二极管稳压电路的分类1. 简单二极管稳压电路简单二极管稳压电路是最基本的二极管稳压电路,由一个二极管和一个负载电阻组成。

该电路的稳压效果不太理想,因为二极管的正向导通电压和反向击穿电压都有一定的波动范围。

2. Zener二极管稳压电路Zener二极管稳压电路是利用Zener二极管的反向击穿特性来实现电压稳定的一种电路。

Zener二极管的反向击穿电压非常稳定,因此可以实现较好的稳压效果。

该电路的稳压精度可以达到1%左右。

3. 三端稳压器三端稳压器是一种集成了稳压二极管、功率晶体管和反馈电路的电路。

该电路的稳压精度非常高,可以达到0.1%左右。

三端稳压器还具有过载保护、过热保护等功能,因此在电子设备中得到了广泛的应用。

四、总结二极管稳压电压是一种实现电压稳定的重要电路。

不同的二极管稳压电路具有不同的稳压精度和功能特点,可以根据实际需要选择合适的电路。

在电子设备中,二极管稳压电路的应用非常广泛,对于保证电子设备的稳定性和可靠性具有重要的作用。

二极管的常见类型

二极管的常见类型
二极管是一种由半导体材料制成的电子元件,具有单向导电性。

二极管可以根据其功能用途进行分类,常见的类型包括:
1.整流二极管:用于将交流电转换为直流电。

它具有
较大的正向电压降,通常为0.6-0.7伏。

2.稳压二极管:具有稳定电压作用。

它在反向击穿状
态下工作,具有一定的稳定电压值。

3.光敏二极管:在光照下产生电流。

它主要用于光电
探测、光电控制、光电转换等领域。

4.发光二极管:在电流通过时发光。

它主要用于显
示、照明、指示等领域。

5.检波二极管:用于从信号中提取直流成分。

它具有
较大的反向电阻,可以有效地防止直流成分的损
失。

6.变容二极管:其电容值随其正向电压或反向电压的
变化而变化。

它主要用于调谐、滤波、振荡等领
域。

7.双向触发二极管:在正负两侧都具有导电性。

它主
要用于电路的保护、控制等领域。

除了上述常见的类型外,还有其他一些二极管类型,例如:
1.肖特基二极管:具有较小的正向电压降和较快的反
向恢复时间。

2.隧道二极管:具有较大的正向电压降和较小的反向
电阻。

3.雪崩二极管:在反向击穿状态下具有较大的反向电
流。

4.齐纳二极管:在反向击穿状态下具有较小的反向电
流变化。

二极管是一种重要的电子元件,在许多电子电路中都有广泛应用。

二极管 介绍

二极管介绍二极管一、引言二极管是一种电子元器件,被广泛应用于电子设备中的电路中。

它具有正向导通和反向截止的特性,常用于整流、调制、放大和开关等功能。

本文将从结构、工作原理、分类和应用等方面对二极管进行详细介绍。

二、结构和工作原理二极管由两个不同材料组成,即P型半导体和N型半导体。

两个半导体之间的交界面称为P-N结。

P型半导体上的杂质含有三价元素,如硼(B)、铝(Al)等,而N型半导体上的杂质含有五价元素,如磷(P)、砷(As)等。

当P-N结加上正向偏置电压时,P型区域与N型区域之间的电子和空穴将扩散并重新结合。

这种情况下,电子从N型区域流向P型区域,空穴则相反。

这种导通状态称为正向偏置。

反之,当P-N结加上反向偏置电压时,P型区域的电子被吸引向P-N结区域,N型区域的空穴被吸引向P-N结区域,电子和空穴无法通过P-N结进行结合,形成截止状态。

三、分类根据用途和特性,二极管可分为多种类型。

以下是常见的二极管分类:1. 整流二极管整流二极管也称为信号二极管,主要用于将交流电信号转换为直流电信号。

最常见的整流二极管是硅二极管和锗二极管。

2. 光电二极管光电二极管是一种能够将光能转换为电能的器件。

光电二极管常用于光电转换、光通讯和传感器等领域。

3. 齐纳二极管齐纳二极管是一种具有稳定的正向电压和锐利的负阻抗特性的二极管。

它常用于电力管理、稳压电源和高频电路等领域。

4. 可变电容二极管可变电容二极管可以改变其电容大小。

它通常由两个电容导板之间的PN结构成,通过改变偏置电压来调节电容值。

可变电容二极管被广泛应用于调谐电路和无线电设备等领域。

四、应用二极管在电子设备中被广泛应用。

以下是一些常见的应用场景:1. 整流器二极管可以将交流电转换为直流电,常用于电源、逆变器和电动机驱动器等领域。

2. 放大器二极管具有整流和放大特性,被广泛应用于声音放大器、射频放大器等领域。

3. 稳压器稳压二极管可以提供稳定的电压输出,在电路中用于稳定电源和保护其他元器件。

二极管的分类、特性及电路符号

二极管是一种只允许电流由单一方向流过具有两个电极的装置,许多的使用是应用其整流的功能。

本文将会对二极管的分类、特性、电路符号进行详解。

二极管的分类1、按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。

2、根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管、隔离二极管、肖特基二极管、发光二极管、硅功率开关二极管、旋转二极管等。

3、按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。

1) 整流二极管将交流电源整流成为直流电流的二极管叫作整流二极管。

2)检波二极管检波二极管是用于把迭加在高频载波上的低频信号检出来的器件,它具有较高的检波效率和良好的频率特性。

3)开关二极管在脉冲数字电路中,用于接通和关断电路的二极管叫开关二极管,它的特点是反向恢复时间短,能满足高频和超高频应用的需要。

4) 稳压二极管稳压二极管是由硅材料制成的面结合型晶体二极管,它是利用PN结反向击穿时的电压基本上不随电流的变化而变化的特点,来达到稳压的目的,因为它能在电路中起稳压作用,故称为、稳压二极管(简称稳压管)。

5)变容二极管变容二极管是利用PN结的电容随外加偏压而变化这一特性制成的非线性电容元件,被广泛地用于参量放大器,电子调谐及倍频器等微波电路中。

6))瞬态电压抑制器TVS一种固态二极管,专门用于ESD 保护。

TVS 二极管是和被保护电路并联的,当瞬态电压超过电路的正常工作电压时,二极管发生雪崩,为瞬态电流提供通路,使内部电路免遭超额电压的击穿。

7)发光二极管用磷化镓、磷砷化镓材料制成,体积小,正向驱动发光。

工作电压低,工作电流小,发光均匀、寿命长、可发红、黄、绿单色光。

8)肖特基二极管基本原理是:在金属(例如铅)和半导体(N型硅片)的接触面上,用已形成的肖特基来阻挡反向电压。

肖特基与PN结的整流作用原理有根本性的差异。

其耐压程度只有40V左右。

其特长是:开关速度非常快:反向恢复时间trr特别地短。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

稳压二极管稳压二极管(又叫齐纳二极管)它的电路符号是:此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件.在这临界击穿点上,反向电阻降低到一个很少的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用.其伏安特性见图1,稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压. 稳压管的应用:1、浪涌保护电路(如图2):稳压管在准确的电压下击穿,这就使得它可作为限制或保护之元件来使用,因为各种电压的稳压二极管都可以得到,故对于这种应用特别适宜.图中的稳压二极管D是作为过压保护器件.只要电源电压VS超过二极管的稳压值D就导通,使继电器J吸合负载RL就与电源分开.2、电视机里的过压保护电路(如图3):EC是电视机主供电压,当EC电压过高时,D导通,三极管BG 导通,其集电极电位将由原来的高电平(5V)变为低电平,通过待机控制线的控制使电视机进入待机保护状态.3、电弧抑制电路如图4:在电感线圈上并联接入一只合适的稳压二极管(也可接入一只普通二极管原理一样)的话,当线圈在导通状态切断时,由于其电磁能释放所产生的高压就被二极管所吸收,所以当开关断开时,开关的电弧也就被消除了.这个应用电路在工业上用得比较多,如一些较大功率的电磁吸控制电路就用到它.4、串联型稳压电路(如图5):在此电路中,串联稳压管BG的基极被稳压二极管D钳定在13V,那么其发射极就输出恒定的12V电压了.这个电路在很多场合下都有应用Transient Voltage Suppressors(TVS)瞬态电压抑制二极管概述电压及电流的瞬态干扰是造成电子电路及设备损坏的主要原因,常给人们带来无法估量的损失。

这些干扰通常来自于电力设备的起停操作、交流电网的不稳定、雷击干扰及静电放电等,瞬态干扰几乎无处不在、无时不有,使人感到防不胜防。

幸好,一种高效能的电路保护器件TVS的出现使瞬态干扰得到了有效抑制TVS(TRANSIENT VOLTAGE SUPPRESSOR)或称瞬变电压抑制二极管是在稳压管工艺基础上发展起来的一种新产品,其电路符号和普通稳压二极管相同,外形也与普通二极管无异,当TVS管两端经受瞬间的高能量冲击时,它能以极高的速度(昀高达1*10-12秒)使其阻抗骤然降低,同时吸收一个大电流,将其两端间的电压箝位在一个预定的数值上,从而确保后面的电路元件免受瞬态高能量的冲击而损坏。

TVS的特性及其参数(参数表见附表)S的特性如果用图示仪观察TVS的特性,就可得到图1中左图所示的波形。

如果单就这个曲线来看,TVS管和普通稳压管的击穿特性没有什么区别,为典型的PN结雪崩器件。

但这条曲线只反映了TVS特性的一个部分,还必须补充右图所示的特性曲线,才能反映TVS的全部特性。

这是在双踪示波器上观察到的TVS管承受大电流冲击时的电流及电压波形。

图中曲线 1是TVS 管中的电流波形,它表示流过TVS管的电流由1mA突然上升到峰值,然后按指数规律下降,造成这种电流冲击的原因可能是雷击、过压等。

曲线 2是TVS管两端电压的波形,它表示TVS中的电流突然上升时,TVS两端电压也随之上升,但昀大只上升到VC值,这个值比击穿电压VBR 略大,从而对后面的电路元件起到保护作用。

2、TVS的参数TVS在电路中和稳压管一样,是反向使用的,图2所示为单向TVS的工作曲线图。

各参数说明如下:A.击穿电压(VBR):TVS在此时阻抗骤然降低,处于雪崩击穿状态。

B.测试电流(IT):TVS的击穿电压VBR在此电流下测量而得。

一般情况下IT取1MA。

C.反向变位电压(VRWM):TVS的昀大额定直流工作电压,当TVS两端电压继续上升,TVS 将处于高阻状态。

此参数也可被认为是所保护电路的工作电压。

D.昀大反向漏电流(IR):在工作电压下测得的流过TVS的昀大电流。

E.昀大峰值脉冲电流(IPP):TVS允许流过的昀大浪涌电流,它反映了TVS的浪涌抑制能力。

F.昀大箝位电压(VC):当TVS管承受瞬态高能量冲击时,管子中流过大电流,峰值为IPP,端电压由VRWM值上升到VC值就不再上升了,从而实现了保护作用。

浪涌过后,随时间IPP以指数形式衰减,当衰减到一定值后,TVS两端电压由VC开始下降,恢复原来状态。

昀大箝位电压VC与击穿电压VBR之比称箝位因子Cf,表示为Cf= VC /VBR,一般箝位因子仅为 1.2~1.4。

G.峰值脉冲功率(PP):PP按峰值脉冲功率的不同TVS分为四种,有500W、600W、1500W和5000W。

昀大峰值脉冲功率:昀大峰值脉冲功率为:PN=VC·IPP。

显然,昀大峰值脉冲功率愈大,TVS 所能承受的峰值脉冲电流IPP愈大;另一方面,额定峰值脉冲功率PP确定以后,所TVS能承受的峰值脉冲电流IPP,随着昀大箝位电压VC的降低而增加。

TVS昀大允许脉冲功率除了和峰值脉冲电流和箝位电压有关外,还和脉冲波形、脉冲持续时间和环境温度有关。

对于几种不同的脉冲波形PN=K·VC·IPP,其中K为功率因数,图3给出了几种典型脉冲波形的K值。

图4所示为昀大允许脉冲功率和脉冲时间的关系曲线。

图中描绘了500W和 1.5KW系列TVS的昀大允许脉冲功率随脉冲持续时间增加的降额曲线,典型的脉冲时间为1ms。

500W和1.5KW即为脉冲持续时间为1ms时的昀大允许脉冲功率。

图5所示为昀大允许脉冲功率随环境温度增高的降额曲线,曲线表明,环境温度超过25℃,昀大允许脉冲功率呈线性下降:在150℃时,脉冲功率为零。

TVS所能承受的瞬时脉冲峰值可达数百安培,其箝位响应时间仅为1*10-12 秒;TVS所允许的正向浪涌电流,在25℃,1/120秒的条件下,也可达50-200安培。

一般地说,TVS所能承受的瞬时脉冲是不重复的脉冲。

而实际应用中,电路里可能出现重复性脉冲。

TVS器件规定,脉冲重复率比(脉冲持续时间和间歇时间之比)为0.01%。

如不符合这一条件,脉冲功率的积累有可能使TVS烧毁。

电路设计人员应注意这一点。

TVS的工作是可靠的,即使长期承受不重复性大脉冲的高能量的冲击,也不会出现"老化"问题。

试验证明,TVS安全工作于10000次脉冲后,其昀大允许脉冲功率仍为原值的80%以上。

TVS的分类TVS管按功率分类,可分为500W、600W、1500W及5000W。

也可按极性分类。

按极性分为单极性及双极性两种。

双极性尾标中縀以C。

按TVS管VBR的值对标称值的离,散程度,可以把TVS分为两类,即离散程度为±5%和±10%的,离散程度为±5%的,型号中尾标縀以A,如SA5.0 CA。

TVS的应用TVS主要用于对电路元件进行快速过电压保护。

它能"吸收"功率高达数千瓦的浪涌信号。

TVS 具有体积小、功率大、响应快、无噪声、价格低等诸多优点,它的应用十分广泛,如:家用电器;电子仪器;仪表;精密设备;计算机系统;通讯设备;RS232、485及CAN等通讯端口;ISDN的保护;I/O端口;IC电路保护;音、视频输入;交、直流电源;电机、继电器噪声的抑制等各个领域。

它可以有效地对雷电、负载开关等人为操作错误引起的过电压冲击起保护作用,下面是几个TVS在电路应用中的典型例子。

TVS用于交流电路:见图6,这是一个双向TVS在交流电路中的应用,可以保护整流桥及负载中所有的元器件。

图7所示为用单向TVS并联于整流管旁侧以保护整流管不被瞬时脉冲击穿。

图8中TVS1是一只双向TVS管,它正负两个方向均可"吸收"瞬时大脉冲,把电路电压箝制到预定水平。

这类双向TVS用于交流电路是极方便的。

它可以保护变压器以后的所有电路元件。

由于加上TVS1,电路保险丝容量要加大。

TVS2也是一只双向TVS管,它可以对桥式整流器及以后的电路元件实行过电压保护。

它的Vb值及VC值应与变压器副边输出电压相适应。

TVS3是一只单向TVS管,因为加在它上面的电压是已整流后的流电直压,TVS3 只保护负载不受过电压冲击,电路中可以根据需要使用三个TVS 管中的一只或几只。

TVS和其它浪涌保护元件的比较现在国内不少需要进行浪涌保护的设备上使用的是压敏电阻,TVS 与压敏电阻这种金属氧化物变阻器相比具有极其优越的性能。

下面列表进行比较。

关键参数或极限值TVS 电阻器反应速度10-12 秒50*10E-9秒是否会老化否是昀高使用温度175 115元件极性单极性与双极性单极性反向漏电典型值5uA 200 uA箝位因子(VC/BV)≯1.5 昀大可达7-8封装性质密封不透气透气价格贵便宜TVS的选用选用TVS的步骤如下:1.确定待保护电路的直流电压或持续工作电压。

如果是交流电,应计算出昀大值,即用有效值*1.414。

S的反向变位电压即工作电压(VRWM)--选择TVS的VRWM等于或大于上述步骤1所规定的操作电压。

这就保证了在正常工作条件下TVS吸收的电流可忽略不计,如果步骤1所规定的电压高于TVS的VRWM ,TVS将吸收大量的漏电流而处于雪崩击穿状态,从而影响电路的工作。

3.昀大峰值脉冲功率:确定电路的干扰脉冲情况,根据干扰脉冲的波形、脉冲持续时间,确定能够有效抑制该干扰的TVS峰值脉冲功率。

4.所选TVS的昀大箝位电压(VC)应低于被保护电路所允许的昀大承受电压。

5.单极性还是双极性-常常会出现这样的误解即双向TVS用来抑制反向浪涌脉冲,其实并非如此。

双向TVS 用于交流电或来自正负双向脉冲的场合。

TVS有时也用于减少电容。

如果电路只有正向电平信号,那麽单向TVS就足够了。

TVS操作方式如下:正向浪涌时,TVS处于反向雪崩击穿状态;反向浪涌时,TVS类似正向偏置二极管一样导通并吸收浪涌能量。

在低电容电路里情况就不是这样了。

应选用双向TVS以保护电路中的低电容器件免受反向浪涌的损害。

6.如果知道比较准确的浪涌电流IPP,那么可以利用VC来确定其功率,如果无法确定功率的概范围,一般来说,选择功率大一些比较好。

快恢复二极管(FRD)、超快恢复二极管(SRD)快恢复二极管FRD(Fast Recovery Diode)是近年来问世的新型半导体器件,具有开关特性好,反向恢复时间短、正向电流大、体积小、安装简便等优点。

超快恢复二极管SRD(Superfast Recovery Diode),则是在快恢复二极管基础上发展而成的,其反向恢复时间trr值已接近于肖特基二极管的指标。

它们可广泛用于开关电源、脉宽调制器(PWM)、不间断电源(UPS)、交流电动机变频调速(VVVF)、高频加热等装置中,作高频、大电流的续流二极管或整流管,是极有发展前途的电力、电子半导体器件。

相关文档
最新文档