[小学奥数专题15】6-1-4和差问题.题库学生版
[小学奥数专题15】6-1-4和差问题.题库学生版

和差问题和差问题是大小两个数的和与这两个数的差,求大小两个数各是多少的应用题。
为了解答这种应用题,首先要弄清两个数相差多少的不同表达方式.有些题目明确给了两个数的差,而有些应用题把两个数的差“暗藏〞起来,我们管暗藏的差叫“暗差〞。
知道两个数的和,以与它们的差,要求这两个数,解决和差问题需要我们画线段图来分析,方法如下:方法一:(和+差)÷2=大数和-大数=小数方法二:(和-差)÷2=小数和-小数=大数例题精讲板块一、根本的和差问题【例1】两筐水果共重150千克,第一筐比第二筐少10千克,两筐水果各多少千克?【巩固】甲、乙两人同时以一样的速度打字,2分钟共打了240个字,甲每分钟比乙多打10个字.问甲、乙两人每分钟各打多少个?【巩固】果园共260棵桃树和梨树,其中桃树的棵数比梨树多20棵.桃树和梨树各有多少棵?【巩固】有一根钢管长12米,要锯成两段,使第一段比第二段短2米.每段各长多少米?【巩固】红和玲平均身高为130厘米,红比玲高8厘米,红和玲身高各是多少厘米?【例2】文具王国的尺子点点和跳跳是一对好朋友,他们一会儿高兴地把自己绑在一起,一会儿又闹起小别扭,竖起小脑袋比比谁长的高,每天他们总是有使不完的劲儿.同学们!你能根据下面的图,算出点点和跳跳各有多长吗?【巩固】二年级一班和二班共有85人,一班比二班多3人.问一班、二班各有多少人?【巩固】两个连续奇数的和是36,这两个数分别是多少?【巩固】一辆公交车里有30位乘客,到大桥站有17人下车,又上来19人,现在车上和原来比,人多了还是少了,多〔或少〕几个人?【例3】长方形操场的长与宽相差80米,沿操场跑一周是400米,求这个操场的长与宽是多少米?【巩固】丁丁在期中考试时,语文、数学两科平均分是91分,数学比语文多2分,那么丁丁语文和数学各得了多少分?【例4】学校水果店运来苹果和梨共40千克,苹果比梨多2袋,苹果和梨每袋都重5千克,那么水果店运来苹果和梨各多少袋?【巩固】有一种小虫,每隔2秒钟分裂一次.分裂后的2只新的小虫经过2秒钟后又会分裂.如果最初瓶中只有1只小虫,那么2秒后变2只,再过2秒后就变4只……2分钟后,正好满满一瓶小虫.现在这个瓶最初放入2只这样的小虫.经过多长时间,正巧也是满满一瓶小虫?【例5】小勇家养的白兔和黑兔一共有22只,如果再买4只白兔,白兔和黑兔的只数一样多.小勇家养的白兔和黑兔各多少只?【巩固】图书馆的书架上、下两层共存书220本,如果从上层拿出10本放入下层,那么两层书架上书数相等.求原来上、下层各存书多少本?【例6】小华每天写8个大字,比小军每天多写2个.小华和小军一星期一共写多少个大字?【巩固】商店里每天卖出电脑10台,卖出的彩电比电脑多5台,一个星期商店卖出电脑和彩电一共多少台?【例7】甲、乙两校共有学生1050人,局部学生因搬家需要转学,由甲校转入乙校20人,这样甲校比乙校还多10人,求两校原来有学生多少人?【巩固】小华和小敏共有铅笔25枝,如果小华用去4枝,小敏用去3枝,那么小华还比小敏多2枝,小华和小敏原来各有多少枝铅笔?【例8】周明和王刚两人数学成绩的和是182分.周明如果多考5分,就比王刚多3分.周明和王刚的数学各考了多少分?【巩固】有大、小两个油桶,一共装油24千克,两个油桶都倒出同样多的油后分别还剩9千克和5千克.问:原来大、小两个油桶各装油多少千克?【例9】兔妈妈拔了29个萝卜分给了小白兔和小黑兔,因为分的萝卜不一样多,兔妈妈让小白兔给了小黑兔5个,这时再来数发现小黑兔比小白兔多出1个萝卜,你知道原来小白兔和小黑兔各分到了多少个萝卜吗?【巩固】甲乙两个仓库共存大米56包,从乙仓库调8包到甲仓库,两个仓库大米的包数就同样多了,甲、乙两个仓库原有大米各多少包?【例10】甲校原来比乙校多48人,为方便就近入学,甲校有假设干人转入乙校,这时甲校反而比乙校少12人.甲校有多少人转入乙校?【巩固】两箱图书共有66本,甲箱如果借出10本,就比乙箱少4本.甲、乙两箱原有图书各多少本?【巩固】方方和圆圆共有图书70本,如果方方给圆圆5本,那么圆圆就比方方多4本.问:方方和圆圆原来各有图书多少本?【例11】有三块布料一共190米,第二块比第一块长20米,第三块比第二块长30米.每块布料各长多少米?【巩固】甲、乙、丙三个数的和是105,甲数比乙数多4,乙数比丙数多4,求丙数.【巩固】有3条绳子,共长95米,第一条比第二条长7米,第二条比第三条长8米,问3条绳子各长多少米?【巩固】甲、乙两校共有学生864人,为了照顾学生就近入学,从甲校调入乙校32名同学,这样甲校学生还比乙校多48人,问甲、乙两校原来各有学生多少人?【巩固】小猴和小熊到动物商店一共买了30块糖,小猴把买的糖给了小熊10块,还比小熊多2块.小熊比小猴少买几块糖?【巩固】学而思学校新进99本书,分给三、四、五三个年级,三年级比四年级多分了2本,四年级比五年级多分了5本,三个年级各分得多少本书?【巩固】甲的书比乙多9本,比丙多2本,乙、丙共有书47本.问:甲、乙、丙各有多少本书?【巩固】二年级原来女同学比男同学多25人,今年二年级又增加了80个男同学和65个女同学,请问:现在是男同学多还是女同学多?多几人?【巩固】草地上有黑兔、白兔、灰兔共27只,黑兔比白兔多2只,灰兔比白免少2只.黑兔、白兔、灰兔各有多少只?【例12】大象、老虎、猴子三只动物的年龄中,大象和老虎共90岁,大象和猴子共70岁,老虎和猴子共40岁,请你算一算,三只动物各多少岁?【巩固】小强、中强、大强去称体重,大强和小强一起称是50千克,小强和中强一起称是49千克,三个人一起称是76千克.三人的体重各是多少千克?【例13】四年级有4个班,不算甲班其余三个班的总人数是131人;不算丁班其余三个班的总人数是134人;乙、丙两班的总人数比甲、丁两班的总人数少1人,问这四个班共多少人?【巩固】甲乙共储蓄32元,乙丙共储蓄30元,甲丙共储蓄22元,三人各储蓄多少元?【巩固】大明、小荣、豆豆三个小朋友去称体重,大明和小荣一起称是55千克,大明和豆豆一起称是49千克,小荣和豆豆一起称是 56千克.三人的体重各是多少千克?【例14】地震灾区希望小学正筹备建设图书馆,春蕾小学发动全校同学给山区的学生捐书,二〔1〕班、二〔2〕班、二〔3〕班三个班共捐书300本,二〔1〕班、二〔2〕班两个班捐书总数比二〔3〕班多60本,如果二〔3〕班拿出20本给二〔2〕班,那么两个班捐书数目相等.求三个班各捐了多少本书?【例15】哥哥今年14岁,妹妹今年8岁,当兄妹俩岁数的和是42岁时,俩人各应该是多少岁?【巩固】兄弟俩现在年龄和是28岁,3年前哥哥比弟弟大2岁,兄弟俩现在各多少岁?【巩固】今年小玲6岁,她父亲34岁,当两人年龄和是58岁时,两人年龄各多少岁?【巩固】今年小强7岁,爸爸35岁,当两人年龄和是58岁时,两人年龄各多少岁?【例16】小琴、小静、小莲三人年龄和是20岁,小琴比小静大1岁,小莲比小静小2岁.三人的年龄各是几岁?【巩固】甲、乙两个笼子里共有小鸡20只,甲笼里新放4只,乙笼里取出1只,这时乙笼还比甲笼多1只,求甲、乙两笼原来各有鸡多少只?【例17】四〔1〕班投票选举班长,小明得到的选票比小华多14,小华得到的选票比小玲多8。
小学奥数练习之和差问题

第二讲和差问题和差问题的相关公式:(和+差)÷2=大数(和-差)÷2=小数大数=小数+差小数=大数-差大数=和-小数小数=和-大数【例1】小王买了铅笔和圆珠笔共12枝,铅笔比圆珠笔多4枝,问:铅笔与圆珠笔各买了多少枝?解法一:如果圆珠笔增加4枝,那么圆珠笔就和铅笔一样多。
解法二:如果铅笔减少4枝,那么铅笔就和圆珠笔一样多。
【随堂练习1】小李买苹果、桃子共20个,苹果比桃子多6个。
问:苹果、桃子各买多少?【例2】甲、乙两人年龄的和是28岁,甲比乙大6岁。
问:甲、乙两人各多少岁?【随堂练习2】张丽与王芳年龄的和是26岁,张丽比王芳大4岁。
问:张丽、王芳各多少岁?【例3】甲、乙两人同时写字。
8小时两人共写了7600个字,甲每小时比乙多写50个字。
问:甲、乙两人每小时各写多少字?【随堂练习3】期末考试,小明语文、数学平均95分,数学比语文多2分。
问:小明的语文、数学各得多少分?【例4】小王、小张共买了20本书。
如果小王给小张6本书,那么小王就比小张少2本书。
问:小王、小张各买了多少本书?解法一:关键在求“差”,小王的书比小张的书多几本?解法二:先求小张和小王现在有多少本书,再求他们原来的书本数。
【随堂练习4】东、西两个仓库共储棉花6000包。
如果将东仓库的棉花600包搬到西仓库,那么两个仓的棉花包数相等。
问:原来两个仓库各有多少包棉花?【例5】甲、乙两人共收藏图书3200本。
乙、丙两人共收藏图书2400本。
甲、丙两人共收藏图书2800本。
问:甲、乙、丙三人各收藏图书多少本?解法一:先求出甲、乙图书数的差,再根据和差公式求出三人各自收藏的图书本数。
解法二:先求出甲、乙、丙三人收藏的图书总数,再求出三人各自收藏的图书本数。
【随堂练习5】一个三位数,百位数字与十位数字的和是4,十位数字与个位数字的和是6,百位数字与个位数字的和是10。
求这个三位数。
【例6】小明、小强、小华共栽树100棵,小华比小强多栽10棵,小强比小明多栽9棵。
小学奥数考点知识精讲之6-1-5 和差问题(一)

1. 会判断什么样的应用题属于和差问题:已知两个数的和以及两个数的差,要分别求这两个数;2. 并掌握和差问题的特性,为以后继续学习和倍、差倍问题做准备;3. 总结归纳出解决和差问题的方法,并解决一些实际问题.和差问题是已知大小两个数的和与这两个数的差,求大小两个数各是多少的应用题。
为了解答这种应用题,首先要弄清两个数相差多少的不同叙述方式.有些题目明确给了两个数的差,而有些应用题把两个数的差“暗藏”起来,我们管暗藏的差叫“暗差”。
知道两个数的和,以及它们的差,要求这两个数,解决和差问题需要我们画线段图来分析,方法如下:(两数的和-两数的差)÷2=较小的数 较小的数+两数的差=较大的数(两数的和+两数的差)÷2=较大的数 较大的数-两数的差=较小的数【例 1】 一辆公交车里有30位乘客,到大桥站有17人下车,又上来19人,现在车上和原来比,人多了还是少了,多(或少)几个人?【考点】基本的和差问题 【难度】1星 【题型】解答【解析】 这道题有两种不同的思维方法.方法一:先求出现在车上有多少人,再和原来车上30人进行比较,就知道人多了还是人少了,再用减法计算,就能求出多或少了几个人.列式:现在车上人数:30171932-+=(人),现在车上比原来多几人?32302-=(人)方法二:聪明的学生会想到只要把下车和上车的人数进行比较,就知道答案了,因为下车17人,上车19人,上车的人比下车的多2人.这样原来车上的“30人”就是多余条件了.列式:19172-=(人),现在车上人多了,多2人.【答案】现在车上人多了,多2人【巩固】 在月球表面,白天阳光垂直照射的地方的温度高达127℃,夜晚的温度下降到零下183℃,则月球表面昼夜温差(最高与最低温度的差)是 ℃。
【考点】基本的和差问题 【难度】1星 【题型】填空【关键词】希望杯,4年级,1试【解析】 127+183=310【答案】310【巩固】 最新的科学探测表明:火星表面的最高温度约为5℃,最低温度约为零下15℃,则火星表面的温差(最高与最低温度的差)约为 ℃。
小学奥数习题版三年级三大原理最短路线学生版

知识要点快乐热身【例 1】 如下图所示,小虎家在A 地,姥姥家在B 地。
一天,他要去看望姥姥,但不知有几条路可走,走哪条路最短,热心的小朋友们快帮帮他吧?最短路线【例2】如下图所示,从甲地到乙地一共有两条路可走,请问哪条路长?哪条路短?【例3】观察下图,若黑猫与白猫奔跑速度相同,那么哪只猫先捉到老鼠?白猫黑猫鼠【例4】直线AB是一条公路,公路两侧有甲、乙两个村庄。
现在要在公路上建一个汽车站,让两个村子的人到汽车站的路线之和最短,问汽车站建在哪儿最好?乙甲BA走格子边【例5】一只蚂蚁在长方形格纸上的A点,它想去B点玩,但是不知走哪条路最近。
小朋友们你能给它找到几条这样的最短路线呢?BA【例6】如果A、B 两点变成下面两图这样的位置关系,那么从A到B的最短路线有几条呢?BA【例7】方格纸上取一点A作为起点,再在A的右上方任取一点B作为终点,画一条由A到B的最短路线,聪明的小朋友,你能画出来吗?总共能画出几条呢?【例8】小明和小强到少年宫参加2010上海世博会志愿者培训,少年宫和学校之间的地图如下。
如果他们从学校出发,共有多少种不同的最短路线?学校少年宫【例9】小虎和小羊是好朋友,它们居住的小区的平面图如下。
星期天,两人相约去博物馆看展览,现在小虎要先去小羊家和小羊会和,请问小虎去小羊家的最短路线有多少条?【例10】小聪明想从北村到南村上学,可是他不知道最短路线的走法共有几种?小朋友们,快帮帮忙呀!北村南村【例11】如图,从F点出发到G点,走最短的路程,有多少种不同的走法?GF【例12】“五一”长假就要到了,小新和爸爸决定去黄山玩。
聪明的小朋友请你找找看从北京到黄山的最短路线共有几条呢?北京黄山【例13】下图是小明家和学校的示意图,亲爱的同学们,你们觉得小明从家到学校共有几条最短路线呢?学校小明家【例14】小海龟在小猪家玩,它们想去游乐场坐碰碰车,爱动脑筋的小朋友,请你想一想,从小猪家到游乐场共有几条最短路线呢?游乐场小猪家【例15】学校组织三年级的小朋友去帮助农民伯伯锄草,大家从学校乘车出发,去往的李家村(如图)。
小学奥数和差问题、和倍问题、差倍问题专项练习附答案

小学奥数和差问题、和倍问题、差倍问题专项练习附答案(1)学校去年有12人参加体育兴趣小组,今年是去年的2倍少3人,今年体育兴趣小组有多少人?(2)小红和小明共有零花钱9元,小红的钱数是小明的2倍,小红和小明分别有零花钱多少元?(3)小英和小林共有15个果冻布丁,其中小林的个数比小英少3个。
小英和小林各有多少个果冻布丁?(4)一根电线长22米,剪掉一半后,是另一根电线的5倍少4米,那么另一根电线长多少米?(5)期中考试王平和李杨语文成绩的总和是188分,李杨比王平少4分,两人各考了多少分?(6)两筐水果共重124千克,第一筐比第二筐多8千克,两筐水果各重多少千克?(7)明明家有课外书20本,亮亮家的课外书是明明家的3倍,两人共有课外书多少本?(8)明明和亮亮共有课外书33本,亮亮的课外书是明明的2倍,两人各有课外书多少本?(9)学校苗圃中有月季花和菊花共30棵,其中月季花的棵数比菊花多6棵。
学校的月季花和菊花各有多少棵?(10)甲有19元钱,是乙的3倍少5元,乙有多少钱?(11)幼儿园大班共有14个小朋友,男孩比女孩多2个。
则男孩女孩各有多少人?(12)甲、乙两人年龄的和是35岁,甲比乙小5岁。
问甲、乙各多少岁?(13)甲班和乙班共有图书160本。
甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?(14)一次画展中,人物画和风景画共20幅,其中人物画比风景画少2幅。
风景画有多少幅?(15)小红和妈妈的年龄加在一起是40岁,妈妈年龄是小红年龄的4倍,小红和妈妈各几岁?(16)小红有15颗星,亮亮的颗数是小红的3倍还少4颗,亮亮有多少颗星?(17)小茜和小敏两人今年的年龄和是23岁,4年后,小茜将比小敏大3岁,问小茜和小敏今年各多少岁?(18)小明的邮票比小红多15张,小明的张数是小红的4倍,两人各几张?(19)甲乙两数之和是341,甲数的最后一位数字是0,如果把0去掉,就与乙数相同,问甲乙两数各是多少?(20)两笼鸡蛋共19只,若甲笼再放入4只,乙笼中取出两只,这时乙笼比甲笼鸡蛋还多1只。
小学奥数知识点拨 精讲试题 植树问题(二).学生版

5-1-3.植树问题(二)教学目标1.封闭与非封闭植树路线的讲解及生活运用。
2.掌握空心方阵和实心方阵的变化规律.3.几何图形的设计与构造知识点拨一、植树问题分两种情况:(一)不封闭的植树路线.① 若题目中要求在植树的线路两端都植树,则棵数比段数多1.全长、棵数、株距之间的关系就为:棵数段数全长株距 =1+=÷1+全长株距(棵数)=⨯1-株距全长(棵数)=÷1- ② 如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、株距之间的关系就为:全长株距棵数;=⨯棵数段数全长株距;==÷株距全长棵数.=÷③ 如果植树路线的两端都不植树,则棵数就比②中还少1棵.全长、棵数、株距之间的关系就为:棵数段数全长株距.=1-=÷1-株距全长(棵数).=÷1+全长株距(棵数+1)=⨯(二)封闭的植树路线.在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数.全长、棵数、株距之间的关系就为:棵数=段数=周长÷株距.二、解植树问题的三要素(1)总路线长(2)间距(棵距)长(3)棵数,只要知道这三个要素中任意两个要素,就可以求出第三个.三、方阵问题(1)明确空心方阵和实心方阵的概念及区别.(2)每边的个数=总数÷”;41+(3)每向里一层每边棋子数减少;2(4)掌握计算层数、每层个数、总个数的方法,及每层个数的变化规律。
例题精讲模块一、封闭图形的植树问题【例 1】小强家附近的公园里有一个圆形池塘,它的周长1500是米,每隔3米栽种一棵树.问:共需树苗多少株?【巩固】周叔叔家有一个长40米,宽30米的长方形鱼塘,他想沿塘每隔5米栽一棵柳树,需要栽多少棵柳树?【例 2】在一个长345米、宽240米的长方形草坪四周等距离地栽一些松树,要求四个顶点和每边中点都正好栽一棵松树,则最少要买松树苗棵。
[小学奥数专题15】1-3-4比较与估算.题库学生版

本讲是在分数计算方面技巧的基础上,进一步认识小数、分数,只是从比较大小方面认识它们,这一讲主要介绍一些比较较为复杂的小数、分数大小的方法,主要有通分子、通分母、倒数法、放缩法等。
一、小数的大小比较常用方法为方便比较,往往把这些小数排成一个竖列,并在它们的末尾添上适当的“0”,使它们都变成小数位数相同的小数.(如果是循环小数,就把它改写成一般写法的形式)二、分数的大小比较常用方法⑴通分母:分子小的分数小. ⑵通分子:分母小的分数大. ⑶比倒数:倒数大的分数小.⑷与1相减比较法:分别与1相减,差大的分数小.(适用于真分数) ⑸重要结论:①对于两个真分数,如果分子和分母相差相同的数,则分子和分母都大的分数比较大; ②对于两个假分数,如果分子和分母相差相同的数,则分子和分母都小的分数比较大. ⑹放缩法在实际解题的过程中,我们还会用到其它一些思路!同学们要根据具体情况展开思维!三、数的估算时常用方法(1)放缩法:为求出某数的整数部分,设法放大或缩小.使结果介于某两个接近数之间,从而估算结果. (2)变换结构:将原来算式或问题变形为便于估算的形式.知识点拨教学目标比较与估算模块一、两个数的大小比较【例 1】 如果a =20052006,b = 20062007,那么a ,b 中较大的数是 【巩固】 试比较19951998和19461949的大小【巩固】 比较444443444445和555554555556的大小【例 2】 如果A =111111110222222221,B =444444443888888887,A 与B 中哪个数较大?【巩固】 如果222221333331,222223333334A B ==,那么A 和B 中较大的数是 . 【巩固】 试比较1111111和111111111的大小【例 3】 在 a =20032003×2002和 b =20022003×2003中,较大的数是______ ,比较小的数大______ 。
(小学奥数试题)小学五年级奥数专题训练试题【精品】

小学五年级奥数训练题(和差问题)一、填空:1.甲乙两个工程队合修一条长240千米的公路,修完后甲队比乙队多修34千米,甲队修了()千米,乙队修了()千米。
2.小明在一次测验中,语文和数学的平均分是96分,语文比数学少8分。
语文得()分,数学得()分。
3.甲乙丙三个运输队运340吨货物,甲队比乙队多运18吨货物,乙队运了106吨,丙队运了()吨货物。
4.甲乙丙三人同时参加储蓄。
甲乙两人共存入220元,乙丙两人共储蓄。
甲乙两人共存入220元,乙丙两人共储蓄180元,甲丙两人共储蓄200元。
三人共储蓄()元。
5.减法算式中,被减数、减数、差三数之和是2002,减数比差大123,减数是()。
6.甲班和乙班共83人,乙班和丙班共86人,丙班和丁班共88人,甲班和丁班共()人。
二、解答下面问题:1.甲乙两个工程队合挖一条长48千米的水渠,甲队比乙队多挖了6千米,求甲、乙工程队各挖了多少千米?2.果园里有苹果树和梨树共1280棵,苹果树比梨树少150棵,果园里有苹果树和梨树各多少棵?3.甲、乙两个仓库共运进货物1260吨,如果从甲仓库调出120吨货物到乙仓库,则两个仓库的货物一样多,求甲乙两仓库原来运进货物各多少吨?4.姐姐和妹妹共同做了56朵纸花,姐姐给妹妹4朵后,两人的一样多。
问姐姐和妹妹各做了多少朵纸花?5.电视机厂一、二、三车间共有工人360人,第一车间比第二车间多12人,第三车间比第二车间少18人,三个车间各有工人多少人?6.养兔场共养兔8800只,有白兔、黑兔和灰兔三品种,白兔比黑兔多600只,黑兔比灰兔少400只,求白兔、黑兔、灰兔各有多少只?7.小明期末考试语文、数学的平均分是95分,数学比语文多8分,问语文和数学各得多少分?8.用长180厘米的铁丝围成一个长方形,使一边的长比一边的宽多10厘米。
长方形的长和宽各是多少厘米?9.甲、乙两堆货物共180吨,甲堆货物运走30吨仍比乙堆货物多12吨,求甲乙两堆货物各多少吨?10.用80米长的铁丝网靠墙围一个长方形的场地(靠墙的一面不用铁丝网),对着墙的一面是长,长比宽多20米,求这块长方形场地的面积是多少?11.四一班同学参加学校植树活动,男女生共12名同学去取树苗,如果男同学每人拿3棵,女同学每人拿2棵,正好全部取完;如果男女生人数调换一下,则还差2棵不能取回。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
和差问题
和差问题是已知大小两个数的和与这两个数的差,求大小两个数各是多少的应用题。
为了解答这种应用题,首先要弄清两个数相差多少的不同叙述方式.有些题目明确给了两个数的差,而有些应用题把两个数的差“暗藏”起来,我们管暗藏的差叫“暗差”。
知道两个数的和,以及它们的差,要求这两个数,解决和差问题需要我们画线段图来分析,方法如下:
方法一: (和+差)÷2=大数和-大数=小数
方法二: (和-差)÷2=小数和-小数=大数
例题精讲
板块一、基本的和差问题
【例1】两筐水果共重150千克,第一筐比第二筐少10千克,两筐水果各多少千克?
【巩固】甲、乙两人同时以相同的速度打字,2分钟共打了240个字,已知甲每分钟比乙多打10个字.问甲、乙两人每分钟各打多少个?
【巩固】果园共260棵桃树和梨树,其中桃树的棵数比梨树多20棵.桃树和梨树各有多少棵?
【巩固】有一根钢管长12米,要锯成两段,使第一段比第二段短2米.每段各长多少米?
【巩固】陈红和李玲平均身高为130厘米,陈红比李玲高8厘米,陈红和李玲身高各是多少厘米?
【例2】文具王国的尺子点点和跳跳是一对好朋友,他们一会儿高兴地把自己绑在一起,一会儿又闹起小别扭,竖起小脑袋比比谁长的高,
每天他们总是有使不完的劲儿.同学们!你能根据下面的图,
算出点点和跳跳各有多长吗?
【巩固】二年级一班和二班共有85人,一班比二班多3人.问一班、二班各有多少人?
【巩固】两个连续奇数的和是36,这两个数分别是多少?
【巩固】一辆公交车里有30位乘客,到大桥站有17人下车,又上来19人,现在车上和原来比,人多了还是少了,多(或少)几个人?
【例3】长方形操场的长与宽相差80米,沿操场跑一周是400米,求这个操场的长与宽是多少米?
【巩固】丁丁在期中考试时,语文、数学两科平均分是91分,数学比语文多2分,那么丁丁语文和数学各得了多少分?
【例4】学校水果店运来苹果和梨共40千克,苹果比梨多2袋,苹果和梨每袋都重5千克,则水果店运来苹果和梨各多少袋?
【巩固】有一种小虫,每隔2秒钟分裂一次.分裂后的2只新的小虫经过2秒钟后又会分裂.如果最初瓶中只有1只小虫,那么2秒后变2只,再
过2秒后就变4只……2分钟后,正好满满一瓶小虫.现在这个瓶内最
初放入2只这样的小虫.经过多长时间,正巧也是满满一瓶小虫?
【例5】小勇家养的白兔和黑兔一共有22只,如果再买4只白兔,白兔和黑兔的只数一样多.小勇家养的白兔和黑兔各多少只?
【巩固】图书馆的书架上、下两层共存书220本,如果从上层拿出10本放入下层,则两层书架上书数相等.求原来上、下层各存书多少本?
【例6】小华每天写8个大字,比小军每天多写2个.小华和小军一星期一共写多少个大字?
【巩固】商店里每天卖出电脑10台,卖出的彩电比电脑多5台,一个星期商店卖出电脑和彩电一共多少台?
【例7】甲、乙两校共有学生1050人,部分学生因搬家需要转学,已知由甲校
人?
【巩固】小华和小敏共有铅笔25枝,如果小华用去4枝,小敏用去3枝,那么小华还比小敏多2枝,小华和小敏原来各有多少枝铅笔?
【例8】周明和王刚两人数学成绩的和是182分.周明如果多考5分,就比王刚多3分.周明和王刚的数学各考了多少分?
【巩固】有大、小两个油桶,一共装油24千克,两个油桶都倒出同样多的油后分别还剩9千克和5千克.问:原来大、小两个油桶各装油多少千克?
【例9】兔妈妈拔了29个萝卜分给了小白兔和小黑兔,因为分的萝卜不一样多,兔妈妈让小白兔给了小黑兔5个,这时再来数发现小黑兔比小白兔多
出1个萝卜,你知道原来小白兔和小黑兔各分到了多少个萝卜吗?
【巩固】甲乙两个仓库共存大米56包,从乙仓库调8包到甲仓库,两个仓库大米的包数就同样多了,甲、乙两个仓库原有大米各多少包?
【例10】甲校原来比乙校多48人,为方便就近入学,甲校有若干人转入乙校,这时甲校反而比乙校少12人.甲校有多少人转入乙校?
【巩固】两箱图书共有66本,甲箱如果借出10本,就比乙箱少4本.甲、乙两箱原有图书各多少本?
【巩固】方方和圆圆共有图书70本,如果方方给圆圆5本,那么圆圆就比方方多4本.问:方方和圆圆原来各有图书多少本?
【例11】有三块布料一共190米,第二块比第一块长20米,第三块比第二块长30米.每块布料各长多少米?
【巩固】甲、乙、丙三个数的和是105,甲数比乙数多4,乙数比丙数多4,求丙数.
【巩固】有3条绳子,共长95米,第一条比第二条长7米,第二条比第三条长8米,问3条绳子各长多少米?
【巩固】甲、乙两校共有学生864人,为了照顾学生就近入学,从甲校调入乙校32名同学,这样甲校学生还比乙校多48人,问甲、乙两校原来各
有学生多少人?
【巩固】小猴和小熊到动物商店一共买了30块糖,小猴把买的糖给了小熊10块,还比小熊多2块.小熊比小猴少买几块糖?
【巩固】学而思学校新进99本书,分给三、四、五三个年级,三年级比四年级多分了2本,四年级比五年级多分了5本,三个年级各分得多少本书?
【巩固】甲的书比乙多9本,比丙多2本,乙、丙共有书47本.问:甲、乙、丙各有多少本书?
【巩固】二年级原来女同学比男同学多25人,今年二年级又增加了80个男同学和65个女同学,请问:现在是男同学多还是女同学多?多几人?
【巩固】草地上有黑兔、白兔、灰兔共27只,黑兔比白兔多2只,灰兔比白免少2只.黑兔、白兔、灰兔各有多少只?
【例12】大象、老虎、猴子三只动物的年龄中,大象和老虎共90岁,大象和猴子共70岁,老虎和猴子共40岁,请你算一算,三只动物各多少岁?
【巩固】小强、中强、大强去称体重,大强和小强一起称是50千克,小强和中强一起称是49千克,三个人一起称是76千克.三人的体重各是多少
千克?
【例13】四年级有4个班,不算甲班其余三个班的总人数是131人;不算丁班其余三个班的总人数是134人;乙、丙两班的总人数比甲、丁两班的
总人数少1人,问这四个班共多少人?
【巩固】甲乙共储蓄32元,乙丙共储蓄30元,甲丙共储蓄22元,三人各储蓄多少元?
【巩固】大明、小荣、豆豆三个小朋友去称体重,大明和小荣一起称是55千克,
大明和豆豆一起称是49千克,小荣和豆豆一起称是 56
千克.三人的体重各是多少千克?
【例14】地震灾区希望小学正筹备建设图书馆,春蕾小学发动全校同学给山区的学生捐书,二(1)班、二(2)班、二(3)班三个班共捐书300本,
二(1)班、二(2)班两个班捐书总数比二(3)班多60本,如果二
(3)班拿出20本给二(2)班,则两个班捐书数目相等.求三个班各
捐了多少本书?
【例15】哥哥今年14岁,妹妹今年8岁,当兄妹俩岁数的和是42岁时,俩人各应该是多少岁?
【巩固】兄弟俩现在年龄和是28岁,3年前哥哥比弟弟大2岁,兄弟俩现在各多少岁?
【巩固】今年小玲6岁,她父亲34岁,当两人年龄和是58岁时,两人年龄各多少岁?
【巩固】今年小强7岁,爸爸35岁,当两人年龄和是58岁时,两人年龄各多少岁?
【例16】小琴、小静、小莲三人年龄和是20岁,小琴比小静大1岁,小莲比小静小2岁.三人的年龄各是几岁?
【巩固】甲、乙两个笼子里共有小鸡20只,甲笼里新放4只,乙笼里取出1只,这时乙笼还比甲笼多1只,求甲、乙两笼原来各有鸡多少只?
【例17】四(1)班投票选举班长,小明得到的选票比小华多14张,小华得到的选票比小玲多8张。
如果这3人共得选票54张,那么他们各得选票
多少张?
【例18】一位少年短跑选手,顺风跑90米用了10秒钟。
在同样的风速下,逆风跑70米也用了10秒钟。
问在无风的时候他跑80米要用多少秒?
【例19】如右图,4个一样大的长方形和1个小正方形拼成了1个
大正方形。
大正方形的面积是64平方分米,小正方形的
面积是4平方分米,问长方形的宽是几分米?
【例20】姐姐做自然练习比妹妹做算术练习多用48分钟,比妹妹做英语练习多用42分钟,妹妹做算术、英语两门练习共用了44分钟,那么妹妹做
英语练习用了多少分钟?
【巩固】三个小组共有180人,一、二两个小组人数之和比第三小组多20人,第一小组比第二小组少2人,求第一小组的人数。
【巩固】甲、乙两筐苹果,甲筐比乙筐多19千克,从甲筐取出多少千克放入乙筐,就可以使乙筐中的苹果比甲筐的多3千克?
【巩固】一个三层书架共放书108本.上层比中层多放11本,下层比中层少放5本,上、中、下三层各放书多少本?。