初三数学第6讲:图形的旋转和中心对称(教师版)

合集下载

人教版九年级上册数学《中心对称》旋转PPT教学课件

人教版九年级上册数学《中心对称》旋转PPT教学课件
C A′
O B′
B A
C′ 【注意】如果限制只用直尺作图,我们用解法2.
探究新知
素养考点 2 利用中心对称的性质确定线段或角的值
例2 如图,已知△AOB与△DOC成中心对称, △AOB的面积是12,AB=3,则△DOC中CD边上 的高为___8_____.
解析:设AB边上的高为
是12,AB=3,易得
(1) OA=OA′、OB=OB′、 OC=OC′
(2)△ABC≌△A′B′C′
探究新知
中心对称的性质
1.成中心对称的两个图形中,对应点所连线段经 过对称中心,且被对称中心平分.(即对称点与对 称中心三点共线)
2.中心对称的两个图形是全等形.
探究新知
素养考点 1 根据中心对称的性质作图
例1 如图,已知四边形ABCD和点O,试画出四边形 ABCD关于点O成中心对称的图形A'B'C'D'.
图(1)
对接中考 3
在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系, △ABC的顶点都在格点上,请解答下列问题: (1)作出△ABC向左平移4个单位长度后得到的△A1B1C1 ,并写出点C1的坐标;
对接中考 3
在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系, △ABC的顶点都在格点上,请解答下列问题: (2)作出△ABC关于原点O对称的△A2B2C2 ,并写出点C2的坐标.
探究新知
【思考】两个图形成中心对称需要具备什么条件?
两个图形成中心对称须具备三个条件: ①能找到一个对称中心; ②旋转角为180°; ③这两个图形旋转后能重合.
探究新知
填一填: 如图,△OCD与△OAB关于点O中心对称 ,则 __O__是对称中心,点A与___C__是对称点, 点B 与__D__是对称点. C

初三北师大版数学教案

初三北师大版数学教案

初三北师大版数学教案教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。

下面是小编给大家整理的初三北师大版数学教案5篇,希望大家能有所收获!初三北师大版数学教案1图形的旋转1.了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.2.通过复习-平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.3.旋转的基本性质.重点旋转及对应点的有关概念及其应用.难点旋转的基本性质.一、复习引入(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它具有的一些性质.(3)什么叫轴对称图形?二、探索新知我们前面已经复习-平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.1.请同学们看讲台上的大时钟,有什么在不停地转动?旋转围绕什么点呢?从现在到下课时针转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时钟的中心.从现在到下课时针转了________度,分针转了________度,秒针转了________度.2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)3.第1,2两题有什么共同特点呢?共同特点是如果我们把时钟、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.下面我们来运用这些概念来解决一些问题.例1如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A,B分别移动到什么位置?解:(1)旋转中心是O,△AOE,△BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.自主探究:请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题(一组推荐一人上台说明)1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?2.△AOA′,△BOB′,△COC′有什么关系?3.△ABC与△A′B′C′的形状和大小有什么关系?老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心的距离相等.2.△AOA′=△BOB′=△COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角.3.△ABC和△A′B′C′形状相同和大小相等,即全等.综合以上的实验操作得出:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.例2如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B的对应点的位置,以及旋转后的三角形.分析:绕C点旋转,A点的对应点是D点,那么旋转角就是△ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即△BCB′=△ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.解:(1)连接CD;(2)以CB为一边作△BCE,使得△BCE=△ACD;(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点;(4)连接DB′,则△DB′C就是△ABC绕C点旋转后的图形.三、课堂小结(学生总结,老师点评)本节课应掌握:1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角;3.旋转前、后的图形全等及其它们的应用.四、作业布置教材第62~63页习题4,5,6.初三北师大版数学教案2中心对称1.正确认识什么是中心对称、对称中心,理解关于中心对称图形的性质特点.2.能根据中心对称的性质,作出一个图形关于某点成中心对称的对称图形.重点中心对称的概念及性质.难点中心对称性质的推导及理解.复习引入问题:作出下图的两个图形绕点O旋转180°后的图案,并回答下列的问题:1.以O为旋转中心,旋转180°后两个图形是否重合?2.各对应点绕O旋转180°后,这三点是否在一条直线上?老师点评:可以发现,如图所示的两个图案绕O旋转180°后都是重合的,即甲图与乙图重合,△OAB与△COD重合.像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.探索新知(老师)在黑板上画一个三角形ABC,分两种情况作两个图形:(1)作△ABC一顶点为对称中心的对称图形;(2)作关于一定点O为对称中心的对称图形.第一步,画出△ABC.第二步,以△ABC的C点(或O点)为中心,旋转180°画出△A′B′C和△A′B′C′,如图(1)和图(2)所示.从图(1)中可以得出△ABC与△A′B′C是全等三角形;分别连接对称点AA′,BB′,CC′,点O在这些线段上且O平分这些线段.下面,我们就以图(2)为例来证明这两个结论.证明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,△AOB=△A′OB′,△△AOB△△A′OB′,△AB=A′B′,同理可证:AC=A′C′,BC=B′C′,△△ABC△△A′B′C′;(2)点A′是点A绕点O旋转180°后得到的,即线段OA绕点O旋转180°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点.同样地,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点.因此,我们就得到1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.2.关于中心对称的两个图形是全等图形.例题精讲例1如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称.分析:中心对称就是旋转180°,关于点O成中心对称就是绕O旋转180°,因此,我们连AO,BO,CO并延长,取与它们相等的线段即可得到.解:(1)连接AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示.(2)同样画出点B和点C的对称点E和F.(3)顺次连接DE,EF,FD,则△DEF即为所求的三角形.例2(学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法).课堂小结(学生总结,老师点评)本节课应掌握:中心对称的两条基本性质:1.关于中心对称的两个图形,对应点所连线都经过对称中心,而且被对称中心所平分;2.关于中心对称的两个图形是全等图形及其它们的应用.作业布置教材第66页练习初三北师大版数学教案3中心对称图形了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其他的运用.重点中心对称图形的有关概念及其它们的运用.难点区别关于中心对称的两个图形和中心对称图形.一、复习引入1.(老师口问)口答:关于中心对称的两个图形具有什么性质?(老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.关于中心对称的两个图形是全等图形.2.(学生活动)作图题.(1)作出线段AO关于O点的对称图形,如图所示.(2)作出三角形AOB关于O点的对称图形,如图所示.延长AO使OC=AO,延长BO使OD=BO,连接CD,则△COD即为所求,如图所示.二、探索新知从另一个角度看,上面的(1)题就是将线段AB绕它的中点旋转180°,因为OA=OB,所以,就是线段AB绕它的中点旋转180°后与它本身重合.上面的(2)题,连接AD,BC,则刚才的关于中心O对称的两个图形就成了平行四边形,如图所示.△AO=OC,BO=OD,△AOB=△COD△△AOB△△COD△AB=CD也就是,ABCD绕它的两条对角线交点O旋转180°后与它本身重合.因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.(学生活动)例1从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形.老师点评:老师边提问学生边解答的特点.(学生活动)例2请说出中心对称图形具有什么特点?老师点评:中心对称图形具有匀称美观、平稳的特点.例3求证:如图,任何具有对称中心的四边形是平行四边形.分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分.证明:如图,O是四边形ABCD的对称中心,根据中心对称性质,线段AC,BD点O,且AO=CO,BO=DO,即四边形ABCD的对角线互相平分,因此,四边形ABCD是平行四边形.三、课堂小结(学生归纳,老师点评)本节课应掌握:1.中心对称图形的有关概念;2.应用中心对称图形解决有关问题.四、作业布置教材第70页习题8,9,10.初三北师大版数学教案4(一)知识教学点1.使学生初步了解统计知识是应用广泛的数学内容.2.了解平均数的意义,会计算一组数据的平均数.3.当一组数据的数值较大时,会用简算公式计算一组数据的平均数.(二)能力训练点培养学生的观察能力、计算能力.(三)德育渗透点1.培养学生认真、耐心、细致的学习态度和学习习惯.2.渗透数学来源于实践,反地来又作用于实践的观点.(四)美育渗透点通过本课的学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美.重点·难点·疑点及解决办法1.教学重点:平均数的概念及其计算.2.教学难点:平均数的简化计算.3.教学疑点:平均数简化公式的应用,a如何选择.4.解决办法:分清两个公式,公式②的运用要选择一个适当的a .教学步骤(一)明确目标在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报第二天当地的最低气温与气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的人数等.这些都涉及数据的计算问题.请同学们思考下面问题.(教师出示幻灯片)为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验.两人在相同条件下各射靶10次,命中的环数如下:甲7868659107 4乙9578768677 1.怎样比较两个人的成绩?2.应选哪一个人参加射击比赛?教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法.对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的平均数结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题).这样做的目的是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的注意,还能诱发学生探求新知识的浓厚兴趣.(二)整体感知解决类似上述的问题要用到统计学的知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质.在当今的信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面.本章我们将学习统计学的一些初步知识.(三)教学过程这节课我们首先来学习-平均数.1.(出示幻灯片)请同学看下面问题:某班第一小组一次数学测验的成绩如下:86 9110072938990 857595这个小组的平均成绩是多少?教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求平均数方法,这样做使学生对平均数的计算公式能有深刻的认识.2.平均数的概念及计算公式一般地,如果有n个数x1、x2、x3、x4…xn ,那么x=( x1+x2+x3+x4+…+xn)/n① 叫做这n个数的平均数,读作“x拨” .这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法.学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性.教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义.3.平均数计算公式①的应用例1 一个地区某年1月上旬各天的最低气温依次是(单位:△):-6,-5,-7,-6,-4,-5,-7,-8,-7求它们的平均气温.让学生动手计算,以巩固平均数计算公式(一名学生板演)教师应强调:①解题格式.②在统计学里处理的数据包括负数.③在本章中,如无特殊说明,平均数计算结果保留的位数与原数据相同. 例 2 从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克):210208200205202218206214215207195207218192202216 185227187215 计算它们的平均质量.(用投影仪打出) 引导学生两人一组完成计算,然后一起对答案.由于数据较大,计算较繁,可能会出现不同的答案.正好为下面提出简化计算公式作好铺垫.教师提出问题:像例2这样,数据较大,计算较繁,因而容易出错,有没有较为简便的算法呢?引导学生观察数据有什么特点?都接近于哪一个数?启发学生讨论,寻找简便算法. 学生回答:数据都在200左右波动,可将各数据同时减去200,转而计算一组数值较小的新数据的平均数,至此让学生再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样.讲完例2后,教师指出几点:常数a的取法不是惟一的; 读作“x——撇——拨”;;简化计算的结果与前面毛算的结果相同.通过学生的动手计算,若产生困难或错误,教师及时点拨,引导学生寻找解决问题的方法,这不仅可以激发学生学习的兴趣,更培养了学生的发散思维能力,同时也使学生对公式②的推导更容易接受. 3.推导公式②一般地,当一组数据的各个数值较大时,可将各数据同时减去一个适当的常数a,得到x1△=x1-a, x2△=x2-a, x3△=x3-a, △xn△=xn-a,那么x△=x-a ②为了加深学生对公式②的认识,再让学生指出例2的平均质量各是什么?(学生回答)课堂练习:教材P148中~P149中1,2,3(四)总结、扩展知识小结:1.统计学是一门与数据打交道的学问,应用十分广泛.本章将要学习的是统计学的初步知识. 2.求n个数据的平均数的公式① . 3.平均数的简化计算公式② .这个公式很重要,要学会运用.方法小结:通过本节课我们学到了示一组数据平均数的方法.当数据比较小时,可用公式①直接计算.当数据比较大,而且都在某一个数左右波动时,可选用公式②进行计算.布置作业教材P153中1、2、3、4 .初三北师大版数学教案51、教材分析(1)知识结构(2)重点、难点分析重点:三角形内切圆的概念及内心的性质.因为它是三角形的重要概念之一.难点:①难点是“接”与“切”的含义,学生容易混淆;②画三角形内切圆,学生不易画好.2、教学建议本节内容需要一个课时.(1)在教学中,组织学生自己画图、类比、分析、深刻理解三角形内切圆的概念及内心的性质;(2)在教学中,类比“三角形外接圆的画图、概念、性质”,开展活动式教学.教学目标:1、使学生了解尺规作的方法,理解三角形和多边形的内切圆、圆的外切三角形和圆的外切多边形、三角形内心的概念;2、应用类比的数学思想方法研究内切圆,逐步培养学生的研究问题能力;3、激发学生动手、动脑主动参与课堂教学活动.教学重点:三角形内切圆的作法和三角形的内心与性质.教学难点:三角形内切圆的作法和三角形的内心与性质.教学活动设计(一)提出问题1、提出问题:如图,你能否在△ABC中画出一个圆?画出一个的圆?想一想,怎样画?2、分析、研究问题:让学生动脑筋、想办法,使学生认识作三角形内切圆的实际意义.3、解决问题:例1 作圆,使它和已知三角形的各边都相切.引导学生结合图,写出已知、求作,然后师生共同分析,寻找作法.提出以下几个问题进行讨论:①作圆的关键是什么?②假设△I是所求作的圆,△I和三角形三边都相切,圆心I应满足什么条件?③这样的点I应在什么位置?④圆心I确定后半径如何找.A层学生自己用直尺圆规准确作图,并叙述作法;B层学生在老师指导下完成.完成这个题目后,启发学生得出如下结论:和三角形的各边都相切的圆可以作一个且只可以作出一个.(二)类比联想,学习新知识.1、概念:和三角形各边都相切的圆叫做,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.2、类比:确定方法图形性质外心(三角形外接圆的圆心)三角形三边中垂线的交点(1)OA=OB=OC;(2)外心不一定在三角形的内部.内心(三角形内切圆的圆心)三角形三条角平分线的交点(1)到三边的距离相等;(2)OA、OB、OC分别平分△BAC、△ABC、△ACB;(3)内心在三角形内部.3、概念推广:和多边形各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.4、概念理解:引导学生理解及圆的外切三角形的概念,并与三角形的外接圆与圆的内接三角形概念相比较,以加深对这四个概念的理解.使学生弄清“内”与“外”、“接”与“切”的含义.“接”与“切”是说明三角形的顶点和边与圆的关系:三角形的顶点都在圆上,叫做“接”;三角形的边都与圆相切叫做“切”.(三)应用与反思例2 如图,在△ABC中,△ABC=50°,△ACB=75°,点O是三角形的内心.求△BOC的度数分析:要求△BOC的度数,只要求出△OBC和△0CB的度数之和就可,即求△l十△3的度数.因为O是△ABC的内心,所以OB和OC分别为△ABC和△BCA的平分线,于是有△1十△3= (△ABC 十△ACB),再由三角形的内角和定理易求出△BOC的度数.解:(引导学生分析,写出解题过程)例3 如图,△ABC中,E是内心,△A的平分线和△ABC的外接圆相交于点D求证:DE=DB分析:从条件想,E是内心,则E在△A的平分线上,同时也在△ABC的平分线上,考虑连结BE,得出△3=△4.从结论想,要证DE=DB,只要证明BDE为等腰三角形,同样考虑到连结BE.于是得到下述法.证明:连结BE.E是△ABC的内心又△△1=△2△1=△2△△1+△3=△4+△5△△BED=△EBD△DE=DB练习分析作出已知的锐角三角形、直角三角形、钝角,并说明三角形的内心是否都在三(四)小结1.教师先向学生提出问题:这节课学习了哪些概念?怎样作已知?学习时互该注意哪些问题?2.学生回答的基础上,归纳总结:(1)学习了三角形内切圆、三角形的内心、圆的外切三角形、多边形的内切圆、圆的外切多边形的概念.(2)利用作三角形的内角平分线,任意两条角平分线的交点就是内切圆的圆心,交点到任意一边的距离是圆的半径.(3)在学习有关概念时,应注意区别“内”与“外”,“接”与“切”;还应注意“连结内心和三角形顶点”这一辅助线的添加和应用.(五)作业教材P115习题中,A组1(3),10,11,12题;A层学生多做B组3题.探究活动问题:如图1,有一张四边形ABCD纸片,且AB=AD=6cm,CB=CD=8cm,△B=90°.(1)要把该四边形裁剪成一个面积的圆形纸片,你能否用折叠的方法找出圆心,若能请你度量出圆的半径(精确到0.1cm);(2)计算出的圆形纸片的半径(要求精确值).提示:(1)由条件可得AC为四边形似的对称轴,存在内切圆,能用折叠的方法找出圆心:如图2,①以AC为轴对折;②对折△ABC,折线交AC于O;③使折线过O,且EB与EA 边重合.则点O为所求圆的圆心,OE为半径.(2)如图3,设内切圆的半径为r,则通过面积可得:6r+8r=48,△r=.初三北师大版数学教案。

暑期备课笔记-初三数学第6讲:图形的旋转和中心对称(教师版)

暑期备课笔记-初三数学第6讲:图形的旋转和中心对称(教师版)

第5讲图形的旋转和中心对称图形的旋转和中心对称1、旋转的定义:在平面内,把一个图形绕着某______沿着某个方向转动______的图形变换叫做旋转.这个点O叫做______,转动的角叫做______.因此,图形的旋转是由______和______决定的.2、中心对称的定义:把一个图形绕着某一个点旋转______,如果它能够与另一个图形______,那么称这两个图形关于这个点对称或中心对称,这个点叫做______,这两个图形中的对应点叫做关于中心的______.3、旋转的特点:旋转的性质是对应点到旋转中心的______相等;对应点与旋转中心所连线段的夹角等于______;旋转前、后的图形之间的关系是______.4、中心对称的特点:(1)关于中心对称的两个图形,对称点所连______都经过______,而且被对称中心所______.(2)关于中心对称的两个图形是______.5、中心对称图形:把一个图形绕着某一个点旋转______,如果旋转后的图形能够与原来的图形______,那么这个图形叫做中心对称图形,这个点就是它的______.1、旋转的定义和性质;2、中心对称的定义和性质;3、会画旋转后的图形和中心对称图形;例1、下图中,不是旋转对称图形的是( ).答案:B解析:根据旋转的定义;例2、有下列四个说法,其中正确说法的个数是( ).①图形旋转时,位置保持不变的点只有旋转中心;②图形旋转时,图形上的每一个点都绕着旋转中心旋转了相同的角度;③图形旋转时,对应点与旋转中心的距离相等;④图形旋转时,对应线段相等,对应角相等,图形的形状和大小都没有发生变化A.1个B.2个C.3个D.4个答案:D解析:利用旋转的特征;例3、下列图形中,不是..中心对称图形的是( ).A.圆B.菱形C.矩形D.等边三角形答案:D解析:中心对称的定义;例4、以下四个图形中,既是轴对称图形又是中心对称图形的有( ).A.4个B.3个C.2个D.1个答案:B解析:旋转和中心对称的定义结合。

初中数学旋转对称教案

初中数学旋转对称教案

初中数学旋转对称教案教学目标:1. 了解旋转对称的概念,理解旋转对称与轴对称的区别。

2. 学会运用旋转对称的性质进行图形的变换和解决问题。

3. 培养学生的观察能力、操作能力和逻辑思维能力。

教学内容:1. 旋转对称的概念和性质2. 旋转对称与轴对称的比较3. 运用旋转对称性质进行图形变换教学过程:一、导入(5分钟)1. 引导学生回顾轴对称的概念和性质。

2. 提问:除了轴对称,还有其他的图形变换吗?3. 引入旋转对称的概念,激发学生的兴趣。

二、新课讲解(15分钟)1. 讲解旋转对称的概念:一个图形绕某一点旋转一定角度后,与原来的图形完全重合,这种变换叫做旋转对称。

2. 讲解旋转对称的性质:a. 旋转对称的中心点是固定的,称为旋转中心。

b. 旋转的角度是固定的,称为旋转角。

c. 旋转前后的图形完全重合。

3. 讲解旋转对称与轴对称的区别:a. 轴对称是沿一条直线折叠,两边完全重合。

b. 旋转对称是绕一个点旋转,整体完全重合。

三、实例演示与操作(15分钟)1. 展示一些生活中的旋转对称现象,如钟表、风车等。

2. 让学生动手操作,尝试找出旋转对称的中心点和旋转角。

3. 引导学生发现旋转对称的性质,如对应点、对应线段的关系。

四、练习与巩固(15分钟)1. 给出一些图形,让学生判断是否为旋转对称。

2. 让学生运用旋转对称的性质,进行图形的变换和解决问题。

3. 引导学生总结旋转对称的应用场景和实际意义。

五、课堂小结(5分钟)1. 回顾本节课所学的内容,让学生巩固旋转对称的概念和性质。

2. 强调旋转对称与轴对称的区别。

3. 鼓励学生在日常生活中发现和运用旋转对称。

教学评价:1. 课堂讲解是否清晰、易懂,学生是否能理解和掌握旋转对称的概念和性质。

2. 学生是否能正确判断图形是否为旋转对称,并能运用旋转对称的性质进行图形变换和解决问题。

3. 学生是否能发现和总结旋转对称在生活中的应用场景和实际意义。

教学反思:本节课通过导入、新课讲解、实例演示与操作、练习与巩固、课堂小结等环节,让学生学习了旋转对称的概念、性质和应用。

人教版初中数学九年级上册 中心对称 初中九年级数学教学课件PPT 人教版

人教版初中数学九年级上册 中心对称 初中九年级数学教学课件PPT 人教版

中心对称的作图
例1、(1)已知A点和O点,画出点A关于点O的Βιβλιοθήκη 称点A'AO
A'
连结AO,在AO的延长线上截取OA'=OA, 则A'是所求的点
例1.(2)、已知线段AB和O点,画出线段AB关于点O的对称线
段A' B'
B'
连结AO,在AO的延长线上截取OA'=OA,
则得A的对称点A'
A O
连结BO,在BO的延长线上截取O B' =OB,
中心对称
一、回顾旧知
旋转的定义
在平面内,把一个图形绕一个定 点,沿某个方向转动一个角度,像 这样的图形变换称作旋转 这个定点称为旋转中心 所转动的角称为旋转角
旋转三要素
旋转中心、旋转方向、
旋转角度
旋转的基本性质
1、旋转前后的图形全等 2、对应点到旋转中心的距离相等 3、对应点与旋转中心连线的夹角
(3)全等的两个图形,不是成中心对称的图形,就是成轴
对称的图形。 ( )×
3。选择题: 如果两个图形成中心对称,下列说法正确的是 ( D) (1)对称点连线必经过对称中心,且被对称中心平分。 (2)这两个图形一定是全等形。 (3)把一个图形绕着对称中心旋转后定与另一个图形重合。 (A)(1)(2)(3)(B)(2)(3) (C)(1)(3) (D)(1)(2)

(2).在△AOB与△CAʹ ′ O B′中 Bʹ
OA=OA ′,OB=OB ′ ∠AOB= ∠A′ OB ′ O B
C
∴ △AOB≌△ A′ O B′(SAS)
∴AB=A ′ B ′
A
同理 : BC=B ′ C ′,AC=A ′ C ′

新人教版初中数学九年级上册《中心对称》教学课件

新人教版初中数学九年级上册《中心对称》教学课件

●B'
A'
图17
巩固落实
如图17,△ABC 与△A'B'C'关于某一个点成 中心对称,点A,B 的对称点分别为点A '和B'. 请作出△A'B'C'. ①如图18,连接AA'和BB', 交于点0,则点O就是对称中心;
图18
巩固落实
如图17,△ABC 与△A'B'C '关于某一个点成 中心对称,点A,B 的对称点分别为点A'和B'. 请作出△A'B'C'.
图1
这两个旋转的旋转角度都是
180°,无论逆时针旋转或顺时
针旋转,旋转后两个图形重合.
图2
探究新知
中心对称的定义: 把一个图形绕着某一点旋转180°,如果它能够 与另一个图形重合,那么就说这两个图形关于这 个点对称或中心对称,这个点叫做对称中心( 简 称中心).这两个图形在旋转后能重合的对应点叫 做关于对称中心的对称点.
这节课我们学到了什么?
温馨提示
一叶知秋,题海不是解决问题的最好办 法,如果能够深入研究我们的典型题和一些
基本数学模型,相信所有的题目都万变不离
其宗。
谢谢聆听
做一做 第一步,画出△ABC, 见图3;
探究新知
做一做 第二步,以三角尺的一个顶点0为中心, 把三角尺旋转180°,画出△A'B'C', 见图4;
探究新知
做一做 第三步,移开三角尺,见图5.
探究新知
思考 ( 1 ) 点 0 在 线 段 AA' 上 吗 ? 如 果 在 , 在 什 么 位 置 ? (2)△ABC 与△A'B'C'有什么关系? (3)你能从以上过程中总结出中心对称的性质吗?

人教版初中九年级数学课精品PPT教学课件-中心对称

人教版初中九年级数学课精品PPT教学课件-中心对称

求证:(2)△ABC≌△A′B′C′
证明:(1)在△ABC和△A′B′C′中,OA=OA′, OB=OB′,∠AOB=∠A′OB′
∴△AOB≌△A′OB′ ∴AB=A′B′ 同理:AC=A′C′,BC=B′C′ ∴△ABC≌△A′B′C′
知识要点
1.关于中心对称的两个图形,对称点所 连线段都经过对称中心,而且被对称中心所 平分.
线段绕中点旋转180° 旋转后与原图重合
图旋 形转 绕后 中与 心原 旋图 转重 180 合
知识要点
把一个图形绕着某一个点旋转180°,如 果它能够与另一个图形重合,那么就说这两 个图形关于这个点对称或中心对称(central symmetry),这个点叫做对称中心.这两个图 形中的对应点叫做关于中心的对称点.
观察
新课导入 A
轴对称
O
B
C
(1)将等边三角形ABC绕中心O逆时针旋转 180°,这两个图形有怎样的位置关系?
C′ A
轴对称
D B′ O
B D′
A′ C
(2)将等腰梯形ABCD绕中心O逆时针旋转 180°,这两个图形有怎样的位置关系?
重合 O
(3)将圆O绕圆心O顺时针旋转180°,这 两个图形有怎样的位置关系?
你能证明吗? (1)OA=OA′、OB=OB′、 OC=OC′ (2)△ABC≌△AOB′、 OC=OC′
证明:(1)点A′是点A绕点O旋转180°后得到的, 即线段OA绕点O旋转180°得到线段OA′,所以点O 在线段AA′上,且OA=OA′,即点O是线段AA′的中 点.同理,点O也在线段BB′和CC′上,且OB=OB′, OC=OC′,即点O是BB′和CC′的中点.
2.关于中心对称的两个图形是全等图形.

人教版初三数学:中心对称与中心对称图形--知识讲解

人教版初三数学:中心对称与中心对称图形--知识讲解

中心对称与中心对称图形--知识讲解【学习目标】1、理解中心对称和中心对称图形的定义和性质,掌握他们之间的区别和联系;2、掌握关于原点对称的点的坐标特征,以及如何求对称点的坐标;3、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【要点梳理】要点一、中心对称和中心对称图形1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.3.中心对称与中心对称图形的区别与联系:中心对称中心对称图形区别①指两个全等图形之间的相互位置关系.②对称中心不定.①指一个图形本身成中心对称.②对称中心是图形自身或内部的点.联系如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形.如果把中心对称图形对称的部分看成是两个图形,那么它们又关于中心对称.要点二、关于原点对称的点的坐标特征关于原点对称的两个点的横、纵坐标均互为相反数.即点关于原点的对称点坐标为,反之也成立.要点三、中心对称、轴对称、旋转对称【高清课堂:高清ID号:388635关联的位置名称(播放点名称):中心对称与中心对称图形的区别与联系】1.中心对称图形与旋转对称图形的比较:2.中心对称图形与轴对称图形比较:要点诠释:中心对称图形是特殊的旋转对称图形;掌握三种图形的不同点和共同点是灵活运用的前提.【典型例题】类型一、中心对称和中心对称图形【高清课堂:高清ID号:388635关联的位置名称(播放点名称):例3及练习】1.(2015春•鄄城县期末)如图,△ABC与△A1B1C1关于点O成中心对称,下列说法:①∠BAC=∠B1A1C1;②AC=A1C1;③OA=OA1;④△ABC与△A1B1C1的面积相等,其中正确的有()A.1个B.2个C.3个D.4个【答案】D【解析】中心对称的两个图形全等,则①②④正确;对称点到对称中心的距离相等,故③正确;故①②③④都正确.故选D.【总结升华】中心对称的关键是:旋转180°之后可以与原来的图形重合.举一反三【变式】如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是()A.M或O或N B.E或O或C C.E或O或N D.M或O或C【答案】A【高清课堂:高清ID号:388635关联的位置名称(播放点名称):经典例题2】2. 我们平时见过的几何图形,如:线段、角、等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形中,有哪些是中心对称图形?哪些是轴对称图形?中心对称图形指出对称中心,轴对称图形指出对称轴.【答案与解析】【总结升华】线段、角、等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形是重要的几种对称几何图形,要了解其性质特点更要熟记.类型二、作图3. 已知:如图甲,试用一条直线把图形分成面积相等的两部分(至少三种方法).【答案与解析】【总结升华】解决这类问题时,关键是将图形转化成两个中心对称图形(如果原图形本身就是中心对称图形,则直接过对称中心作直线即可),再由两点确定一条直线,过两个对称中心画直线即满足条件. 举一反三【高清课堂:高清ID 号: 388635 关联的位置名称(播放点名称):例5及练习】【变式】如图①, 1O ,2O ,3O ,4O 为四个等圆的圆心,A ,B ,C ,D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是 ;如图②,1O ,2O ,3O ,4O ,5O 为五个等圆的圆心,A ,B ,C ,D ,E 为切点,请你在图中画出一条直线,将这五个圆...分成面积相等的两部分,并说明这条直线经过的两个点是 .【答案】图①:13O O 或24O O 或AC 或BD;图②:5O M 或4O A类型三、利用图形变换的性质进行计算或证明1o 2o3o 4oCB D A 图① 图② 1o 2o 3o 4o 5o A BC E D4.(2014春•青神县校级月考)已知:如图,三角形ABM与三角形ACM关于直线AF成轴对称,三角形ABE与三角形DCE关于点E成中心对称,点E、D、M都在线段AF上,BM的延长线交CF于点P.(1)求证:AC=CD;(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.【解题思路】(1)利用中心对称图形的性质以及轴对称图形的性质得出全等三角形进而得出对应线段相等;(2)利用(1)中所求,进而得出对应角相等,进而得出答案.【答案与解析】(1)证明:∵△ABM与△ACM关于直线AF成轴对称,∴△ABM≌△ACM,∴AB=AC,又∵△ABE与△DCE关于点E成中心对称,∴△ABE≌△DCE,∴AB=CD,∴AC=CD;(2)解:∠F=∠MCD.理由:由(1)可得∠BAE=∠CAE=∠CDE,∠CMA=∠BMA,∵∠BAC=2∠MPC,∠BMA=∠PMF,∴设∠MPC=α,则∠BAE=∠CAE=∠CDE=α,设∠BMA=β,则∠PMF=∠CMA=β,∴∠F=∠CPM﹣∠PMF=α﹣β,∠MCD=∠CDE﹣∠DMC=α﹣β,∴∠F=∠MCD.【总结升华】此题主要考查了中心对称图形的性质以及全等三角形的性质等知识,根据题意得出对应角相等进而得出是解题关键.举一反三【高清课堂:高清ID号:388635关联的位置名称(播放点名称):例4及练习】【变式】如图,三个圆是同心圆,则图中阴影部分的面积为.【答案】4.附录资料:弧长和扇形面积、圆锥的侧面展开图—知识讲解(基础)【学习目标】1.通过复习圆的周长、圆的面积公式,探索n °的圆心角所对的弧长和扇形面积的计算公式,并应用这些公式解决问题;2.了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,会应用公式解决问题;3. 能准确计算组合图形的面积.【要点梳理】要点一、弧长公式 半径为R 的圆中360°的圆心角所对的弧长(圆的周长)公式: n °的圆心角所对的圆的弧长公式:(弧是圆的一部分)要点诠释:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即;(2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R 为弧所在圆的半径;(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.要点二、扇形面积公式 1.扇形的定义由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形. 2.扇形面积公式 半径为R 的圆中360°的圆心角所对的扇形面积(圆面积)公式: n °的圆心角所对的扇形面积公式:要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S 、扇形半径R 、扇形的圆心角,知道其中的两个量就可以求出第三个量. (3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.要点三、圆锥的侧面积和全面积连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.圆锥的母线长为,底面半径为r ,侧面展开图中的扇形圆心角为n °,则圆锥的侧面积2360l S rl ππ=扇n =, 圆锥的全面积.要点诠释:扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积,全面积是由侧面积和底面圆的面积组成的.【典型例题】类型一、弧长和扇形的有关计算1.如图(1),AB 切⊙O 于点B ,OA=23,AB=3,弦BC∥OA,则劣弧BC 的弧长为( ). A .33π B .32πC .πD .32π图(1) 【答案】A.【解析】连结OB 、OC ,如图(2)则0OBA ∠︒=9,OB=3,0A ∠︒=3,0AOB ∠︒=6, 由弦BC ∥OA 得60OBC AOB ∠∠=︒=, 所以△OBC 为等边三角形,0BOC ∠︒=6. 则劣弧BC 的弧长为6033=1803ππ,故选A. 图(2) 【总结升华】主要考查弧长公式:.举一反三:【变式】制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即的长(结果精确到0.1mm)CBAO【答案】R=40mm ,n=110∴的长==≈76.8(mm)因此,管道的展直长度约为76.8mm .【高清ID 号:359387 高清课程名称: 弧长 扇形 圆柱 圆锥 关联的位置名称(播放点名称):经典例题1-2】2.如图,⊙O 的半径等于1,弦AB 和半径OC 互相平分于点M.求扇形OACB 的面积(结果保留π)【答案与解析】∵弦AB 和半径OC 互相平分,∴OC ⊥AB ,OM=MC=OC=OA .∴∠B=∠A=30°,∴∠AOB=120° ∴S 扇形=.【总结升华】运用了垂径定理的推论,考查扇形面积计算公式.举一反三:【高清ID 号:359387 高清课程名称:弧长 扇形 圆柱 圆锥 关联的位置名称(播放点名称):经典例题1-2】 【变式】如图(1),在△ABC 中,BC=4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上的一点,且∠EPF=40°,则图中阴影部分的面积是( ).A .449-π B .849-πC .489-πD .889-π图(1)A EB C F P【答案】连结AD,则AD⊥BC,△ABC的面积是:BC•AD=×4×2=4,∠A=2∠EPF=80°.则扇形EAF的面积是:28028=.3609ππ⨯故阴影部分的面积=△ABC的面积-扇形EAF的面积=84-9π.图(2)故选B.类型二、圆锥面积的计算3.(2014秋•广东期末)如图,一个圆锥的高为cm,侧面展开图是半圆,求:(1)圆锥的底面半径r与母线R之比;(2)圆锥的全面积.【思路点拨】(1)设出圆锥的底面半径及圆锥的母线长,利用底面周长等于圆锥的弧长得到圆锥的母线与底面的半径之比即可;(2)首先求得圆锥的底面半径和圆锥的母线长,然后利用圆锥的侧面积的计算方法求得其侧面积即可.【答案与解析】解:(1)由题意可知∴,R=2r(3分)r:R=r:2r=1:2;(2)在Rt△AOC中,∵R2=r2+h2∴,4r2=r2+27r2=9,r=±3∵r>0∴r=3,R=6.∴S侧=πRr=18π(cm2)(cm2)∴S全=S侧+S底=18π+9π=27π(cm2).【总结升华】本题考查了圆锥的计算,解题的关键是牢记有关的公式.类型三、组合图形面积的计算4.(2015•槐荫区三模)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠CDB=30°,CD=2,求图中阴影部分的面积.【答案与解析】解:∵AB是⊙O的直径,弦CD⊥AB,∴CE=.∵∠CDB=30°,∴∠COE=60°,在Rt△OEC中,OC==2,∵CE=DE,∠COE=∠DBE=60°∴Rt△COE≌Rt△DBE,∴S阴影=S扇形OBC=π×OC2=π×4=π.【总结升华】本题考查了垂径定理,扇形的面积等,解此题的关键是求出扇形和三角形的面积.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5讲图形的旋转和中心对称图形的旋转和中心对称1、旋转的定义:在平面内,把一个图形绕着某______沿着某个方向转动______的图形变换叫做旋转.这个点O叫做______,转动的角叫做______.因此,图形的旋转是由______和______决定的.2、中心对称的定义:把一个图形绕着某一个点旋转______,如果它能够与另一个图形______,那么称这两个图形关于这个点对称或中心对称,这个点叫做______,这两个图形中的对应点叫做关于中心的______.3、旋转的特点:旋转的性质是对应点到旋转中心的______相等;对应点与旋转中心所连线段的夹角等于______;旋转前、后的图形之间的关系是______.4、中心对称的特点:(1)关于中心对称的两个图形,对称点所连______都经过______,而且被对称中心所______.(2)关于中心对称的两个图形是______.5、中心对称图形:把一个图形绕着某一个点旋转______,如果旋转后的图形能够与原来的图形______,那么这个图形叫做中心对称图形,这个点就是它的______.1、旋转的定义和性质;2、中心对称的定义和性质;3、会画旋转后的图形和中心对称图形;例1、下图中,不是旋转对称图形的是( ).答案:B解析:根据旋转的定义;例2、有下列四个说法,其中正确说法的个数是( ).①图形旋转时,位置保持不变的点只有旋转中心;②图形旋转时,图形上的每一个点都绕着旋转中心旋转了相同的角度;③图形旋转时,对应点与旋转中心的距离相等;④图形旋转时,对应线段相等,对应角相等,图形的形状和大小都没有发生变化A.1个B.2个C.3个D.4个答案:D解析:利用旋转的特征;例3、下列图形中,不是..中心对称图形的是( ).A.圆B.菱形C.矩形D.等边三角形答案:D解析:中心对称的定义;例4、以下四个图形中,既是轴对称图形又是中心对称图形的有( ).A.4个B.3个C.2个D.1个答案:B解析:旋转和中心对称的定义结合。

例5、已知:如图,E是正方形ABCD的边CD上任意一点,F是边AD上的点,且FB平分∠ABE.求证:BE=AF+CE答案:先延长DC到G,使CG=AF,连接BG,易证△ABF≌△CBG,得∠5=∠G,∠1=∠3,进而证明∠EBG=∠G,进而证明BE=CG+CE=AF+CE.证明:延长DC到G,使CG=AF,连接BG∵AB=BC,∠A=∠BCG=90°,∴△ABF≌△CBG,∴∠5=∠G,∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴∠2+∠4=∠3+∠4,即∠FBC=∠EBG,∵AD∥BC,∴∠5=∠FBC=∠EBG,∴∠EBG=∠G,∴BE=CG+CE=AF+CE.解析:通过截长补短,构造全等来证明;例6.已知:如图,在四边形ABCD 中,∠B+∠D=180°,AB=AD,E,F分别是线段BC,CD 上的点,且BE+FD=EF.求证:.21BADEAF∠=∠答案:把△ADF绕点A顺时针旋转∠DAB的度数得到△ABG,AD旋转到AB,AF旋转到AG,如图,∴AG=AF,BG=DF,∠ABG=∠D,∠BAG=∠DAF,∵∠B+∠D=180°,∴∠B+∠ABG=180°,∴点G、B、C共线,∵BE+FD=EF,∴BE+BG=GE=EF,在△AEG和△AEF中,AG=AFAE=AEEG=EF∴△AEG≌△AEF,∴∠EAG=∠EAF,而∠BAG=∠DAF,∴∠EAB+∠DAF=∠EAF,.21BADEAF∠=∠解析:旋转构造全等,找相等的角代换。

A1、下面各图中,哪些绕一点旋转180°后能与原来的图形重合?( ).A.①、④、⑤B.①、③、⑤C.②、③、⑤D.②、④、⑤答案:A解析:中心对称的定义2、如图,若正方形DCEF旋转后能与正方形ABCD重合,则图形所在平面内可作为旋转中心的点共有( )个.A.1 B.2C.3 D.4答案:C解析:以C为旋转中心,把正方形ABCD顺时针旋转90°,可得到正方形CDEF 以D为旋转中心,把正方形ABCD逆时针旋转90°,可得到正方形CDEF以CD的中点为旋转中心,把正方形ABCD旋转180°,可得到正方形CDEF3、下列图形中,是轴对称图形而不是中心对称图形的是( ).答案:C解析:旋转和中心对称的定义4、如图4可以看作是一个等腰直角三角形旋转若干次而生成的,则每次旋转的度数可以是( )图4(A)90° (B)60° (C)45° (D)30°答案:C解析:图形可看做是正八边形的中心角;5.下列图形中,既是轴对称图形,又是旋转对称图形的是( ) (A)等腰三角形 (B)平行四边形 (C)等边三角形 (D)等腰梯形 答案:C解析:轴对称定义;绕着旋转中心旋转120°可与原图形重合;6.将点A (4,0)绕着原点O 顺时针方向旋转30°角到对应点A ′,则点A ′的坐标是( ) (A))2,32( (B)(4,-2) (C))2,32(-(D))32,2(- 答案:C解析:根据旋转后特殊的直角三角形,30°锐角所对直角边等于斜边的一半; 7.要使正十二边形旋转后与自身重合,至少应将它绕中心逆时针旋转( ) (A)9° (B)18° (C)30° (D)36° 答案:C解析:正十二边形中心角为360°÷12=30°。

8、如图,已知D ,E 分别是正三角形的边BC 和CA 上的点,且AE =CD ,AD 与BE 交于P ,求∠BPD 的度数?答案:60°解析:∵正三角形ABC ∴AB=BC=AC ,∠C=∠BAC=60°,AE =CD ,可得△ACD ≌△ABE , 可得∠CAD=∠ABE ,即∠BPD=∠ABE +∠BAD=60°9、已知,如图7,E、F分别在正方形ABCD边AB和BC上,AB=1,∠EDF=45°,求△BEF 的周长.图7答案:2解析:把△ADE沿点D按逆时针方向旋转90°到△CDG处。

则∠GDF=∠EDF=45°,DE=DG,△EDF≌△GDF,所以EF=GF,△BEF的周长=BE+BF+EF=BE+BF+GF=BE+BF+FC+FG=BE+BF+FC+AE=AB+BC=2B1.如图3,将正方形图案绕中心O旋转180°后,得到的图案是( )图3(A) (B) (C) (D)答案:C解析:根据旋转后的特点;2.下列说法中,正确的个数有( )(1)如果两个图形关于一点中心对称,则对称点的连线必经过对称中心;(2)如果两个图形关于一点中心对称,则对应线段一定平行或在同一直线上;(3)如果一个图形经过平移得到另一个图形,那么它们的对应点的连线一定平行.(A)0个(B)1个(C)2个(D)3个答案:D解析:中心对称的性质应用;3、如图,在平面直角坐标系中,△ABC和△DEF为等边三角形,AB=DE,点B,C,D在x轴上,点A,E,F在y轴上,下面判断正确的是( ).A.△DEF是△ABC绕点O顺时针旋转90°得到的B.△DEF是△ABC绕点O逆时针旋转90°得到的C.△DEF是△ABC绕点O顺时针旋转60°得到的D.△DEF是△ABC绕点O顺时针旋转120°得到的答案:A解析:根据对应点A和D与旋转中心的连线夹角正好是90°。

4.下列说法错误的是( )(A)全等的两个图形不一定成中心对称(B)中心对称的两个图形一定是全等图形(C)能够完全重合的两个图形中心对称(D)中心对称是指两个全等图形之间的相互位置关系答案:C解析:完全重合不一定中心对称5、如图,用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M按逆时针方向旋转22°,则三角板的斜边与射线OA的夹角为______°.答案:22°解析:∠AMB=45°+22°=67°,∠67°-45°=22°C1.下列正方体的平面展开图中,既不是轴对称图形,也不是中心对称图形的是( )(A) (B) (C) (D)答案:A解析:B 是轴对称和中心对称,C 是中心对称,D 是轴对称图形; 2.下列语句中,不正确的是( )(A)图形的平移是由移动的方向和移动的距离所决定的(B)图形的旋转是由旋转中心、旋转方向和旋转角度所决定的 (C)中心对称图形是旋转角度为180°的旋转对称图形 (D)旋转对称图形是中心对称图形 答案:D解析:旋转对称图形可以是任意角度的旋转,而中心对称只是180°旋转。

3、如图,把边长为1的正方形ABCD 绕顶点A 逆时针旋转30°到正方形A ′B ′C ′D ′,则它们的公共部分的面积等于______.答案:√33解析:设CD 与C ′D ′交于O ,AB=1,所以O B ′=√33,所以公共部分的面积=1X √33X 12X2=√334、如图,已知梯形ABCD 中,AD ∥BC ,∠B =90°,AD =3,BC =5,AB =1,把线段CD 绕点D 逆时针旋转90°到DE 位置,连结AE ,则AE 的长为______.答案:2√5解析:过点E作EF垂直于AD,交AD的延长线于点F易得EF=5-3=2DF=AB=1所以AF=4所以AE=2√55.已知:如图,四边形ABCD中,∠D=60°,∠B=30°,AD=CD.求证:BD2=AB2+BC2.∴BD²=AB²+BC²解析:旋转构造全等,得出直角三角形,利用勾股定理,等量代换可得结论。

1.在下列图形中,中心对称图形有( )(A)③(B)①③(C)②③(D)③④答案:B解析:2和4都不是中心对称图形,4是轴对称图形2.下列图形中,既是轴对称图形又是中心对称图形的是( ):答案:A解析:B 是轴对称,C 和D 只是轴对称3.点P (5,-3)关于原点对称的点的坐标是( ) (A)(-5,3) (B)(-5,-3) (C)(3,-5) (D)(-3,5) 答案:A解析:关于原点对称x,y 都变。

4.如图3,△ABC 中,∠B =90°,∠C =30°,AB =1,将△ABC 绕顶点A 旋转180°,点C 落在C ′处,则CC ′的长为( )图3(A)34 (B)4 (C)32(D)52答案:B解析:根据30°锐角所对直角边等于斜边的一半;5.点M(m,n)在第二象限,则点M′(mn-n,n-m)关于原点对称的点在( )(A)第一象限(B)第二象限(C)第三象限(D)第四象限答案:D解析:第二象限,可得m<0,n>0,所以mn-n<0,n-m>0,所以在第二象限,关于原点对称后在第四象限。

相关文档
最新文档