旋转对称图形和中心对称图形ppt课件
合集下载
人教版数学九年级上册23.2.2中心对称图形课件(29张PPT)

美丽的中心对称图形
你能设计出中心对称图形吗?
巩固训练
1. 剪纸是我国具有独特艺术风格的民间艺术,反 映了劳动人民对现实生活的深刻感悟. 下列剪纸 图案中,是中心对称图形的有( A )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
2. 下列图形是轴对称图形但不是中心对称 图形的是( D )
A
B
C
D
3. 如图,直线 a⊥b 于点O,曲线 c 关于点 О 成中心对称,点 A 的对称点是 A',AB⊥a 于点B,A'D⊥b 于点 D. 若 OB=3,OD=2,则 阴影部分的面积为___6___.
4. 图①②都是由边长为 1 的小等边三角形构成 的网格,每个网格图中有3个小等边三角形已涂上阴 影. 请在余下的空白小等边三角形中,分别按下列要 求选取一个涂上阴影: (1)使得4个阴影小等边三角形组成一个轴对称图形. (2)使得4个阴影小等边三角形组成一个中心对称图形.
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题.
【画一画】
1. 下图是中心对称图形的一部分及对称中心,请你
补如全何它寻的找另中一心部对分称. A
B
图形的对称中心?
H G
C
D
F
E
2. 如图,请你用无刻度的直尺画一条直线,把下 面的平行四边形分成完全相等的两部分.
几何画板演示
【归纳】过对称中心的直线将中心对称图 形分成全等的两部分.
练习
如图,直线 EF 经过▱ABCD 的对角线的交 点O,若 AE=3,四边形 AEFB 的面积为15, 则 CF=__3___,四边形 EDCF 的面积为__1_5___.
后的图形能够与原来的图形重合,那么这个图形叫
九年级数学上册 23.2.2 中心对称图形 课件(共24张PPT)

(2)中心对称图形的对称点
O
连线被_对__称__中__心__平__分__
C
B
性质:中心对称图形上的每一对对称点的连线都经过对称
中心且被对称中心平分.
知识归纳
中心对称图形的性质
知识点二
中心对称与中心对称图形的区别与联系:
中心对称
中心对称图形
1.针对两个图形而言的
1.针对一个图形而言的
区 2.是指两个图形的(位置)关系2.是指具有某种性质的一个图形
探究新知
中心对称图形的概念
【问题】将下面的图形绕O点旋转,你有什么发现?
知识点一
AO B
O
O
O
共同点:(1)都绕一点旋转了180度; (2)都与原图形完全重合.
中心对称图形的定义 注意 中心对称图形是指一个图形.
把一个图形绕某个点旋转180º,如果旋转后的图形能与原来的图 形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中
ABCDEFGH I J KLM
NOPQRSTUVWXYZ
2.在线段、角、等腰三角形、等边三角形、等腰梯形、平行四 边形、矩形、菱形、正方形、正六边形、圆中,既是轴对称图形, 又是中心对称图形的图形有( D ) A.3个 B.4个 C.5个 D.6个
针对训练
中心对称图形的概念
知识点一
3.下列图形中,既是轴对称图形,又是中心对称图形的是( B )
分别交AD和BC于点E,F,AB=2,BC=3,则图中阴影部分的面积为_3__.
A
ED
O
BF
C
针对训练
中心对称图形的性质
知识点二
1.如图,有一个平行四边形请你用无刻度的直尺画一条直线把他
10.4中心对称PPT课件(华师大版)

1 如图,点O是四边形ABCD的边AB的中点,画出以 点O为对称中心,与四边形ABCD成中心对称的图 形.
2 如图,△ABC绕点O旋转180°得到△DEF,下列说 法错误的是( ) A.△ABC与△DEF关于点B成中心对称 B.点B和点E关于点O对称 C.AB∥DE D.CE=BF
3 △ABC和△A′B′C′关于点O对称(点O不在直线AB 上),下列结论中不正确的是( ) A.OA=A′O B.AB∥A′B′ C.CO=BC D.∠BAC=∠B′A′C′
2 (中考·长沙)下列图形中,是轴对称图形,但不是中 心对称图形的是( )
3 (中考·毕节)将四个“米”字格的正方形内涂上阴 影,其中既是轴对称图形,又是中心对称图形的 是( )
知识点 2 两个图形成中心对称
把一个图形绕着某一点旋转180°,如果它能够和 另一个图形重合,那么,我们就说这两个图形成中心 对称,这个点叫做对称中心,这两个图形中的对应点, 叫做关于中心的对称点.
1. 定义:把一个图形绕着某一个点旋转180°,如果 能与自身重合,我们把这种图形叫做中心对称图形, 这个中心叫做对称中心.
要点精析: (1)中心对称图形的对称中心一定在图形内; (2)中心对称图形是针对一个图形而言的; (3)中心对称图形上所有的点关于对称中心的对称点
都在这个图形本身上;
(4)中心对称图形一定是旋转对称图形,但旋转对称 图形不一定是中心对称图形;
要点精析: (1)中心对称是特殊的旋转,其旋转角为180°; (2)中心对称是指两个图形的位置关系,必须涉及两个
图形,其中一个图形绕对称中心旋转180°后一定 能与另一个图形重合; (3)成中心对称的两个图形,只有一个对称中心,这个 对称中心可能在每个图形的外部,也可能在每个图 形的内部或边上,但对称点一定在对称中心的两侧 或与对称中心重合.
《中心对称图形》旋转PPT课件3

A
D
O
B
C
如果一个图形绕一个点旋转180°后,能和原来的
图形互相重合,那么这个图形叫做中心对称图形;
这个点叫做它的对称中心;互相重合的点叫做对
称点.
图中_____A_B_C_D_是中心对称图形 对称中心是_点__O___
点A的对称点是__点__C__
点D的对称点是__点__B__
(1)平行四边形是中心对称图形吗?如果是, 请找出它的对称中心,并设法验证你的结论。 (2)根据上面的过程,你能验证平行四边形的 哪些性质?
性吗?今天我们先来学习只有二次项和常数项的二次函数 PPT模板:/moban/
PPT背景:/beiji ng/ PPT下载:/xiaz ai/ 资料下载:www. 1ppt.co m/zilia o/ 试卷下载:/shiti / 手抄报:/shouc haobao/ 语文课件:/keji an/yuwen/ 英语课件:/keji an/ying yu/
D
E
(A) 4
(B) 3
(C) 2
(D) 1
B
C
F
判断下列说法是否正确
(1)轴对称图形也是中心对称图形。(×)
(2)旋转对称图形也是中心对称图形。(× )
(3)平行四边形、长方形和正方形都是中心对称图
形,对角线的交点是它们的对称中心。(√ )
(4)角是轴对称图形也是中心对称图形。( × )
(5)在成中心对称的两个图形中,对应线段平行
(或在同一直线上)且相等。
(√ )
中心对称图形与轴对称图形有什么区别 与联系?
轴对称图形
中心对称图形
1 有一条对称轴——直线 有一个对称中心——点
2 图形沿轴对折(翻转180°) 图形绕对称中心旋转180°
《中心对称》旋转PPT精品课件

A′ B′
O
C′
C
B A
探究新知
A′ B′
O
C′
C
B A
探究新知
A′ B′
O
C′
C
B A
探究新知
A′ B′
O
C′
C
B A
探究新知
A′ B′
O
C′
C
B A
探究新知
A′ B′
O
C′
C
B A
探究新知
A′ B′
O
C′
C
B A
探究新知
A′ B′
O
C′
C
B A
探究新知
A′ B′
O
C′
C
B A
探究新知
人教版 数学 九年级 上册
23.2 中心对称
23.2.1 中心对称
导入新知
观察下面的两组图形,看一看各组中两个图 形的形状、大小是否相同?怎样将一个图形旋转 得到另一个图形?
导入新知
观察图形,你发现了什么?
素养目标
3.掌握中心对称的性质及其应用. 2.探究中心对称的性质. 1.理解中心对称的定义.
用刻度尺找出BB′的中点O,则点O即为所求(如
图).
C A′
O B′
B
A
C′
巩固练习
解法2:根据观察,B、B′及C、C′应是两组对应 点,连接BB′、CC′,BB′、CC′相交于点O,则点 O即为所求(如图).
C A′
O B′ B A
C′ 【注意】如果限制只用直尺作图,我们用解法2.
探究新知
素养考点 2 利用中心对称的性质确定线段或角的值
例2 如图,已知△AOB与△DOC成中心对称, △AOB的面积是12,AB=3,则△DOC中CD边上 的高为___8_____.
11.3 旋转对称图形与中心对称图形-七年级数学上册(沪教版)

例题5 如图,有一张纸片,纸片被分为一个矩形和一个 菱形,请你画一条直线把这张纸片分成面积相等的两部 分.
方法归纳:对于这种由两个中心对称图形组成的复合 图形,平分面积时,常用方法是找到它们的对称中心, 再过对称中心作直线.
当堂练习 1.下列四张扑克牌中,是中心对称图形的是( A )
A.
B.
C.
新课讲授
例题3 下列图形中哪些是中心对称图形?
(√1)
(√2)
(√3)
×(4)
方法总结:判断一个图形是不是中心对称图形,关键 是寻找对称中心,看这个图形能否绕某一点旋转 180° 后与原图形重合.
例题4
判断表中各图 形是否是中心 对称图形或轴 对称图形.
常见图形 线段
等边三角形 平行四边形
矩形 菱形 正方形
(2)最小旋转角度:最小旋转角=
360 基本图形数
;
(3)旋转角度:旋转角度是最小旋转角度的整数倍.
新课讲授
问题 将下面的图形绕 O 点旋转,你有什么发现?
A
O
B
O
(1)线段
(2)平行四边形
共同点:(1)都绕一点旋转了180°;
(2)都与原图形完全重合.
新课讲授
中心对称图形的定义 把一个图形绕某一个点旋转 180°,如果旋转后的
导入新课
观察 下列图形有哪些特征?
导入新课
如图11-13所示的五角星绕点0按逆时针方向旋转72°后与 初始五角星重合.
新课讲授
在平面内,如果一个图形绕着一个定点旋转一定大小的角a 后,能与原图形重合,那么这个图形叫做旋转对称图形,这 个定点叫做旋转对称中心,角a叫做旋转角.
旋转对称图形的旋转角度: (1)旋转角的范围:大于0°且小于360°;
16.5 利用图形的平移、旋转和轴对称设计图案课件(共18张PPT)

中心
4
轴归纳小结图案Fra bibliotek设计: 利用图形的平移、旋转和轴对称设计图案,是人们在进行图案设计时经常使用的一种方法.
同学们再见!
授课老师:
时间:2024年9月15日
做一做 如图,在同一平面内有一些几何图形,请利用图形的平移、旋转和轴对称,设计一个你想象中的“房屋示意图”.
图案设计的一般步骤:(1)选择基本图案(基本图案可以是一个图案,也可以是几个图案的组合).(2)对基本图案进行变换(变换可以是单纯的平移,旋转或轴对称,也可以是多种变换).(3)对图案进行修饰.要点精析: 进行图案设计时,首先要整体构思,确定“基本图形”,再制定出“基本图形”变换的具体操作程序.
随堂练习
1.如图,下列一些图标都可以由“基本图形”通过变换得到,请你根据要求用图标的序号填空:(1)可以通过平移变换得到但不能通过旋转变换得到的图案是________;(2)可以通过旋转变换得到但不能通过平移变换得到的图案是________;(3)既可以由平移变换得到,也可以由旋转变换得到的图案是________.
36
拓展提升
2.如图所示,网格图中每个小正方形的边长为1.请你认真观察三个网格图中阴影部分构成的图案.解答下列问题:(1)这三个图案都具有以下共同特征:①都是______对称图形;②阴影部分面积都是______;③都不是____对称图形.(2)请你在备用图中设计出一个具备上述特征的图案.(图中已给出的除外)
2.如图,将这个三角形绕两条虚线的交点,先旋转90°,再将整个图形旋转180°,画出旋转后的图形.(保留原图痕迹)
思考:
1.观察下列两组图案,请你分别说说由图案(1)到图案(2)的变化过程.
2.观察下图,请你说说由图案(1)到图案(2),再到图案(3)的变化过程.
4
轴归纳小结图案Fra bibliotek设计: 利用图形的平移、旋转和轴对称设计图案,是人们在进行图案设计时经常使用的一种方法.
同学们再见!
授课老师:
时间:2024年9月15日
做一做 如图,在同一平面内有一些几何图形,请利用图形的平移、旋转和轴对称,设计一个你想象中的“房屋示意图”.
图案设计的一般步骤:(1)选择基本图案(基本图案可以是一个图案,也可以是几个图案的组合).(2)对基本图案进行变换(变换可以是单纯的平移,旋转或轴对称,也可以是多种变换).(3)对图案进行修饰.要点精析: 进行图案设计时,首先要整体构思,确定“基本图形”,再制定出“基本图形”变换的具体操作程序.
随堂练习
1.如图,下列一些图标都可以由“基本图形”通过变换得到,请你根据要求用图标的序号填空:(1)可以通过平移变换得到但不能通过旋转变换得到的图案是________;(2)可以通过旋转变换得到但不能通过平移变换得到的图案是________;(3)既可以由平移变换得到,也可以由旋转变换得到的图案是________.
36
拓展提升
2.如图所示,网格图中每个小正方形的边长为1.请你认真观察三个网格图中阴影部分构成的图案.解答下列问题:(1)这三个图案都具有以下共同特征:①都是______对称图形;②阴影部分面积都是______;③都不是____对称图形.(2)请你在备用图中设计出一个具备上述特征的图案.(图中已给出的除外)
2.如图,将这个三角形绕两条虚线的交点,先旋转90°,再将整个图形旋转180°,画出旋转后的图形.(保留原图痕迹)
思考:
1.观察下列两组图案,请你分别说说由图案(1)到图案(2)的变化过程.
2.观察下图,请你说说由图案(1)到图案(2),再到图案(3)的变化过程.
《旋转对称图形》课件

旋转对称图形的旋转中心
旋转中心
旋转对称图形有一个或多个旋转中心,图形围绕 这些中心旋转特定角度后与原图重合。
旋转中心的确定
旋转中心通常位于图形的对称轴上,可以通过几 何推理或计算得出。
旋转对称图形的旋转轴
旋转轴
旋转对称图形有一个或多个旋转轴,这些轴是图形旋转对称的基准线。
旋转轴的特性
旋转轴通常与图形的对称轴重合,或者通过图形的对称中心。了解旋转轴有助于理解图形的对 称性质和几何特性。
《旋转对称图形》 ppt课件
目录
• 旋转对称图形的定义 • 旋转对称图形的性质 • 常见的旋转对称图形 • 旋转对称图形的应用 • 如何绘制旋转对称图形 • 总结与思考
01
旋转对称图形的定义
什么是旋转对称图形
01
旋转对称图形
指在旋转一定角度后与原图重合的平面图形。
02
旋转对称中心
图形旋转时所围绕的固定点称为旋转对称中心。
除了几何软件和手工绘制外,还 可以使用其他工具如图形编辑器 、画图板等来绘制旋转对称图形
。
操作步骤
打开相应的工具,选择合适的绘图 工具,然后按照相应步骤绘制出旋 转对称图形。
技巧提示
在使用其他工具绘制时,要注意工 具的特性和功能,以便更好地利用 它们来绘制出精美的旋转对称图形 。
06
总结与思考
总结旋转对称图形的性质和应用
使用手工绘制旋转对称图形
工具准备
技巧提示
准备纸、笔、尺、圆规等基本绘图工 具。
在绘制过程中,要保持线条的流畅和 直线的平行,以确保图形的准确性和 美观度。
操作步骤
先画出对称轴,然后使用圆规和尺子 在纸上绘制出对称的图形,最后将图 形进行旋转得到旋转对称图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
你能说出它们旋转多少度能原来的图形重合?
图形1
图形2
图形3
.
图形4
8
旋转对称图形
把一个图形在平面内绕着一个定点旋转一个角 度后,与初始图形重合,这种图形就称为旋转 对称图形,这个定点叫做旋转对称中心,旋转 的角度叫做旋转角。
.
9
旋转对称图形
把一个图形在平面内绕着一个定点旋转一 个
角度后,与初始图形重合,这种图形就称为
旋转对称图形
与
中心对称图形
.
1
回 忆:
1、什么叫做图形的旋转? 2、什么叫做旋转中心?
.
2
观察下列图形有什么特点吗?
问题与讨论
(1)
(2)
(3)
(4)
.
3
返回
旋转
.
4
返回
旋转
.
5
返回旋转.6返回旋转.
7
认真观察下列图案:
下列图形在运动时有哪些特征?
绕着一个定点旋转一个角度后,与原来的图形重合
你能再说出几个是中心对称图形的 正多边形吗?
.
18
在一次游戏当中,小明将下面左图的四张扑克牌中的一张 旋转180°后,得到右图,小亮看完很快知道小明旋转了哪 一张扑克,你知道为什么吗?
.
19
在26个英文大写正体字母中,哪些字母是中心对称 图形?
ABCDEFGHIJK LM NOPQRSTUVWX YZ
14
练习:哪些是旋转对称图形,哪些是中心对称图形?
.
15
360°被5等分 所以旋转角是 72°
判断:这个图形
是旋转对称图形
A
还是中心对称图
形?
E
B
D
C
.
16
认真观察下列图案:
判断下列图形是旋转对称图形,还是中心对称图形?
找出中心对称图形
它们的边数有什么规律? .
17
结论:中心对称的多边形很多,如边数为偶数 . 的正多边形都是中心对称图形。
旋转对称图形
中心对称图形
有一个旋转中心
有一个对称中心
绕旋转中心旋转一个角度 图形绕这个点旋转180O
旋转一个角度与原图形重合 旋转180O与原图形重合
不一定是
旋转对称图形
一定是
中心对称图形
.
22
原来中心对称图形是这样啊!!!
.
20
想一想
请以给定的图形○○△△=(两个圆,两个三角 形,两条平行线)为构件,尽可能多地构思有意义 的一些中心图形,并写上一两句贴切,诙谐的解 说词.如下图就是符合要求的图形,你能构思其 它图形吗?比一比,看谁想得多,看谁想得妙!
小丑踩球
漂亮的小领结
.
21
旋转对称图形与中心对称图形:
对称中心旋转 1 8 0 后和原来的图形重合
.
12
如果把一个图形绕着一个定点旋转180°后,与初始图形重合, 那么这个图形叫做中心对称图形,这个点叫做对称中心.
.
13
1.下面哪个图形是中心对称图形?
√
√
2.下列图形不是中心对称图形的是--( )
B
①
②
③
④
(A)① (B)② (C)③ (D)④
.
旋转对称图形,这个定点叫做(旋0转。对称3中6心0。,)
旋转的角度叫做旋转角。 讨论:旋转对称图形的旋转角能不能等于360?
.
10
旋转对称图形
1.以下四家银行行标中, 旋转对称图形的有 (A,C, D )
.
11
观察上面的几个图形,它们都是什么图形?如 果是旋转对称图形,旋转角是多少度?
这些图形都是旋转对称图形,而且都在绕着旋转
图形1
图形2
图形3
.
图形4
8
旋转对称图形
把一个图形在平面内绕着一个定点旋转一个角 度后,与初始图形重合,这种图形就称为旋转 对称图形,这个定点叫做旋转对称中心,旋转 的角度叫做旋转角。
.
9
旋转对称图形
把一个图形在平面内绕着一个定点旋转一 个
角度后,与初始图形重合,这种图形就称为
旋转对称图形
与
中心对称图形
.
1
回 忆:
1、什么叫做图形的旋转? 2、什么叫做旋转中心?
.
2
观察下列图形有什么特点吗?
问题与讨论
(1)
(2)
(3)
(4)
.
3
返回
旋转
.
4
返回
旋转
.
5
返回旋转.6返回旋转.
7
认真观察下列图案:
下列图形在运动时有哪些特征?
绕着一个定点旋转一个角度后,与原来的图形重合
你能再说出几个是中心对称图形的 正多边形吗?
.
18
在一次游戏当中,小明将下面左图的四张扑克牌中的一张 旋转180°后,得到右图,小亮看完很快知道小明旋转了哪 一张扑克,你知道为什么吗?
.
19
在26个英文大写正体字母中,哪些字母是中心对称 图形?
ABCDEFGHIJK LM NOPQRSTUVWX YZ
14
练习:哪些是旋转对称图形,哪些是中心对称图形?
.
15
360°被5等分 所以旋转角是 72°
判断:这个图形
是旋转对称图形
A
还是中心对称图
形?
E
B
D
C
.
16
认真观察下列图案:
判断下列图形是旋转对称图形,还是中心对称图形?
找出中心对称图形
它们的边数有什么规律? .
17
结论:中心对称的多边形很多,如边数为偶数 . 的正多边形都是中心对称图形。
旋转对称图形
中心对称图形
有一个旋转中心
有一个对称中心
绕旋转中心旋转一个角度 图形绕这个点旋转180O
旋转一个角度与原图形重合 旋转180O与原图形重合
不一定是
旋转对称图形
一定是
中心对称图形
.
22
原来中心对称图形是这样啊!!!
.
20
想一想
请以给定的图形○○△△=(两个圆,两个三角 形,两条平行线)为构件,尽可能多地构思有意义 的一些中心图形,并写上一两句贴切,诙谐的解 说词.如下图就是符合要求的图形,你能构思其 它图形吗?比一比,看谁想得多,看谁想得妙!
小丑踩球
漂亮的小领结
.
21
旋转对称图形与中心对称图形:
对称中心旋转 1 8 0 后和原来的图形重合
.
12
如果把一个图形绕着一个定点旋转180°后,与初始图形重合, 那么这个图形叫做中心对称图形,这个点叫做对称中心.
.
13
1.下面哪个图形是中心对称图形?
√
√
2.下列图形不是中心对称图形的是--( )
B
①
②
③
④
(A)① (B)② (C)③ (D)④
.
旋转对称图形,这个定点叫做(旋0转。对称3中6心0。,)
旋转的角度叫做旋转角。 讨论:旋转对称图形的旋转角能不能等于360?
.
10
旋转对称图形
1.以下四家银行行标中, 旋转对称图形的有 (A,C, D )
.
11
观察上面的几个图形,它们都是什么图形?如 果是旋转对称图形,旋转角是多少度?
这些图形都是旋转对称图形,而且都在绕着旋转