旋转对称图形的举例 (例子)
旋转单元测试题及答案

旋转单元测试题及答案一、选择题1. 旋转的定义是什么?A. 绕某一点转动B. 沿直线平移C. 缩放D. 反射2. 旋转变换不改变图形的哪些性质?A. 形状B. 大小C. 面积D. 所有选项3. 旋转对称图形在旋转多少度后能与自身重合?A. 90度B. 180度C. 360度D. 任意角度二、填空题4. 一个图形绕着某一点旋转____度后,与原图形重合,这个点称为图形的______。
5. 在平面直角坐标系中,若将点P(x, y)绕原点O(0, 0)逆时针旋转θ度,旋转后的坐标为______。
三、简答题6. 请简述旋转的性质,并给出一个生活中的例子。
7. 解释什么是旋转对称图形,并给出一个例子。
四、计算题8. 在平面直角坐标系中,点A(3, 4)绕原点O(0, 0)顺时针旋转90度,求旋转后点A的新坐标。
9. 若一个图形在旋转对称变换下,其旋转中心为点P(1, 2),旋转角度为120度,请画出旋转后的图形。
五、论述题10. 论述旋转在几何证明中的应用,并给出一个具体的几何证明例子。
答案:一、1. A2. D3. C二、4. 180,旋转中心5. (-y, x)三、6. 旋转的性质包括保持图形的形状和大小不变,旋转中心到图形上任意两点的距离相等。
生活中的例子包括门的开关,地球的自转等。
7. 旋转对称图形是指在旋转一定角度后能与自身重合的图形,例如等边三角形。
四、8. 点A的新坐标为(4, -3)。
9. 根据旋转对称图形的定义,旋转后的图形与原图形形状相同,位置不同,具体图形需根据题目要求绘制。
五、10. 旋转在几何证明中常用于证明图形的全等或相似,例如利用旋转证明两个三角形全等。
具体例子需根据题目要求给出。
旋转对称图形的举例

自然界
工程领域
自然界中存在着大量的旋转对称现象,如 雪花、花朵等,这些自然形态的美丽和和 谐都与旋转对称有关。
在机械工程、航空航天等领域中,旋转对 称图形的应用也十分广泛,如各种旋转机 械零件、飞机和火箭的旋翼等。
THANKS
感谢观看
抛物线形
总结词
抛物线形是一种特殊的曲线,它具有旋转对称性。
详细描述
抛物线形关于其对称轴具有旋转对称性。例如,将抛物线形绕其对称轴旋转180 度,能与原图形完全重合。
03
旋转对称图形的性质
对称轴的性质
对称轴唯一性
旋转对称图形只有一条对称轴,该对称轴是固定不动的。
对称轴稳定性
对称轴是旋转对称图形稳定性的基础,任何微小的旋转都会 导致图形的不变。
在自然界中,许多物体和现象都具有旋转对称的特性,例 如行星、卫星、花朵、雪花等。
旋转对称的特性在自然界中广泛存在,因为这种特性有助 于物体在空间中保持平衡和稳定,同时也有助于自然界的 美观和和谐。
05
结论
总结旋转对称图形的特点和性质
旋转对称图形的定义
旋转对称图形的性质
旋转对称图形是指通过旋转一定的角 度后,能够与自身重合的图形。
在自然界和日常生活中,许多物体都 具有旋转对称性,如花朵、行星等, 这种特性使得它们在视觉上更加美观 和和谐。
02
常见的旋转对称图形
正方形
总结词
正方形是一个四边等长且四个角 都是直角的平面图形,它具有旋 转对称性。
详细描述
正方形无论从哪个角度旋转,都 能与自身重合。例如,将正方形 绕其中心点旋转90度、180度或 270度,都能与原图形完全重合 。
图形变换不变性
在旋转对称图形进行旋转时, 其形状和大小不会发生改变。
第23章旋转(一)中心对称(教案)

(五)总结回顾(用时5分钟)
今天的学习,我们了解了中心对称的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对中心对称的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调中心对称的定义和性质、旋转与中心对称的关系这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与中心对称相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示中心对称的基本原理,如制作中心对称的纸模。
在实践活动和小组讨论环节,学生们表现出了很高的参与热情。他们能够积极地参与到讨论和实验操作中,这有助于巩固他们对中心对称的理解。但同时我也观察到,有些小组在讨论时可能会偏离主题,需要我在旁边适时引导,帮助他们聚焦于中心对称在实际生活中的应用。
此外,我发现学生们在解决与中心对称相关的问题时,有时候会卡在解题思路上。这说明我在教学中还需要加强对解题方法的指导,让学生在面对问题时能够迅速找到解决策略。在后续的教学中,我会设计更多具有挑战性的练习题,并给予学生充分的思考和讨论时间。
3.培养学生动手操作能力,通过绘制中心对称图形,加深对中心对称概念的理解;
4.培养学生合作交流的能力,通过小组讨论与分享,提高对旋转与中心对称关系的认识;
5.培养学生创新思维,激发探索精神,为后续学习奠定基础。
三、教学难点与重点
1.教学重点
-中心对称的定义及其性质:中心对称是指存在一个点,使得图形中的任意一点关于这个点都有唯一的对应点,且两点的距离相等。性质包括中心对称图形的对称轴、对称点等。
角度的对称度标注案例

角度的对称度标注案例角度的对称度是指一个物体或图形在某个中心点或中心线上的两侧具有相同的形状、大小和位置关系。
以下是关于角度的对称度的案例:1. 风车旋转:想象一下,在田野上有一个风车,它有四个叶片。
当风车旋转时,每个叶片都与它相对的叶片具有相同的形状和位置关系,这展示了角度的对称度。
2. 人体的对称:人体在中线上具有对称性。
例如,当我们将人体从中线切割成两半时,两侧的头、手、脚等部位具有相同的形状和位置关系。
3. 蝴蝶的翅膀:蝴蝶的翅膀通常是具有对称性的。
无论是左右对称还是上下对称,蝴蝶的翅膀都展现了角度的对称度。
4. 雪花的形状:雪花是天然界中的一个经典例子,它们具有六边形的对称形状。
无论从任何角度观察,雪花的六个分支都具有相同的形状和角度。
5. 镜子的反射:当我们站在镜子前面时,我们的左右两侧具有相同的形状和位置关系。
这展示了角度的对称度。
6. 蜜蜂的蜂巢:蜜蜂的蜂巢通常具有六边形的对称形状。
每个蜂房都与相邻蜂房具有相同的形状和角度。
7. 建筑物的设计:许多建筑物的设计都遵循角度的对称度原则。
例如,许多古代宫殿和教堂的建筑形式在左右两侧具有相同的形状和位置关系。
8. 花朵的形状:许多花朵都具有角度的对称度,例如玫瑰花、向日葵等。
花瓣的形状和位置关系在花朵的左右两侧是相同的。
9. 动物的身体结构:许多动物的身体结构在左右两侧具有对称性,例如脊椎动物的身体和四肢。
10. 自然界中的岩石:许多岩石的形状在左右两侧具有对称性,例如海滩上的卵石或山脉中的岩石。
以上是角度的对称度的一些案例,它们展示了在自然界和人造物体中广泛存在的对称性原则。
通过观察这些案例,我们可以更好地理解和欣赏角度的对称度。
旋转和中心对称

B: (−2, 4)
C: (4, − 2)
D: (2, − 4)
练2-1.将点P(1, 1)绕原点顺时针旋转135 后,得到的点的坐标是________________.
练2-2.如图,△ABC的顶点坐标分别为A(4, 6)、B(5, 2)、C(2, 1),如果将△ABC绕点C按逆时针方向旋转90 ,得到 ,那么点A、B的对应点 的坐标分别是( )
旋转和中心对称
【知识点一】旋转的概念和性质
旋转的概念:在同一平面内,把一个图形绕着某一个定点转动一个角度,叫图形的旋转.
图中E经旋转得到B,E和B叫对应点.对应点与旋转中心的连线的夹角叫旋转角.
旋转三要素:旋转中心、旋转角、旋转方向
DEF绕点O逆时针旋转60°:
①旋转中心:点O
②旋转角: BOE、 COF、 AOD等
③旋转方向:逆时针
旋转的性质:
①对应点到旋转中心的距离相等;
②对应点与旋转中心所连线一对对应点与旋转中心的连线所成的角都是旋转角,它们都相等;
②因为旋转中心到对应点的距离相等,所以旋转中心一定在对应点连线的垂直平分线上;
③旋转过程中,图形大小状无变化,只有位置改变.
D:180
例5.(1)关于中心对称的两个图形,对应线段的关系是( )
A:相等 B:平行 C:相等且平行 D:相等且平行或相等且在同一直线上
(2)已知图形是中心对称图形,则对称中心是( )
A:点C
B:点D
C:线段BC的中点
D:线段FC的中点
(3)作三角形关于点成中心对称图形:已知△ABC和点O,画出△DEF,使△DEF与△ABC关于O成中心对称.
中心对称的性质:
探究:已知 ABC和 DEF成中心对称,
平移和旋转能转化为轴对称吗

平移和旋转能转化为轴对称吗平移、旋转和轴对称都是平面图形基本的全等变换,那么你是否思考过这样一个问题:平移和旋转能转化为轴对称吗?下面就让我们通过具体例子来研究这个问题.一、平移转化为轴对称例1 如图1,已知△ABC,直线m ∥n 且距离为a,画△ABC 关于直线m 对称的△A 'B 'C ',再画△A 'B 'C '关于直线n 对称的△A ''B ''C '',那么,能否通过平移△ABC 得到△A ''B ''C ''?研析:判断一个图形能否通过平移得到另一个图形,关键是看这两个图形对应点所连的线段是否平行且相等.由线段A A '、A 'A ''分别被对称轴m 、n 垂直平分,知点A 、A '、A ''共线,且A A ''=2a.同理可知, B B ''=2a ,C C ''=2a.所以A A ''、 B B ''、 C C ''互相平行且相等,所以将△ABC 沿与对称轴m(n)垂直的方向,平移2a 即可得到△A ''B ''C ''.(同学们可以再换几个不同的图形试一试)由此可猜想归纳出一般结论:当对称轴平行时,两次轴对称相当于一次平移,且平移的方向垂直于对称轴,平移的距离是两条对称轴之间的距离的2倍.二、旋转转化为轴对称例2 如图2,已知△ABC,直线MN 、PQ 相交于点O,且夹角为α(0°<α≤90°),画△ABC 关于直线MN 对称的△A 'B 'C ',再画△A 'B 'C '关于直线PQ 对称的△A ''B ''C '',那么,能否通过旋转△ABC 而得到△A ''B ''C ''?研析:抓住旋转的三要素:旋转中心、旋转方向及旋转角进行分析.由轴对称的性质知,OA=O A ', O A '=O A '',OM 平分∠AO A ',OP平分∠A 'O A '',所以OA=O A '',∠AO A ''=2α.同理OB=O B '',OC=O C '',∠BO B ''=2α, ∠CO C ''=2α.所以点A 、B 、C 分别绕点O 顺时针旋转2α的角度,就得到点A ''、B ''、C '',故将△ABC 绕点O 顺时针A BC B ' C ' A '' B '' C '' A ' 图1 m n A ' ABC B ' C ' A '' B '' C ''Nα Q 图2 O M P旋转2α的角度就得到△A''B''C''.(同学们可以再换几个不同的图形试一试)由此可猜想归纳出一般结论:当对称轴相交于一点时,两次轴对称相当于一次旋转,且旋转中心是对称轴的交点,旋转角为对称轴夹角α(0°<α≤90°)的2倍,旋转方向,与第一条对称轴旋转α的角度到第二条对称轴的位置的方向一致.。
旋转对称图形的举例(例子)

旋转对称图形的特性
旋转对称性
旋转对称图形具有旋转对称性 ,即可以通过旋转一定角度与
自身重合。
旋转对称中心
每个旋转对称图形都有一个旋 转对称中心,所有点围绕该中 心旋转一定角度后与原图重合 。
旋转角度
不同的旋转对称图形具有不同 的旋转角度,使得图形能够完 全重合。
旋转次数
一些图形可能需要多次旋转才 能与自身重合,而另一些图形
03 举例
CHAPTER
中心对称图形举例
圆
正方形
无论从哪个方向旋转180度,都能与 原图重合。
以中心点为中心,旋转180度后与原 图重合。
球体
无论从哪个方向旋转180度,都能与 原图重合。
轴对称图形举例
矩形
以任意垂直或水平中轴线为轴, 旋转180度后与原图重合。
正三角形
以中心点为中心,旋转180度后与 原图重合。
旋转对称图形的举例
目录
CONTENTS
• 旋转对称图形的定义 • 旋转对称图形的分类 • 举例
01 旋转对称图形的定义
CHAPTER
旋转对称图形的定义
01
旋转对称图形是指通过旋转某个 角度后与自身重合的图形。
02
旋转对称中心是图形旋转的固定 点,所有其他点围绕该中心旋转 一定角度后与原图重合。
等腰三角形
以高线为轴,旋转180度后与原图 重合。
点对称图形举例
正六边形
以中心点为中心,旋转60 度后与原图重合。
正十二边形
以中心点为中心,旋转30 度后与原图重合。
圆与原 图重合。
谢谢
THANKS
举例
矩形、正方形、等腰三角 形、线段等。
特性
轴对称图形有一条对称轴, 图形关于该轴对称,且沿 对称轴折叠后,两侧部分 完全重合。
平移、旋转、轴对称

---------------------------------------------------------------最新资料推荐------------------------------------------------------平移、旋转、轴对称什么是平移、旋转、轴对称?如何判断一个图形进行了平移、旋转或者是否为轴对称图形?如何确定平移的的方向什么是平移、旋转、轴对称?如何判断一个图形进行了平移、旋转或者是否为轴对称图形?如何确定平移的的方向和距离?如何确定旋转角度和旋转中心?(1)什么是平移、旋转、轴对称?平移:一个图形在平面内沿某个方向移动一定距离,这样的图形运动叫平移。
旋转:一个图形在平面内绕着一个固定点转动一定角度,这样的图形运动叫旋转,这个固定点称为旋转中心,转动的角度称为旋转角度。
轴对称:如果一个平面图形,沿着某一条直线对折,直线两边的部分能够完全重合,这个图形就叫做轴对称图形。
这条直线叫对称轴。
互相重合的点叫对称点。
(2)如何判断一个图形进行了平移、旋转或者是否为轴对称图形?在学习中,学生可能会问到摩天轮的运动、窗帘的拉动、门的转动、荡秋千、钟摆等生活现象算不算旋转。
回答这些具体的问题,教师首先需要理解轴对称、平移和旋转的概念在图形的变换中有一个非常重要的变换,就是全等变换,1 / 5也叫做合同变换。
如果图形经过变换后与原来的图形是重合的,也就是图形的形状、大小不发生变化,那么这个图形的变换就叫做全等变换,即原来的图形中,任意两点的距离假设是 l 的话,经过变换后的两点之间的距离仍是 l,所以全等变换是一个保距变换,而且由于距离保持不变,图形整体的形状、大小,都可以证明仍然是保持不变的。
全等变换有几种方式。
我们可以想象一下两个完全一样的图形,要由一个图形的运动得到另一个图形,可以作怎样的运动呢?可以是平移。
除此以外呢?比如两个三角形有一顶点重合,那么有两种情况:一种是这两个三角形的三个顶点顺序是一致的,这时其中一个经过旋转就能与另一个重合;还有一种是顶点的顺序相反,这时将其中一个反射(翻折)就能得到另一个。