1.1.1正弦定理1

合集下载

§1.1.1-1 正弦定理(一)

§1.1.1-1 正弦定理(一)
C 180 ( A B) 180 (40 64 ) 76 ,
a sin C 20sin 76 c 30(cm). sin A sin 40
(2) 当B≈116°时,
C 180 ( A B) 180 (40 116 ) 24 ,
§1.1.1-1 正弦定理(一)
ห้องสมุดไป่ตู้
重庆市万州高级中学 曾国荣 wzzxzgr@
§1.1.1-1 正弦定理(一)
解直角三角形需要用到的知识
①三角形内角和定理: A B C 180 ② 锐角三角函数:
a b a sin A ,cos A ,tan A ; c c b a b b sin B ,cos B ,tan B . c c a
2013-1-16 重庆市万州高级中学 曾国荣 wzzxzgr@ 5
§1.1.1-1 正弦定理(一)
证法三:
(向量知识来证明)
过A作单位向量 j 垂直于AC AC CB AB,两边同乘以向量 j , B a j ( AC CB ) j AB c j 则:j AC j CB j AB A b j AC cos 90 j CB cos(90 C ) j AB cos(90 A)
2013-1-16
重庆市万州高级中学 曾国荣 wzzxzgr@
12
§1.1.1-1 正弦定理(一)
如何应用正弦定理? (一)已知两边一对角,可求其 它边和角!(SSA) (二)已知两角一对边,可求 B 其它边和角!(AAS) C a c b A
D
问题:已知任意两角和一边,能否求其 它边和角?
2013-1-16 重庆市万州高级中学 曾国荣 wzzxzgr@ 9

版高中数学 第一章 解三角形 1.1.1 正弦定理(一)课件 新人教B版必修5.pptx

版高中数学 第一章 解三角形 1.1.1 正弦定理(一)课件 新人教B版必修5.pptx
12
跟踪训练1 如图,锐角△ABC的外接圆O半径为R,角A,B,C所对的 边分别为a,b,c.求证:sina A =2R. 证明
13
类型二 用正弦定理解三角形
例2 已知△ABC,根据下列条件,解三角形:a=20,A=30°,C= 45°. 解答 ∵A=30°,C=45°,∴B=180°-(A+C)=105°, 由正弦定理得 b=assiinnAB=20ssiinn3100°5°=40sin(45°+60°)=10( 6+ 2), c=assiinnAC=20sisnin3405°°=20 2, ∴B=105°,b=10( 6+ 2),c=20 2.
A.直角三角形 C.锐角三角形
√B.等腰三角形
D.钝角三角形
由sin A=sin C,知a=c,∴△ABC为等腰三角形.
1 2 3 247
3.在△ABC中,已知BC= 5 ,sin C=2sin A,则AB=_2__5___.
答案 解析
由正弦定理,得 AB=ssiinn CABC=2BC=2 5.
18
命题角度2 运算求解问题
例4
在△ABC中,A=
π 3
,BC=3,求△ABC的周长的最大值.
解答
19
反思与感悟
利用sina A=sinb B=sinc C=2R 或正弦定理的变形公式 a=ksin A,b= ksin B,c=ksin C(k>0)能够使三角形边与角的关系相互转化.
22
跟 踪 训 练 3 在 △ABC 中 , 角 A 、 B 、 C 的 对 边 分 别 是 a 、 b 、 c , 若 A∶B∶C=1∶2∶3,求a∶b∶c的值. 解答
23
当堂训练
25
1. 在△ABC中,一定成立的等式是 答案 解析

必修5课件 1.1.1 正弦定理

必修5课件 1.1.1 正弦定理

当A为锐角
当A为直角或钝角
我舰在敌岛A南50西相距12 nmile的B处,发现敌舰正由岛沿北 10西的方向以10nmile/h的速度航行,问:我舰需要以多大速度, 沿什么方向航行才能用2小时追上敌舰? 即追击速度为14mile/h
AC BC 又:∵△ABC中,由正弦定理: sin B sin A
AC
2.找 j 与 AB 、AC 、 的夹角 CB
3。利用等式
AC + CB = AB ,与 j 作内积
比值的意义:三角形外接圆的直径2R
注意: (1)正弦定理适合于任何三角形。
a b c (2)可以证明 = = =2R(R为△ABC外接圆半径) sin A sin B sin C
(3)每个等式可视为一个方程:知三求一
ABC中,c 10, A 45 0 , C 30 0 , 求a, b和B 例1、已知在
例2、在 ABC中,b
3, B 60 0 , c 1, 求a和A, C
例3、ABC中,c
6 , A 45 0 , a 2, 求b和B, C
ቤተ መጻሕፍቲ ባይዱ
解三角形时,注意大边对大角
小结:1。正弦定理可以用于解决已知两角和一边求另两边和一角的 问题。 2。正弦定理也可用于解决已知两边及一边的对角,求其他边 和角的问题。 3。正弦定理及应用于解决两类问题,注意多解情况。 注意: ABC中,已知a, b和A时解三角形的情况: 在
人教版 必修五
第一章
解三角形
1.1.1 正弦定理
正弦定理 证明一(传统证法)在任意斜△ABC当中:
1 1 1 ab sin C ac sin B bc sin A S△ABC= 2 2 2 1 b a c abc 两边同除以 即得: = = 2 sin C , sin A sin B

1.1.1正弦定理1

1.1.1正弦定理1

CD,根据三角函数的定义,
CD=asinB=bsinA,则
a b sinA sinB

同理,做BC边上的高可得
c

AE=bsin∠ACE=bsinC=csinB
b
即:
c b
sin C sin B
E Ca B
所以,
abc sin A sin B sin C
在一个三角形中,各边和它所对角的正弦的比相等, 即
3. 如果已知的A是锐角,a<b,
(1) a>bsinA,有二解; (2) a=bsinA,只有一解; (3) a<bsinA,无解.
判断满足下列的三角形的个数: (1)b=11, a=20, B=30o 两解
(2)c=54, b=39, C=120o 一解
两解 (3)b=26, c=15, C=30o
abc sin A sin B sinC
在直角三角形ABC中
A
sin A a , sin B b
c
c
c
a
b
cபைடு நூலகம்
b
c
sinA sinB sinC
C
aB
问题 4 【猜想与推广】 那么对于一般的三角形,以上关系式是否 仍然成立?
可分为直角三角形,锐角三角形, 钝角三角形三种情况分析.
当△ABC是锐角三角形时,设边AB上的高是

()
A. 直角三角形 B. 等腰直角三角形
C. 等边三角形 D. 等腰三角形
教材 P4 第 1、2 题
课堂小结
1. 定理的表示形式:
abc sin A sin B sin C
abc
k(k 0)
sin A sin B sinC

1.1.1正弦定理1

1.1.1正弦定理1

图2 C
D
思考
a b c = 求证: = sin A sin B sin C
= ?
2R
(2R为△ABC外接圆直径)
1.1.1正弦定理
在Rt△ABC中,各角与其对边的关系:
b a sin B sin A c c c sin C 1
c
不难得到:
b
A
c
a b c sin A sin B sin C
C
a
B
在非直角三角形ABC中有这样的关系吗?
C
b
A c
a
B
(1)若三角形是锐角三角形, 如图 1, 过点A作AD⊥BC于 D, AD , sin C 此时有 sin B AD c b
应用正弦定理化边为角:

2R
a 2R sin A, b 2R sin B, c 2R sin C
a b c 或化角为边:sin A ,sin B ,sin C 2R 2R 2R
课堂练习:
1.已知ABC的三个内角之比为A : B : C 3: 2 :1,
2:31 : 那么对应的三边之比a : b : c等于 ____________
B 30 , C 105
0

(三角形中大边对大角)
a sin C 2 6 2 c 3 1 sin A 4 2 2
课堂小结
(1)三角形常用公式: A B C
a b c 正弦定理: sin A sin B sin C

(2)正弦定理应用范围:
① ②
已知两角和任意边,求其他两边和一角 已知两边和其中一边的对角,求另一边 的对角。(注意解的情况)
(2)已知两边和其中一边的对角,求其他边和角.

1.1.1正弦定理

1.1.1正弦定理

[评析 (1)已知三角形的任意两个角和一边,由三角形 评析] 已知三角形的任意两个角和一边 评析 已知三角形的任意两个角和一边, 内角和定理,可以先求出三角形的另一角, 内角和定理,可以先求出三角形的另一角,并由正弦定理计 算出三角形的另两边. 算出三角形的另两边. (2)运算过程中, 运算过程中, 要注意三角函数公式的应用, 运算过程中 要注意三角函数公式的应用, 此题中对 105°作了“拆角”处理. 作了“ 作了 拆角”处理.
[评析 (1)已知两边及一边对角时,解三角形可用正弦 评析] 已知两边及一边对角时, 评析 已知两边及一边对角时 定理,关键是准确判断解的情况,可能出现一解、 定理,关键是准确判断解的情况,可能出现一解、两解或无 解的情况. 解的情况. (2)在三角形中, 在三角形中, 在三角形中 注意运用大边对大角或大角对大边的性 局限于一个三角形中). 质(局限于一个三角形中 . 局限于一个三角形中
4.利用正弦定理解三角形的类型及其解的情况 . (1)已知两角与一边,用正弦定理,有解时,只有一解. 已知两角与一边 用正弦定理,有解时,只有一解. 已知两角与一 (2)已知两边及其中一边的对角, 已知两边及其中一边的对角, 用正弦定理, 已知两边及其中一边的对角 用正弦定理, 可能有两 一解或无解. 解、一解或无解.在△ABC 中,已知 a,b 和 A 时,解的情 , 况如下: 况如下:
A 为锐角
A 为钝角或直角
图 形
①a= = bsinA< 关系式 bsinA a<b ②a≥b ≥ 两解 解的个数 一解
a< bsinA 无解
a>b 一解
a≤b ≤ 无解
已知两角及一边解三角形 已知三角形的两角和任一边解三角形,基本思路是: 已知三角形的两角和任一边解三角形,基本思路是: (1)若所给边是已知角的对边时, 若所给边是已知角的对边时, 若所给边是已知角的对边时 可由正弦定理求另一角 所对边,再由三角形内角和定理求出第三个角. 所对边,再由三角形内角和定理求出第三个角. (2)若所给边不是已知角的对边时, 若所给边不是已知角的对边时, 若所给边不是已知角的对边时 先由三角形内角和定 理求出第三个角,再由正弦定理求另外两边. 理求出第三个角,再由正弦定理求另外两边.

正弦定理(1)

正弦定理(1)

2 ;
当当当当当AAAA==A===11212101202°20°0时0°时°时°时时,,CC,C=,,=CC==1=181801810°808°-0°-0-°°-44-545°45°4-5°-5-°°-11-21201202°10°=02°==°0=1°151=5°15°,5°,c1c,°=c5=,=c°=b,bscssbissi=inbsinnisninsinBinBbCnCsBsCi=B=inC=n=BC66=-6-226-2-2262.2-.22. .
1.1.1 正弦定理
思考 1 如图,在 Rt△ABC 中,sina A,sinb B,sinc C分别等于什么?
思考 2 在一般的△ABC 中,sina A=sinb B=sinc C还成立吗?
正弦定理证明:
A
A
B Ob C B`
OC B` B b
b sinB =2R
A b OC
B
a= b =c sinA sinB sinC
∴C=180°-(A+B)=180°-(60°+30°)=90°.
∴c= b sin
1 B=1=2.
2
(3)根据正弦定理,sin A=asin B= 3sin 120°=3>1.
b
1
2
因为 sin A≤1.所以 A 不存在,即无解.
引申探究 若把本例中的条件“C=60°”改为“A=60°”,则角C有 几个值?
=2R.
梳理 在任意△ABC 中,都有sina A=sinb B=sinc C=2R,这就是正弦定理.
特别提醒:正弦定理的特点 (1)适用范围:正弦定理对任意的三角形都成立. (2)结构形式:分子为三角形的边长,分母为相应边所对角的 正弦的连等式. (3)刻画规律:正弦定理刻画了三角形中边与角的一种数量关 系,可以实现三角形中边角关系的互化.

1.1.1正弦定理

1.1.1正弦定理

C/
1 1 1 另证2: S absin C = bc sin A = ac sin B ∆ABC = 2 2 2
A
c
B
b
ha
1 证明: S∆ABC = aha ∵ 2
Da 同理 ∴
S∆ABC = absin C = bc sin A = ac sin B 2 2 2
1 1 S∆ABC = acsin B = absinC 2 2 1 S∆ABC = bcsin A 2 1 1 1
D
b c = , 所以AD=csinB=bsinC, 即 sin B sin C
a c 同理可得 = , sin A sin C
a b c 即: = = sin A sin B sinC
若三角形是钝角三角形 且角 如图2, 若三角形是钝角三角形,且角 是钝角如图 钝角三角形 且角C是 过点A作AD⊥BC, 交BC延长线于D, 此时也有 sin B =
剖析定理、加深理解
a b c 正弦定理: 正弦定理: = = = 2R sin A sin B sinC
2、A+B+C=π 3、大角对大边,大边对大角 大角对大边,
剖析定理、加深理解
a b c 正弦定理: 正弦定理: = = = 2R sin A sin B sinC
4、一般地,把三角形的三个角A,B,C 一般地,把三角形的三个角A 和它们的对边a 叫做三角形的元 和它们的对边a,b,c叫做三角形的元 素。已知三角形的几个元素求其他元素 的过程叫解三角形 的过程叫解三角形
a
B
N
一解
已知A、a、b;求B
(1)A < 90°时 d = asin A
d < a < b时
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

c sin C sin C 2R A c 2R sin C a b 同理 2 R, 2R sin A sin B a b c 2R sin A sin B sin C
c O b
a C
C/
公式的应用
a b c 正弦定理: sin A sin B sin C
应用正弦定理化边为角:

2R
a 2R sin A, b 2R sin B, c 2R sin C
a b c 或化角为边:sin A ,sin B ,sin C 2R 2R 2R
课堂练习:
1.已知ABC的三个内角之比为A : B : C 3 : 2 :1,
2:31 : 那么对应的三边之比a : b : c等于 ____________
(2)已知两边和其中一边的对角,求其他边和角.
2.(08 陕西卷) △ABC 的内角 A,B,C 的对边分别为 a,b,c , 若 c 2,b 6,B 120 ,则 a 等于

( D. 2
D)
A. 6
B.2
C. 3
BC的长度与角A的 大小有关吗? 三角形中角A与它的对 边BC的长度是否存在 数量关系?
C
b
c
由正弦定理
得a
a c sin A sin C c sin A 10 sin 45 10 2 = sin 30 sin C
a
B
A
b c 由正弦定理 sin B sin C
c sin B 10 sin 105 5( 6 2 ) 得 b= = sin C sin 30
① ②
已知两角和任意边,求其他两边和一角 已知两边和其中一边的对角,求另一边 的对角。(注意解的情况)
正弦定理推广一:
a b c 2RR是ABC外接圆半径 sin A sinB sinC
证明:作外接圆O, 过B作直径BC/,连AC/,
'
B
' BA C 90, C C
图2 C
D
思考
a b c = 求证: = sin A sin B sin C
= ?
2R
(2R为△ABC外接圆直径)
b sin C c sin B 2 6 2 6 2 4 2 2 2
(2)已知两边和 其中一边的对 角,求其他边和 角.
(2)已知两边和其中一边的对角,求其他边和角.
练习:在ABC中,a=2, b 2, A 45 , 求B, C, c
0
b sin A 解:由正弦定理得 sin B a a b, A B, 且00 B 1800
3 3 则其面积等于 __________ 或 2 4

思考
a b c = 求证: = sin A sin B sin C
= ?
2R
(2R为△ABC外接圆直径)
证法3:
A
SABC
1 1 1 ab sin C bc sin A ac sin B 2 2 2
证明: ∵ S ABC
c
B
正弦定理:
在一个三角形中,各边和它所对角的 正弦的比相等.
a b c 即 sin A sin B sin C
即正弦定理寻找的是各边和它的对角的关系!
剖析定理、加深理解
正弦定理可以解决三角形中哪类问题:
a b c sin A sin B sin C
① 已知两边和其中一边的对角,求另一边
正弦定理
在Rt△ABC中,各角与其对边的关系:
b a sin B sin A c c c sin C 1
c
不难得到:
b
A
c
a b c sin A sin B sin C
C
a
B
在非直角三角形ABC中有这样的关系吗?
C
b
A c
a
B
(1)若三角形是锐角三角形, 如图1,
过点A作AD⊥BC于D,
4 5 BC sin B 13 5 (Ⅱ)由正弦定理得 AC . 12 sin A 3 13 1 1 13 16 8 所以 △ABC 的面积 S BC AC sin C 5 . 2 2 3 65 3
3.在ABC中, a 3, b 1, B 30 ,
12 2 ______ .
练习:
1.在ABC中, a 6,b 8,C 45 .则S ABC

2.已知三角形 ABC 中,a=50,B=450,C=1050,求 S ABC .
625 ( 3 1 )
5 3 3.(2008 全国Ⅱ) 在 △ABC 中, cos A , cos B . 13 5 (Ⅰ)求 sin C 的值; (Ⅱ)设 BC 5 ,求 △ABC 的面积.
2.已知ABC中a 2, B 75 ,C 45 ,则
0 0
abc 4 3 ______ . sin A sin B sin C
3、已知三角形 ABC 中,acosA=bcosB, 判断三角形的形状。 直角或等腰三角形
3
正弦定理推广二:
正弦面积公式 : S ABC 1 1 1 1 ah ab sinC ac sinB bc sin A 2 2 2 2
b
ha
1 aha 2
Da
C ∴
而 h AD c sin B b sin C a
同理 S ABC 1 ∴ S ABC ab sin C bc sin A ac sin B 2 2 2
1 1 S ABC ac sin B ab sin C 2 2 1在ABC中,a= 3, b 2, B 45 , 求A, C, c
0
解:
a sin B sin A b
0
3
2 2 3 2 (三角形中大边对大角) 2
0
0 0 或 A 120 A 60 a b, A B, 且0 A 180
(1)当A 600 , C 1800 ( A B) 750 b sin C 2 6 2 6 2 c sin B 4 2 2 2 0 (2)当A 120 , C 1800 ( A B) 150
5 12 3.解: (Ⅰ)由 cos A ,得 sin A , 13 13 3 4 由 cos B ,得 sin B . 5 5
16 所以 sin C sin( A B) sin A cos B cos A sin B . 65
5 3 3.(2008 全国Ⅱ) 在 △ABC 中, cos A , cos B . 13 5 (Ⅰ)求 sin C 的值; (Ⅱ)设 BC 5 ,求 △ABC 的面积.
AD , sin C 此时有 sin B AD c b
B
图1
A c b C
b c 所以AD=csinB=bsinC, 即 sin B sin C ,
D
a b c a c 同理可得 , 即: sin A sin B sin C sin A sin C
(2) 若三角形是钝角三角形呢? 自己证下!
的对角,进而可求其他的边和角.
② 已知两角和一边,求其他角和边.
(1)已知两角和任一边, 定理的应用 求其他两边和一角
。 。
例 1:在△ABC 中,已知c = 10,A = 45 , C = 30 ,
解三角形.(即求出其它边和角)
根据三角形内角和定理, B 180 (A C) 105 解:
C3
C2 C1
C
A
B
(2) 若三角形是钝角三角形,且角C是钝角如图2,
过点A作AD⊥BC, 此时也有 sin B
b
交BC延长线于D,
AD c
且 sin ( C) AD sin C
A c b
仿(1)可得
a b c sin A sin B sin C
B
由(1)(2)知,结论成立.
已知两角和任一边,求其他两边和一角. 练习:
(1)在△ABC中,已知 A=30°,B=120°,b=12。
解三角形.
C 30 , a c 4 3

(2)在△ABC中,已知 A=75°,B= 45°,c= 3 2 求C,a , b.
C 60 , a 3 3, b 2 3

2 2 2 1 2 2
B 30 , C 105
0

(三角形中大边对大角)
a sin C 2 6 2 c 3 1 sin A 4 2 2
课堂小结
(1)三角形常用公式: A B C
a b c 正弦定理: sin A sin B sin C

(2)正弦定理应用范围:
相关文档
最新文档