中考压轴题之中点问题及答案

合集下载

几何难题中考压轴题带含及详细解析

几何难题中考压轴题带含及详细解析

几何难题精选解答题〔共 30 小题〕1 .〔2021 ?河南〕如图 1,在 Rt △ABC 中,∠B=90 °,BC=2AB=8 ,点 D、E 分别是边 BC、AC 的中点,连接DE,将△EDC 绕点 C 按顺时针方向旋转,记旋转角为α.〔1〕问题发现①当α=0 °时, = ;②当α=180 °时, = .〔2〕拓展研究试判断:当 0°≤α<360 °时,的大小有无变化?请仅就图 2 的状况给出证明.〔3〕问题解决当△EDC 旋转至 A,D,E 三点共线时,直接写出线段 BD 的长.2.〔2021 ?济南〕如图 1 ,在△ABC 中,∠ACB=90 °,AC=BC ,∠EAC=90 °,点M 为射线 AE 上任意一点〔不与 A 重合〕,连接 CM ,将线段 CM 绕点 C 按顺时针方向旋转 90 °获取线段CN ,直线 NB 分别交直线 CM 、射线 AE 于点 F、D.〔1〕直接写出∠ NDE 的度数;〔2〕如图 2、图 3,当∠EAC 为锐角或钝角时,其他条件不变,〔 1〕中的结论可否发生变化?若是不变,采用其中一种状况加以证明;若是变化,请说明原由;〔3〕如图 4,假设∠EAC=15 °,∠ACM=60 °,直线CM 与 AB 交于 G,BD= ,其他条件不变,求线段 AM的长.3 .〔2021 ?岳阳〕直线 m ∥n ,点 C 是直线 m 上一点,点 D 是直线 n 上一点, CD 与直线 m 、n 不垂直,点 P 为线段 CD 的中点.〔1〕操作发现:直线 l ⊥m ,l⊥n,垂足分别为 A、B,当点 A 与点 C 重合时〔如图①所示〕,连接 PB,请直接写出线段 PA 与 PB 的数量关系:.〔2〕猜想证明:在图①的状况下,把直线 l 向上平移到如图②的地址,试问〔 1〕中的 PA 与 PB 的关系式可否依旧成立?假设成立,请证明;假设不成立,请说明原由.〔3〕延伸研究:在图②的状况下,把直线 l 绕点 A 旋转,使得∠ APB=90 °〔如图③所示〕,假设两平行线 m 、n 之间的距离为 2k .求证: PA ?PB=k ?AB.4 .〔2021 ?重庆〕在△ABC 中,AB=AC ,∠A=60 °,点D 是线段 BC 的中点,∠EDF=120 °,DE 与线段 AB 相交于点 E.DF 与线段 AC 〔或 AC 的延伸线〕订交于点 F.〔1〕如图 1,假设 DF⊥AC,垂足为 F,AB=4 ,求 BE 的长;〔2〕如图 2,将〔1 〕中的∠EDF 绕点 D 顺时针旋转必然的角度, DF 仍与线段 AC 订交于点 F.求证:BE+CF= AB;〔3〕如图 3,将〔 2〕中的∠EDF 连续绕点 D 顺时针旋转必然的角度,使 DF 与线段 AC 的延伸线订交于点 F,作 DN ⊥AC 于点 N ,假设 DN ⊥AC 于点 N ,假设 DN=FN ,求证: BE+CF= 〔BE﹣CF〕.5 .〔2021 ?烟台〕【问题提出】如图①,△ ABC 是等腰三角形,点 E 在线段 AB 上,点 D 在直线 BC 上,且 ED=EC ,将△BCE 绕点 C 顺时针旋转 60°至△ACF 连接 EF试证明: AB=DB+AF【类比研究】〔1〕如图②,若是点 E 在线段 AB 的延伸线上,其他条件不变,线段 AB ,DB,AF 之间又有怎样的数量关系?请说明原由〔2〕若是点 E 在线段 BA 的延伸线上,其他条件不变,请在图③的基础大将图形补充完满,并写出 AB ,DB ,AF 之间的数量关系,不用说明原由.6 .〔2021 ?莆田〕在 Rt△ACB 和 Rt △AEF 中,∠ACB= ∠AEF=90 °,假设点P 是 BF 的中点,连接 PC,PE.特别发现:如图 1,假设点 E,F 分别落在边 AB,AC 上,那么结论: PC=PE 成立〔不要求证明〕.问题研究:把图 1 中的△AEF 绕着点 A 顺时针旋转.〔1〕如图 2,假设点 E 落在边 CA 的延伸线上,那么上述结论可否成立?假设成立,请恩赐证明;假设不成立,请说明原由;〔2〕如图 3,假设点 F 落在边 AB 上,那么上述结论可否依旧成立?假设成立,请恩赐证明;假设不成立,请说明原由;〔3〕记 =k ,当 k 为何值时,△ CPE 总是等边三角形?〔请直接写出 k 的值,不用说明原由〕7 .〔2021 ?襄城区模拟〕如图,正方形 ABCO 的边 OA 、OC 在坐标轴上,点 B 坐标为〔3,3〕.将正方形 ABCO绕点 A 顺时针旋转角度α〔 0°<α<90 °〕,获取正方形 ADEF ,ED 交线段 OC 于点 G,ED 的延伸线交线段 BC于点 P,连 AP 、AG .〔1〕求证:△AOG ≌△ADG ;〔2〕求∠PAG 的度数;并判断线段 OG 、PG、BP 之间的数量关系,说明原由;〔3〕当∠1= ∠2 时,求直线 PE 的解析式;〔4〕在〔3〕的条件下,直线 PE 上可否存在点 M ,使以 M 、A、G 为极点的三角形是等腰三角形?假设存在,请直接写出 M 点坐标;假设不存在,请说明原由.8 .〔2021 ?重庆校级一模〕,四边形 ABCD 是正方形,点 P 在直线 BC 上,点 G 在直线 AD 上〔P、G 不与正方形极点重合,且在 CD 的同侧〕, PD=PG ,DF⊥PG 于点 H,DF 交直线 AB 于点 F,将线段 PG 绕点 P逆时针旋转 90 °获取线段P E,连接 EF.〔1〕如图 1,当点 P 与点 G 分别在线段 BC 与线段 AD 上时,假设 PC=1 ,计算出 DG 的长;〔2〕如图 1,当点 P 与点 G 分别在线段 BC 与线段 AD 上时,证明:四边形 DFEP 为菱形;〔3〕如图 2,当点 P 与点 G 分别在线段 BC 与线段 AD 的延伸线上时,〔2〕的结论:四边形 DFEP 为菱形可否依旧成立?假设成立,请给出证明;假设不成立,请说明原由.9 .〔2021 ?房山区二模〕在△ ABC 中,AB=BC=2 ,∠ABC=90 °,BD 为斜边 AC 上的中线,将△ ABD 绕点 D 顺时针旋转α〔0°<α<180 °〕获取△EFD,其中点 A 的对应点为点 E,点 B 的对应点为点 F.BE 与 FC 订交于点 H.〔1〕如图 1,直接写出 BE 与 FC 的数量关系:;〔2〕如图 2,M 、N 分别为 EF、BC 的中点.求证: MN= ;〔3〕连接 BF,CE,如图 3,直接写出在此旋转过程中,线段 BF、CE 与 AC 之间的数量关系:.10 .〔2021 ?衢州校级模拟〕图 1 是边长分别为 4 和 2 的两个等边三角形纸片 ABC 和 ODE 叠放在一起〔 C与 O 重合〕.〔1〕操作:固定△ ABC ,将△0DE 绕点 C 顺时针旋转 30 °后获取△ODE ,连接 AD 、B E,CE 的延伸线交 AB 于 F 〔图 2〕;研究:在图 2 中,线段 BE 与 AD 之间有怎样的大小关系?试证明你的结论.〔2〕在〔 1〕的条件下将的△ ODE ,在线段 CF 上沿着 CF 方向以每秒 1 个单位的速度平移,平移后的△ CDE 设为△PQR,当点 P 与点 F 重合时停止运动〔图 3〕研究:设△PQR 搬动的时间为 x 秒,△PQR 与△ABC 重叠局部的面积为 y,求 y 与 x 之间的函数解析式,并写出函数自变量 x 的取值范围.〔3〕将图 1 中△0DE 固定,把△ABC 沿着 OE 方向平移,使极点 C 落在 OE 的中点 G 处,设为△ABG ,尔后将△ABG 绕点 G 顺时针旋转,边 BG 交边 DE 于点 M ,边 AG 交边 DO 于点 N ,设∠BGE= α〔30 °<α<90 °〕;〔图4 〕研究:在图 4 中,线段 ON ?EM 的值可否随α的变化而变化?若是没有变化,请你求出 ON ?EM 的值,若是有变化,请你说明原由.11 .〔2021 ?武义县模拟〕〔 1 〕将矩形 OABC 放在平面直角坐标系中,极点 O 为原点,极点 C、A 分别在 x轴和 y 轴上, OA=8 ,OC=10 ,点 E 为 OA 边上一点,连接 CE,将△EOC 沿 CE 折叠.①如图 1,当点 O 落在 AB 边上的点 D 处时,求点 E 的坐标;②如图 2,当点 O 落在矩形 OABC 内部的点 D 处时,过点 E 作 EG∥x 轴交 CD 于点 H,交 BC 于点 G,设 H〔m ,n 〕,求 m 与 n 之间的关系式;〔2〕如图 3,将矩形 OABC 变为边长为 10 的正方形,点 E 为 y 轴上一动点,将△ EOC 沿 CE 折叠.点 O 落在点 D 处,延伸 CD 交直线 AB 于点 T,假设 = ,求 AT 的长.12 .〔2021 ?石家庄校级模拟〕如图 1,在菱形 ABCD 中,AC=6 ,BD=6 ,AC,BD 订交于点 O .〔1〕求边 AB 的长;〔2〕如图 2,将一个足够大的直角三角板 60 °角的极点放在菱形 ABCD 的极点 A 处,绕点 A 左右旋转,其中三角板 60 °角的两边分别于边 BC,CD 订交于 E,F,连接 EF 与 AC 订交于点 G.①判断△AEF 是哪一种特别三角形,并说明原由;②旋转过程中可否存在线段 EF 最短,假设存在,求出最小值,假设不存在,请说明原由.13 .〔2021 春 ?泰安校级期中〕如图,正方形 OEFG 绕着边长为 30 的正方形 ABCD 的对角线的交点 O 旋转,边 OE、OG 分别交边 AD 、AB 于点 M 、N .〔1〕求证: OM=ON ;〔2〕设正方形 OEFG 的对角线 OF 与边 AB 订交于点 P,连接 PM .假设 PM=13 ,试求 AM 的长;〔3〕连接 MN ,求△AMN 周长的最小值,并指出此时线段 MN 与线段 BD 的关系.14 .〔2021 ?天津〕在平面直角坐标系中, O 为原点,点 A〔﹣2 ,0〕,点 B〔0,2〕,点 E,点 F 分别为 OA ,OB 的中点.假设正方形 OEDF 绕点 O 顺时针旋转,得正方形 OE ′D′F′,记旋转角为α.〔Ⅰ〕如图①,当α =90 °时,求AE′,BF′的长;〔Ⅱ〕如图②,当α =135 °时,求证AE′=BF ′,且AE′⊥BF′;〔Ⅲ〕假设直线 AE′与直线BF′订交于点P,求点 P 的纵坐标的最大值〔直接写出结果即可〕.15 .〔2021 春 ?青山区期末〕正方形 ABCD 和正方形 EBGF 共极点 B,连 AF,H 为 AF 的中点,连 EH,正方形 EBGF 绕点 B 旋转.〔1〕如图 1,当 F 点落在 BC 上时,求证: EH= FC;〔2〕如图 2,当点 E 落在 BC 上时,连 BH ,假设 AB=5 ,BG=2 ,求 BH 的长;〔3〕当正方形 EBGF 绕点 B 旋转到如图 3 的地址时,求的值.16 .〔2021 ?盐城〕阅读资料如图①,△ABC 与△DEF 都是等腰直角三角形,∠ACB= ∠EDF=90 °,且点 D 在 AB 边上,AB、EF的中点均为 O ,连接 BF、CD 、CO ,显然点 C、F、O 在同一条直线上,可以证明△ BOF≌△COD ,那么 BF=CD .解决问题〔1〕将图①中的 Rt△DEF 绕点 O 旋转获取图②,猜想此时线段 BF 与 CD 的数量关系,并证明你的结论;〔2〕如图③,假设△ ABC 与△DEF 都是等边三角形, AB 、EF 的中点均为 O ,上述〔 1 〕中的结论依旧成立吗?如果成立,请说明原由;如不成立,央求出 BF 与 CD 之间的数量关系;〔3〕如图④,假设△ABC 与△DEF 都是等腰三角形, AB 、EF 的中点均为 0,且顶角∠ACB= ∠EDF= α,请直接写出的值〔用含α的式子表示出来〕17 .〔2021 ?梅州〕用如图①,②所示的两个直角三角形〔局部边长及角的度数在图中已标出〕,完成以下两个研究问题:研究一:将以上两个三角形如图③拼接〔 BC 和 ED 重合〕,在 BC 边上有一动点 P.〔1〕当点 P 运动到∠CFB 的角均分线上时,连接 AP,求线段 AP 的长;〔2〕当点 P 在运动的过程中出现 PA=FC 时,求∠PAB 的度数.研究二:如图④,将△ DEF 的极点 D 放在△ABC 的 BC 边上的中点处,并以点 D 为旋转中心旋转△ DEF,使△DEF 的两直角边与△ ABC 的两直角边分别交于 M 、N 两点,连接 MN .在旋转△DEF 的过程中,△ AMN 的周长可否存在有最小值?假设存在,求出它的最小值;假设不存在,请说明原由.18 .〔2021 ?营口〕如图,点 P 是⊙O 外一点, PA 切⊙O 于点 A,AB 是⊙O 的直径,连接 OP ,过点 B 作 BC∥OP 交⊙O 于点 C,连接 AC 交 OP 于点 D .〔1〕求证: PC 是⊙ O 的切线;〔2〕假设 PD= ,AC=8 ,求图中阴影局部的面积;〔3〕在〔 2〕的条件下,假设点 E是的中点,连接 CE,求 CE 的长.19 .〔2021 ?永州〕问题研究:〔一〕新知学习:圆内接四边形的判判断理:若是四边形对角互补,那么这个四边形内接于圆〔即若是四边形 EFGH 的对角互补,那么四边形 EFGH 的四个极点 E、F、G、H 都在同个圆上〕.〔二〕问题解决:⊙ O 的半径为 2,AB ,CD 是⊙O 的直径. P 是上任意一点,过点 P 分别作 AB,CD 的垂线,垂足分别为 N,M .〔1〕假设直径 AB⊥CD,关于上任意一点 P〔不与 B、C 重合〕〔如图一〕,证明四边形 PMON 内接于圆,并求此圆直径的长;〔2〕假设直径 AB⊥CD ,在点 P〔不与 B、C 重合〕从 B 运动到 C 的过程中,证明 MN 的长为定值,并求其定值;〔3〕假设直径 AB 与 CD 订交成 120 °角.①当点 P 运动到的中点 P1 时〔如图二〕,求 MN 的长;②当点 P〔不与 B、C 重合〕从 B 运动到 C 的过程中〔如图三〕,证明 MN 的长为定值.〔4〕试问当直径 AB 与 CD 订交成多少度角时, MN 的长取最大值,并写出其最大值.20 .〔2021 ?盘锦〕如图 1,△ABC 和△AED 都是等腰直角三角形,∠ BAC= ∠EAD=90 °,点B 在线段 AE 上,点C 在线段 AD 上.〔1〕请直接写出线段 BE 与线段 CD 的关系:;〔2〕如图 2,将图 1 中的△ABC 绕点 A 顺时针旋转角α〔 0<α<360 °〕,①〔1〕中的结论可否成立?假设成立,请利用图 2 证明;假设不成立,请说明原由;②当 AC= ED 时,研究在△ABC 旋转的过程中,可否存在这样的角α,使以 A、B、C、D 四点为极点的四边形是平行四边形?假设存在,请直接写出角α的度数;假设不存在,请说明原由.21 .〔2021 ?旭日〕问题:如图〔 1〕,在 Rt△ACB 中,∠ACB=90 °,AC=CB ,∠DCE=45 °,试试究AD 、DE、EB 满足的等量关系.[研究发现 ]小聪同学利用图形变换,将△ CAD 绕点 C 逆时针旋转 90°获取△CBH,连接 EH,由条件易得∠ EBH=90 °,∠ECH= ∠ECB+ ∠BCH= ∠ECB+ ∠ACD=45 °.依照“边角边〞,可证△ CEH ≌,得 EH=ED .在 Rt△HBE 中,由定理,可得 BH 2+EB 2=EH 2,由 BH=AD ,可得 AD 、DE、EB 之间的等量关系是.[实践运用 ]〔1〕如图〔 2 〕,在正方形 ABCD 中,△AEF 的极点 E、F 分别在 BC、CD 边上,高 AG 与正方形的边长相等,求∠EAF 的度数;〔2〕在〔 1〕条件下,连接 BD ,分别交 AE、AF 于点 M 、N ,假设 BE=2 ,DF=3 ,BM=2 ,运用小聪同学探究的结论,求正方形的边长及 MN 的长.22 .〔2021 ?自贡〕在△ABC 中,AB=AC=5 ,cos ∠ABC= ,将△ABC 绕点 C 顺时针旋转,获取△ A1B1C.〔1〕如图①,当点 B1 在线段 BA 延伸线上时.①求证: BB1∥CA 1;②求△AB1C 的面积;〔2〕如图②,点 E 是 BC 边的中点,点 F 为线段 AB 上的动点,在△ ABC 绕点 C 顺时针旋转过程中,点 F 的对应点是 F1,求线段 EF1 长度的最大值与最小值的差.23 .〔2021 ?吉林〕两个三角板 ABC,DEF,按以以下图的地址摆放,点 B 与点 D 重合,边 AB 与边 DE 在同一条直线上〔假设图形中所有的点,线都在同一平面内〕.其中,∠C= ∠DEF=90 °,∠ABC= ∠F=30 °,AC=DE=6cm .现固定三角板 DEF,将三角板 ABC 沿射线 DE 方向平移,当点 C 落在边 EF 上时停止运动.设三角板平移的距离为 x〔cm 〕,两个三角板重叠局部的面积为 y〔cm 2〕.〔1〕当点 C 落在边 EF 上时, x= cm ;〔2〕求 y 关于 x 的函数解析式,并写出自变量 x 的取值范围;〔3〕设边 BC 的中点为点 M ,边 DF 的中点为点 N .直接写出在三角板平移过程中,点 M 与点 N 之间距离的最小值.24 .〔2021 ?汕尾〕在 Rt△ABC 中,∠A=90 °,AC=AB=4 ,D,E 分别是边 AB ,AC 的中点,假设等腰 Rt△ADE绕点 A 逆时针旋转,获取等腰 Rt△AD 1E1,设旋转角为α〔 0<α≤180 °〕,记直线 BD1 与 CE1 的交点为 P.〔1〕如图 1,当α=90 °时,线段BD 1 的长等于,线段 CE1 的长等于;〔直接填写结果〕〔2〕如图 2,当α=135 °时,求证:BD 1=CE 1,且 BD1⊥CE1;〔3〕求点 P 到 AB 所在直线的距离的最大值.〔直接写出结果〕25 .〔2021 ?赤峰〕如图,四边形 ABCD 是边长为 2,一个锐角等于 60°的菱形纸片,小芳同学将一个三角形纸片的一个极点与该菱形极点 D 重合,按顺时针方向旋转三角形纸片,使它的两边分别交 CB、BA〔或它们的延长线〕于点 E、F,∠EDF=60 °,当CE=AF 时,如图 1 小芳同学得出的结论是 DE=DF .〔1〕连续旋转三角形纸片,当 CE≠AF 时,如图 2 小芳的结论可否成立?假设成立,加以证明;假设不成立,请说明原由;〔2〕再次旋转三角形纸片,当点 E、F 分别在 CB、BA 的延伸线上时,如图 3 请直接写出 DE 与 DF 的数量关系;〔3〕连 EF,假设△DEF 的面积为 y ,CE=x ,求 y 与 x 的关系式,并指出当 x 为何值时, y 有最小值,最小值是多少?26 .〔2021 ?海南〕如图,菱形 ABCD 中,点 P 是 CD 的中点,∠BCD=60 °,射线AP 交 BC 的延伸线于点 E,射线 BP 交 DE 于点 K,点 O 是线段 BK 的中点.〔1〕求证:△ADP ≌△ECP;〔2〕假设 BP=n ?PK,试求出 n 的值;〔3〕作 BM 丄 AE 于点 M ,作 KN 丄 AE 于点 N,连接 MO 、NO ,如图 2 所示,请证明△MON 是等腰三角形,并直接写出∠ MON 的度数.27 .〔2021 ?丹东〕在正方形 ABCD 中,对角线 AC 与 BD 交于点 O;在 Rt△PMN 中,∠MPN=90 °.〔1〕如图 1,假设点 P 与点 O 重合且 PM ⊥AD 、PN ⊥AB ,分别交 AD 、AB 于点 E、F,请直接写出 PE 与 PF 的数量关系;〔2〕将图 1 中的 Rt△PMN 绕点 O 顺时针旋转角度α〔 0 °<α<45 °〕.①如图 2,在旋转过程中〔 1〕中的结论依旧成立吗?假设成立,请证明;假设不成立,请说明原由;②如图 2,在旋转过程中,当∠ DOM=15 °时,连接EF,假设正方形的边长为 2,请直接写出线段 EF 的长;③如图 3,旋转后,假设 Rt△PMN 的极点 P 在线段 OB 上搬动〔不与点 O 、B 重合〕,当 BD=3BP 时,猜想此时PE 与 PF 的数量关系,并给出证明;当 BD=m ?BP 时,请直接写出 PE 与 PF 的数量关系.28 .〔2021 ?成都〕 AC ,EC 分别是四边形 ABCD 和 EFDC 的对角线,点 E 在△ABC 内,∠CAE+ ∠CBE=90 °.〔1〕如图①,当四边形 ABCD 和 EFCG 均为正方形时,连接 BF.〔i〕求证:△CAE∽△CBF;〔ii 〕假设 BE=1 ,AE=2 ,求 CE 的长;〔2〕如图②,当四边形 ABCD 和 EFCG 均为矩形,且 = =k 时,假设 BE=1 ,AE=2 ,CE=3 ,求 k 的值;〔3〕如图③,当四边形 ABCD 和 EFCG 均为菱形,且∠ DAB= ∠GEF=45 °时,设BE=m ,AE=n ,CE=p ,试试究 m ,n,p 三者之间满足的等量关系.〔直接写出结果,不用写出解答过程〕29 .〔2021 ?锦州〕如图①,∠ QPN 的极点 P 在正方形 ABCD 两条对角线的交点处,∠ QPN= α,将∠QPN 绕点P 旋转,旋转过程中∠ QPN 的两边分别与正方形 ABCD 的边 AD 和 CD 交于点 E 和点 F〔点 F 与点 C,D 不重合〕.〔1〕如图①,当α =90 °时,DE,DF,AD 之间满足的数量关系是;〔2〕如图②,将图①中的正方形 ABCD 改为∠ADC=120 °的菱形,其他条件不变,当α =60 °时,〔1〕中的结论变为 DE+DF= AD ,请给出证明;〔3〕在〔2〕的条件下,假设旋转过程中∠ QPN 的边 PQ 与射线 AD 交于点 E,其他条件不变,研究在整个运动变化过程中, DE,DF ,AD 之间满足的数量关系,直接写出结论,不用加以证明.30 .〔2021 ?绵阳〕如图 1,矩形 ABCD 中,AB=4 ,AD=3 ,把矩形沿直线 AC 折叠,使点 B 落在点 E 处,AE交 CD 于点 F,连接 DE.〔1〕求证:△DEC≌△EDA;〔2〕求 DF 的值;〔3〕如图 2,假设 P 为线段 EC 上一动点,过点 P 作△AEC 的内接矩形,使其极点 Q 落在线段 AE 上,定点 M 、N 落在线段 AC 上,当线段 PE 的长为何值时,矩形 PQMN 的面积最大?并求出其最大值.几何难题精选 (1) 旋转圆四边形参照答案与试题解析一.解答题〔共 30 小题〕1 .〔2021 ?河南〕如图 1,在 Rt △ABC 中,∠B=90 °,BC=2AB=8 ,点 D、E 分别是边 BC、AC 的中点,连接DE,将△EDC 绕点 C 按顺时针方向旋转,记旋转角为α.〔1〕问题发现①当α=0 °时, = ;②当α=180 °时, = .〔2〕拓展研究试判断:当 0°≤α<360 °时,的大小有无变化?请仅就图 2 的状况给出证明.〔3〕问题解决当△EDC 旋转至 A,D,E 三点共线时,直接写出线段 BD 的长.【考点】几何变换综合题.【专题】压轴题.【解析】〔1〕①当α=0 °时,在Rt △ABC 中,由勾股定理,求出 AC 的值是多少;尔后依照点 D、E 分别是边BC、AC 的中点,分别求出 AE、BD 的大小,即可求出的值是多少.②α=180 °时,可得AB ∥DE,尔后依照,求出的值是多少即可.〔2〕第一判断出∠ ECA= ∠DCB ,再依照,判断出△ECA∽△DCB,即可求出的值是多少,进而判断出的大小没有变化即可.〔3〕依照题意,分两种状况:①点 A,D,E 所在的直线和 BC 平行时;②点 A ,D,E 所在的直线和 BC 订交时;尔后分类谈论,求出线段 BD 的长各是多少即可.【解答】解:〔 1〕①当α=0 °时,∵Rt △ABC 中,∠B=90 °,∴AC= ,∵点D、E 分别是边 BC、AC 的中点,∴,∴.②如图 1,,当α=180 °时,可得 AB∥DE,∵,∴ = .故答案为:.〔2〕如图 2,,当 0°≤α<360 °时,的大小没有变化,∵∠ECD= ∠ACB ,∴∠ECA= ∠DCB ,又∵,∴△ECA∽△DCB ,∴.〔3〕①如图 3 ,,∵AC=4 ,CD=4 ,CD ⊥AD ,∴AD= = ,∵AD=BC ,AB=DC ,∠B=90 °,∴四边形 ABCD 是矩形,∴.②如图 4,连接 BD,过点 D 作 AC 的垂线交 AC 于点 Q ,过点 B作 AC 的垂线交 AC 于点 P,,∵AC=4 ,CD=4 ,CD ⊥AD ,∴AD= = ,∵点D、E 分别是边 BC、AC 的中点,∴DE= =2 ,∴AE=AD ﹣DE=8 ﹣2=6 ,由〔2〕,可得,∴BD= = .综上所述, BD 的长为 4 或.【谈论】〔1〕此题主要观察了几何变换综合题,观察了解析推理能力,观察了分类谈论思想的应用,观察了数形结合思想的应用,要熟练掌握.〔2〕此题还观察了相似三角形、全等三角形的判断和性质的应用,要熟练掌握.〔3〕此题还观察了线段长度的求法,以及矩形的判断和性质的应用,要熟练掌握.2.〔2021 ?济南〕如图 1 ,在△ABC 中,∠ACB=90 °,AC=BC ,∠EAC=90 °,点M 为射线 AE 上任意一点〔不与 A 重合〕,连接 CM ,将线段 CM 绕点 C 按顺时针方向旋转 90 °获取线段CN ,直线 NB 分别交直线 CM 、射线 AE 于点 F、D.〔1〕直接写出∠ NDE 的度数;〔2〕如图 2、图 3,当∠EAC 为锐角或钝角时,其他条件不变,〔 1〕中的结论可否发生变化?若是不变,采用其中一种状况加以证明;若是变化,请说明原由;〔3〕如图 4,假设∠EAC=15 °,∠ACM=60 °,直线CM 与 AB 交于 G,BD= ,其他条件不变,求线段 AM的长.【考点】几何变换综合题.【专题】压轴题.【解析】〔1〕依照题意证明△ MAC ≌△NBC 即可;〔2〕与〔 1〕的证明方法相似,证明△ MAC ≌△NBC 即可;〔3〕作 GK ⊥BC 于 K,证明 AM=AG ,依照△MAC ≌△NBC ,获取∠BDA=90 °,依照直角三角形的性质和条件求出 AG 的长,获取答案.【解答】解:〔 1〕∵∠ACB=90 °,∠MCN=90 °,∴∠ACM= ∠BCN ,在△MAC 和△NBC 中,,∴△MAC ≌△NBC ,∴∠NBC= ∠MAC=90 °,又∵∠ACB=90 °,∠EAC=90 °,∴∠NDE=90 °;〔2〕不变,在△MAC ≌△NBC 中,,∴△MAC ≌△NBC ,∴∠N= ∠AMC ,又∵∠MFD= ∠NFC,∠MDF= ∠FCN=90 °,即∠NDE=90 °;〔3〕作 GK⊥BC 于 K,∵∠EAC=15 °,∴∠BAD=30 °,∵∠ACM=60 °,∴∠GCB=30 °,∴∠AGC= ∠ABC+ ∠GCB=75 °,∠AMG=75 °,∴AM=AG ,∵△MAC ≌△NBC ,∴∠MAC= ∠NBC ,∴∠BDA= ∠BCA=90 °,∵BD= ,∴AB= + ,AC=BC= +1 ,设 BK=a ,那么 GK=a ,CK= a,∴a+ a= +1 ,∴a=1 ,∴KB=KG=1 ,BG= ,AG= ,∴AM= .【谈论】此题观察的是矩形的判断和性质以及三角形全等的判断和性质,正确作出辅助线、利用方程的思想是解题的重点,注意旋转的性质的灵便运用.3 .〔2021 ?岳阳〕直线 m ∥n ,点 C 是直线 m 上一点,点 D 是直线 n 上一点, CD 与直线 m 、n 不垂直,点 P 为线段 CD 的中点.〔1〕操作发现:直线 l ⊥m ,l⊥n,垂足分别为 A、B,当点 A 与点 C 重合时〔如图①所示〕,连接 PB,请直接写出线段 PA 与 PB 的数量关系: PA=PB .〔2〕猜想证明:在图①的状况下,把直线 l 向上平移到如图②的地址,试问〔 1〕中的 PA 与 PB 的关系式可否依旧成立?假设成立,请证明;假设不成立,请说明原由.〔3〕延伸研究:在图②的状况下,把直线 l 绕点 A 旋转,使得∠ APB=90 °〔如图③所示〕,假设两平行线 m 、n 之间的距离为 2k .求证: PA ?PB=k ?AB.【考点】几何变换综合题.【专题】压轴题.【解析】〔1〕依照三角形 CBD 是直角三角形,而且点 P 为线段 CD 的中点,应用直角三角形的性质,可得 PA=PB ,据此解答即可.〔2〕第一过 C 作 CE⊥n 于点 E,连接 P E,尔后分别判断出 PC=PE 、∠PCA= ∠PEB、AC=BE ;尔后依照全等三角形判断的方法,判断出△ PAC∽△PBE,即可判断出 PA=PB 依旧成立.〔3〕第一延伸 AP 交直线 n 于点 F,作 AE⊥BD 于点 E,尔后依照相似三角形判断的方法,判断出△AEF∽△BPF,即可判断出 AF ?BP=AE ?BF,再个 AF=2PA ,AE=2k ,BF=AB ,可得 2PA ?PB=2k .AB,因此 PA?PB=k ?AB,据此解答即可.【解答】解:〔 1〕∵l⊥n,∴BC⊥BD,∴三角形 CBD 是直角三角形,又∵点 P 为线段 CD 的中点,∴PA=PB .〔2〕把直线 l 向上平移到如图②的地址, PA=PB 依旧成立,原由以下:如图②,过 C 作 CE⊥n 于点 E,连接 P E,,∵三角形 CED 是直角三角形,点 P 为线段 CD 的中点,∴PD=PE ,又∵点 P 为线段 CD 的中点,∴PC=PD ,∴PC=PE ;∵PD=PE ,∴∠CDE= ∠PEB,∵直线 m ∥n ,∴∠CDE= ∠PCA ,∴∠PCA= ∠PEB,又∵直线 l⊥m ,l⊥n,CE⊥m ,CE⊥n ,∴l∥CE,∴AC=BE ,在△PAC 和△PBE 中,∴△PAC≌△PBE,∴PA=PB .〔3〕如图③,延伸 AP 交直线 n 于点 F,作 AE⊥BD 于点 E,,∵直线 m ∥n ,∴,∴AP=PF ,∵∠APB=90 °,∴BP⊥AF,又∵AP=PF ,∴BF=AB ;在△AEF 和△BPF 中,∴△AEF∽△BPF,∴,∴AF ?BP=AE ?BF,∵AF=2PA ,AE=2k ,BF=AB ,∴2PA ?PB=2k .AB ,∴PA?PB=k ?AB .【谈论】〔1〕此题主要观察了几何变换综合题,观察了解析推理能力,观察了分类谈论思想的应用,观察了数形结合思想的应用,观察了从图象中获守信息,并能利用获取的信息解答相应的问题的能力.〔2〕此题还观察了直角三角形的性质和应用,要熟练掌握.〔3〕此题还观察了全等三角形的判断和性质的应用,以及相似三角形的判断和性质的应用,要熟练掌握.4 .〔2021 ?重庆〕在△ABC 中,AB=AC ,∠A=60 °,点D 是线段 BC 的中点,∠EDF=120 °,DE 与线段 AB 相交于点 E.DF 与线段 AC 〔或 AC 的延伸线〕订交于点 F.〔1〕如图 1,假设 DF⊥AC,垂足为 F,AB=4 ,求 BE 的长;〔2〕如图 2,将〔1 〕中的∠EDF 绕点 D 顺时针旋转必然的角度, DF 仍与线段 AC 订交于点 F.求证:BE+CF= AB;〔3〕如图 3,将〔 2〕中的∠EDF 连续绕点 D 顺时针旋转必然的角度,使 DF 与线段 AC 的延伸线订交于点 F,作 DN ⊥AC 于点 N ,假设 DN ⊥AC 于点 N ,假设 DN=FN ,求证: BE+CF= 〔BE﹣CF〕.【考点】几何变换综合题;全等三角形的判断与性质;等边三角形的判断与性质;锐角三角函数的定义.【专题】压轴题.【解析】〔1〕如图 1,易求得∠B=60 °,∠BED=90 °,BD=2 ,尔后运用三角函数的定义即可求出 BE 的值;〔2〕过点 D 作 DM ⊥AB 于 M ,作 DN ⊥AC 于 N,如图 2,易证△MBD ≌△NCD ,那么有 BM=CN ,DM=DN ,进而可证到△ EMD ≌△FND ,那么有 EM=FN ,即可获取 BE+CF=BM+EM+CF=BM+FN+CF=BM+CN=2BM=2BD×cos60 °=BD= BC= AB;〔3〕过点 D 作 DM ⊥AB 于 M ,如图 3.同〔1〕可得:∠B= ∠ACD=60 °,同〔2〕可得: BM=CN ,DM=DN ,EM=FN .由 DN=FN 可得 DM=DN=FN=EM ,进而可得BE+CF=BM+EM+CF=CN+DM+CF=NF+DM=2DM ,B E﹣CF=BM+EM ﹣CF=BM+NF ﹣CF=BM+NC=2BM .尔后在 Rt△BMD 中,运用三角函数即可获取 DM= BM ,即 BE+CF= 〔B E﹣CF〕.【解答】解:〔 1〕如图 1,∵AB=AC ,∠A=60 °,∴△ABC 是等边三角形,∴∠B= ∠C=60 °,BC=AC=AB=4 .∵点D 是线段 BC 的中点,∴BD=DC= BC=2 .∵DF⊥AC,即∠AFD=90 °,∴∠AED=360 °﹣60 °﹣90 °﹣120 °=90 °,∴∠BED=90 °,∴BE=BD ×cos ∠B=2 ×cos60 °=2 × =1 ;〔2〕过点 D 作 DM ⊥AB 于 M ,作 DN ⊥AC 于 N,如图 2,那么有∠AMD= ∠BMD= ∠AND= ∠CND=90 °.∵∠A=60 °,∴∠MDN=360 °﹣60 °﹣90 °﹣90 °=120 °.∵∠EDF=120 °,∴∠MDE= ∠NDF .在△MBD 和△NCD 中,,∴△MBD ≌△NCD ,∴BM=CN ,DM=DN .在△EMD 和△FND 中,,∴△EMD ≌△FND ,∴EM=FN ,∴BE+CF=BM+EM+CF=BM+FN+CF=BM+CN=2BM=2BD ×cos60 °=BD= BC= AB ;〔3〕过点 D 作 DM ⊥AB 于 M ,如图 3.同〔1〕可得:∠B= ∠ACD=60 °.同〔2〕可得: BM=CN ,DM=DN ,EM=FN .∵DN=FN ,∴DM=DN=FN=EM ,∴BE+CF=BM+EM+CF=CN+DM+CF=NF+DM=2DM ,BE﹣CF=BM+EM ﹣CF=BM+NF ﹣CF=BM+NC=2BM .在 Rt△BMD 中,DM=BM ?tanB= BM ,∴BE+CF= 〔BE﹣CF〕.【谈论】此题主要观察了等边三角形的判断与性质、四边形的内角和定理、全等三角形的判断与性质、三角函数的定义、特别角的三角函数值等知识,经过证明三角形全等获取 BM=CN ,DM=DN ,EM=FN 是解决此题的关键.5 .〔2021 ?烟台〕【问题提出】如图①,△ ABC 是等腰三角形,点 E 在线段 AB 上,点 D 在直线 BC 上,且 ED=EC ,将△BCE 绕点 C 顺时针旋转 60°至△ACF 连接 EF试证明: AB=DB+AF【类比研究】〔1〕如图②,若是点 E 在线段 AB 的延伸线上,其他条件不变,线段 AB ,DB,AF 之间又有怎样的数量关系?请说明原由〔2〕若是点 E 在线段 BA 的延伸线上,其他条件不变,请在图③的基础大将图形补充完满,并写出 AB ,DB ,AF 之间的数量关系,不用说明原由.【考点】几何变换综合题.【专题】压轴题.【解析】第一判断出△ CEF 是等边三角形,即可判断出 EF=EC,再依照 ED=EC ,可得 ED=EF ,∠CAF= ∠BAC=60 °,因此∠EAF= ∠BAC+ ∠CAF=120 °,∠DBE=120 °,∠EAF= ∠DBE;尔后依照全等三角形判断的方法,判断出△EDB ≌△FEA ,即可判断出 BD=AE ,AB=AE+BF ,因此 AB=DB+AF .〔1〕第一判断出△CEF 是等边三角形,即可判断出 EF=EC,再依照 ED=EC ,可得 ED=EF ,∠CAF= ∠BAC=60 °,因此∠EFC= ∠FGC+ ∠FCG,∠BAC= ∠FGC+ ∠FEA,∠FCG= ∠FEA,再依照∠FCG= ∠EAD ,∠D= ∠EAD,可得∠D= ∠FEA;尔后依照全等三角形判断的方法,判断出△ EDB≌△FEA,即可判断出 BD=AE ,EB=AF ,进而判断出AB=BD ﹣AF 即可.〔2〕第一依照点 E 在线段 BA 的延伸线上,在图③的基础大将图形补充完满,尔后判断出△ CEF 是等边三角形,即可判断出 EF=EC ,再依照 ED=EC ,可得 ED=EF ,∠CAF= ∠BAC=60 °,再判断出∠ DBE= ∠EAF,∠BDE= ∠AEF;。

2022届中考数学压轴题押题及答案解析

2022届中考数学压轴题押题及答案解析

2022年中考数学压轴题1.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)、C(3,0),点B为抛物线顶点,直线BD为抛物线的对称轴,点D在x轴上,连接AB、BC.(1)如图1,若∠ABC=60°,则点B的坐标为B(1,2√3);(2)如图2,若∠ABC=90°,AB与y轴交于点E,连接CE.①求这条抛物线的解析式;②点P为第一象限抛物线上一个动点,设△PEC的面积为S,点P的横坐标为m,求S关于m的函数关系式,并求出S的最大值;③如图3,连接OB,抛物线上是否存在点Q,使直线QC与直线BC所夹锐角等于∠OBD,若存在请直接写出点Q的坐标;若不存在,说明理由.解:(1)∵A(﹣1,O)、C(3,0),∴AC=4∵直线BD为抛物线的对称轴,∴AB=CB,BD⊥AC,AD=CD=2∴D(1,0),∵∠ABC=60°,∴△ABC是等边三角形∴∠ABC=60°,=60°∴tan∠ABC=BDAD,即BD=AD•tan∠ABC=2tan60°=2√3,∴B(1,2√3);故答案为:B(1,2√3);(2)①∵A(﹣1,0),C(3,0)∴AC=4∵直线BD为对称轴∴AD=CD=12AC=2,AB=BC∴D(1,0)∵∠ABC=90°∴△ABC为等腰直角三角形∴B(1,2)设抛物线解析式为y=a(x﹣1)2+2,图象过A(﹣1,0),则0=a(﹣1﹣1)2+2,解得a=−1 2,∴y=−12(x﹣1)2+2,即y=−12x2+x+32;②如图2,过点P作PF⊥y轴于点F,则P(m,−12m2+m+32)∵AB=BC,∠ABC=90°∴∠BAC=45°在Rt△AOE中,∠AOE=90°,∴∠AEO=∠EAO=45°∴AO=EO=1∴E(0,1)∴S=S四边形FPCO﹣S△PEF﹣S△CEO=12(m+3)(−12m2+m+32)−12m(−12m2+m+32−1)−12×1×3 =−34m2+2m+34=−34(m−43)2+2512∵−34<0,∴当m=43时,S最大值=2512,∴S关于m的函数关系式为S=−34m2+2m+34,S的最大值为2512;③抛物线上存在点Q,使直线QC与直线BC所夹锐角等于∠OBD,如图3,在Rt△ABC中,∠ABC=90°,AB=BC,AC=4∴△ABC是等腰直角三角形,AB=BC=2√2∵E(0,1)∴BE =AE =12BC ,即tan ∠BCE =BE BC =12∵tan ∠OBD =OD BD =12∴tan ∠BCE =tan ∠OBD ,即∠BCE =∠OBD 易求得直线CE 解析式为y =−13x +1, 联立方程组{y =−13x +1y =−12x 2+x +32, 解得{x 1=3y 1=0,{x 2=−13y 2=109;∴Q 1(−13,109)在直线AB 上截取BG =12BC ,∴tan ∠BCG =BG BC =12=tan ∠OBD ∴∠BCG =∠OBD ,过点G 作GL ⊥y 轴于L ,则△OAE ∽△LGE ∴GL OA=EL OE=EG AE=21∴GL =2OA =2,EL =2OE =2,OL =OE +EL =1+2=3 ∴G (2,3)∴直线CG 解析式为y =﹣3x +9,解方程组{y =−3x +9y =−12x 2+x +32得{x 1=3y 1=0,{x 2=5y 2=−6 ∴Q 2(5,﹣6),综上所述,点Q 的坐标为:Q 1(−13,109),Q 2(5,﹣6).2.如图,在平面直角坐标系中,抛物线y=12x2+bx+c交x轴正半轴于点A、点B,交y轴于点C,直线y=﹣x+6经过点B、点C;(1)求抛物线的解析式;(2)点D在x轴下方的抛物线上,连接DB、DC,点D的横坐标为t,△BCD的面积为S,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,点E在x轴上方的抛物线上,过点E作EF⊥x轴,垂足为点F,连接DE,将射线ED沿直线EF折叠,得到对应射线EG,直线DF交射线EG于点H,当S=12,EF=√5FH时,求点E的坐标.解:(1)在y=﹣x+6中,令x=0,得y=6,∴C(0,6),令y=0,得x=6,∴B(6,0)将B(6,0),C(0,6)代入y=12x2+bx+c中,得{12×62+6b+c=0c=6,解得{b=−4c=6∴抛物线的解析式为:y=12x2−4x+6;(2)如图1,过点D作DL⊥BC于L,作DK∥y轴交BC于K,则∠DLK=∠BOC=90°,∵DK∥y轴∴∠DKL=∠BCO∴∠DKL∽∠BCO∴DLDK =OBBC∴DL •BC =DK •OB∵D (t ,12t 2−4t +6),K (t ,﹣t +6)∴DK =﹣t +6﹣(12t 2−4t +6)=−12t 2+3t∴S =12DL •BC =12DK •OB =12×(−12t 2+3t )×6=−32t 2+9t ,在y =12x 2−4x +6中,令y =0,得12x 2−4x +6=0,解得:x 1=2,x 2=6,∵点D 在x 轴下方的抛物线上,∴2<t <6, ∴S =−32t 2+9t (2<t <6);(3)当S =12时,−32t 2+9t =12,解得:t 1=2,t 2=4,∵2<t <6,∴t =4,∴D (4,﹣2)如图2,点E 在x 轴上方对称轴左侧时,过D 作DG ∥x 轴交射线EG 于G ,交EF 于R ,设E (m ,12m 2−4m +6),m <2,则F (m ,0),G (2m ﹣4,﹣2)∴直线DE 解析式为y =12(m ﹣4)x +6﹣2m ,直线GE 解析式为y =12(4﹣m )x +m 2﹣6m +6 直线DH 解析式为y =2m−4x −2mm−4 ∵12(4﹣m )×2m−4=−1∴GE ⊥DH∴∠EHG =∠ERD =90° ∵∠REG =∠RED ∴△EFH ∽△EDR ∴DR ER=FH EH,∵EF =√5FH ,∴EH =2FH∴ER =2DR ,即12m 2−4m +6+2=2(4﹣m ),解得:m 1=0,m 2=4(舍去) ∴E 1(0,6);如图3,点E 在x 轴上方对称轴右侧时,过D 作DG ∥x 轴交射线EG 于G ,交EF 于R ,设E (m ,12m 2−4m +6),m >6,与上述方法相同可得:ER =2DR ,即12m 2−4m +6+2=2(m ﹣4),解得:m 1=4(舍去),m2=8,∴E2(8,6);综上所述,点E的坐标为:E1(0,6),E2(8,6).3.已知,在平面直角坐标系中,抛物线y=−12x2+2x﹣1与直线y=﹣x﹣1相交于A,B两点,点C为顶点,连接AC.(1)如图1,连接BC,点P为线段AB上一动点,过点P作PE⊥x轴于点E,PF⊥BC 于点F,过点P作PQ∥x轴交抛物线于点Q(点Q在点P左侧),当PE•PF取得最大值时,在y轴上取一点R,连接QR,求PQ+2QR+√2RO的最小值;(2)如图2,将抛物线沿射线AC方向平移,记平移后的抛物线为y′,顶点为K,当AC=CK时,点N为平移后的抛物线y′上一点,其横坐标为8.点M为线段AB上一点,连接CM,且CM=BM,将△ACM绕点B顺时针旋转α度(0<α<180),旋转后的三角形为△A′C′M′,记直线A′C′与直线AB相交于点S,直线C′M′与直线AB相交于点T,连接NS,NT.是否存在点S和点T,使△C′ST为等腰三角形,若存在,请直接写出△NST的面积;若不存在,请说明理由.解:(1)由抛物线y =−12x 2+2x ﹣1=−12(x ﹣2)2+1得:C (2,1),解方程组{y =−12x 2+2x −1y =−x −1,得:{x 1=0y 1=−1,{x 2=6y 2=−7;∴A (0,﹣1),B (6,﹣7),过C 作CS ⊥y 轴于S ,过B 作BK ⊥y 轴于K ,则∠ASC =∠AKB =90° ∵CS =2,AS =1﹣(﹣1)=2,BK =6,AK =﹣1﹣(﹣7)=6 ∴AS =CS ,AK =BK∴△ACS 和△ABK 均为等腰直角三角形, ∴∠CAS =∠BAK =45°,AC =2√2,AB =6√2 ∴∠BAC =90°,BC =√AC 2+AB 2=4√5设P (m ,﹣m ﹣1),0≤m ≤6,则PE =﹣(﹣m ﹣1)=m +1,PB =√2(6﹣m ), ∵PF ⊥BC∴∠BFP =∠BAC =90° △BPF ∽△BCA ∴PF BP=AC BC=√24√5,∴PF =√55(6﹣m ) ∴PE •PF =(m +1)×√55(6﹣m )=−√55(m −52)2+49√520,∵−√55<0,∴当m =52时,PE •PF 取得最大值,此时,P (52,−72),∵PQ ∥x 轴∴Q (﹣1,−72),在x 正半轴上截取OG =OR ,连接RG ,过O 作OT ⊥RG 于T ,则RT =√22RO ,∵PQ +2QR +√2RO =PQ +2(QR +√22RO )求PQ +2QR +√2RO 的最小值,即求QR +√22RO 的最小值,当Q ,R ,T 三点共线时,QR +√22RO 的值最小;∵∠ORG =45° ∴∠PQR =∠QRK =45° ∴QR =√2,RO =52, ∴PQ +2QR +√2RO 的最小值=52−(﹣1)+2(√2+√22×52)=7+9√22; (2)∵AC =CK ,∴K (4,3)∴平移后的抛物线为y ′=−12(x ﹣4)2+3, ∴N (8,﹣5)过点N 作NZ ⊥AB 于Z ,作NN ′∥x 轴交AB 于N ′,则∠NN ′Z =45°,N ′(4,﹣5) ∴NN ′=8﹣4=4,NZ =√22×4=2√2∵点M 为线段AB 上一点,且CM =BM ,设M (t ,﹣t ﹣1) ∴(t ﹣2)2+(﹣t ﹣1﹣1)2=(t ﹣6)2+(﹣t ﹣1+7)2,解得:t =83∴M (83,−113)∴CM =BM =10√23,AM =AB ﹣BM =8√23∴AC :AM :CN =3:4:5,△C ′ST 为等腰三角形,可以分三种情形:①C ′T =ST ,如图2,作TL ⊥SC ′于L ,则∠TSC ′=∠C ′=∠ACM ,SL =LC ′=12SC ′, ∴sin ∠TSC ′=sin ∠ACM =45,∵BA ′=BA =6√2, ∴BS =BA′sin∠TSC′=6√245=15√22,∴S (−32,12),∵A′BA′S=tan ∠TSC ′=tan ∠ACM =43,∴A ′S =34A ′B =9√22,SC ′=A ′S +A ′C ′=13√22,SL =13√24, ∴ST =53SL =65√212∴S △NST =12ST •NZ =12×65√212×2√2=656, ②C ′S =C ′T ,如图3,作C ′H ⊥AB 于H ,作TL ⊥SC ′于L ,作NZ ⊥AB 于Z , 由①知AC :AM :CN =3:4:5,即:A ′C ′:A ′M ′:C ′M ′=3:4:5, ∵TL ∥A ′M ′,∴C ′L :LT :C ′T =3:4:5,设C ′L =3k ,LT =4k ,C ′T =5k ∴C ′S =C ′T =5k ,LS =2k ,ST =√LS 2+LT 2=2√5k ,A ′S =5k ﹣2√2, ∵LT ∥A ′B∴A ′S :A ′B =SL :LT =1:2,即:2A ′S =A ′B ,2(5k ﹣2√2)=6√2,解得:k =√2 ∴ST =2√5×√2=2√10 ∴S △NST =12ST •NZ =12×2√10×2√2=4√5; ③C ′S =ST ,如图4,作SB ⊥C ′T 于B ′,作TL ⊥SC ′于L ,作NZ ⊥AB 于Z , 则C ′B ′=B ′T ,∠STC ′=∠C ′=∠ACM ∴SB′SC′=LT C′T =sin ∠ACM =45,设SB ′=4t ,SC ′=5t ,则C ′B =B ′T =3t ,ST =5t∴C ′L =35C ′T =185t ,SL =SC ′﹣C ′L =75t ,LT =245t , ∵LT ∥BA ′ ∴SA′A′B=SL LT=724,24SA ′=7A ′B∴24(5t ﹣2√2)=7×6√2,解得:t =3√24 ∴ST =15√24 ∴S △NST =12ST •NZ =12×15√24×2√2=152, 综上所述,△C ′ST 为等腰三角形时,△NST 的面积为:656或4√5或152.4.如图,在Rt △ABC 中,∠ACB =90°,D 为AB 边上的一点,以AD 为直径的⊙O 交BC 于点E ,交AC 于点F ,过点C 作CG ⊥AB 交AB 于点G ,交AE 于点H ,过点E 的弦EP 交AB 于点Q (EP 不是直径),点Q 为弦EP 的中点,连结BP ,BP 恰好为⊙O 的切线.(1)求证:BC 是⊙O 的切线.(2)求证:EF̂=ED ̂. (3)若sin ∠ABC ═35,AC =15,求四边形CHQE 的面积.(1)证明:连接OE ,OP ,∵AD 为直径,点Q 为弦EP 的中点,∴PE ⊥AB ,点Q 为弦EP 的中点,∴AB 垂直平分EP ,∴PB =BE ,∵OE =OP ,OB =OB ,∴△BEO ≌△BPO (SSS ),∴∠BEO=∠BPO,∵BP为⊙O的切线,∴∠BPO=90°,∴∠BEO=90°,∴OE⊥BC,∴BC是⊙O的切线.(2)证明:∵∠BEO=∠ACB=90°,∴AC∥OE,∴∠CAE=∠OEA,∵OA=OE,∴∠EAO=∠AEO,∴∠CAE=∠EAO,̂=ED̂.∴EF(3)解:∵AD为的⊙O直径,点Q为弦EP的中点,∴EP⊥AB,∵CG⊥AB,∴CG∥EP,∵∠ACB=∠BEO=90°,∴AC∥OE,∴∠CAE=∠AEO,∵OA=OE,∴∠EAQ=∠AEO,∴∠CAE=∠EAO,∵∠ACE=∠AQE=90°,AE=AE,∴△ACE≌△AQE(AAS),∴CE=QE,∵∠AEC+∠CAE=∠EAQ+∠AHG=90°,∴∠CEH=∠AHG,∵∠AHG=∠CHE,∴∠CHE=∠CEH,∴CH =CE ,∴CH =EQ ,∴四边形CHQE 是平行四边形,∵CH =CE ,∴四边形CHQE 是菱形,∵sin ∠ABC ═sin ∠ACG ═AG AC =35, ∵AC =15,∴AG =9,∴CG =√AC 2−AG 2=12,∵△ACE ≌△AQE ,∴AQ =AC =15,∴QG =6,∵HQ 2=HG 2+QG 2,∴HQ 2=(12﹣HQ )2+62,解得:HQ =152,∴CH =HQ =152,∴四边形CHQE 的面积=CH •GQ =152×6=45.5.如图,△ABC 中,AB =AC ,⊙O 是△ABC 的外接圆,BO 的延长线交边AC 于点D .(1)求证:∠BAC =2∠ABD ;(2)当△BCD 是等腰三角形时,求∠BCD 的大小;(3)当AD =2,CD =3时,求边BC 的长.(1)证明:连接OA.∵AB=AC,̂=AĈ,∴AB∴OA⊥BC,∴∠BAO=∠CAO,∵OA=OB,∴∠ABD=∠BAO,∴∠BAC=2∠ABD.(2)解:如图2中,延长AO交BC于H.①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD,∵AB=AC,∴∠ABC=∠C,∴∠DBC=2∠ABD,∵∠DBC +∠C +∠BDC =180°,∴8∠ABD =180°,∴∠C =3∠ABD =67.5°.②若CD =CB ,则∠CBD =∠CDB =3∠ABD , ∴∠C =4∠ABD ,∵∠DBC +∠C +∠CDB =180°,∴10∠ABD =180°,∴∠BCD =4∠ABD =72°.③若DB =DC ,则D 与A 重合,这种情形不存在. 综上所述,∠C 的值为67.5°或72°.(3)如图3中,作AE ∥BC 交BD 的延长线于E .则AE BC =AD DC =23, ∴AO OH =AE BH =43,设OB =OA =4a ,OH =3a , ∵BH 2=AB 2﹣AH 2=OB 2﹣OH 2,∴25﹣49a 2=16a 2﹣9a 2,∴a 2=2556,∴BH =5√24, ∴BC =2BH =5√22.。

中考数学压轴题《中点模型》

中考数学压轴题《中点模型》

解题方法一. 倍长中线在△遊中•”为證边的中点.图1(1) 如图1,连结川/并延长至点尸,使得ME=AM.连结⑦ 则△月&溜(2) 如图2,点。

在初边上,连结6/并延长至点呂使得\fF=DM.连结⑦ 则△血孑 Q'CEH 、遇到线段的中点问题,常借助倍长中线的方法还原中心对称图形,利用“8”字形全等 将题中条件集中,达到解题的目的,这种方法是最常用的也是最重要的方法.二. 构造中位线在△磁中.Q 为初边的中点,图1 图2(1) 如图1,取M 边的中点伐 连结比 则DE//BC.且DF=-BC ・2(2) 如图2・延长證至点尸.使得CF=BC ・连结AF.则DC//AF.且DC=-AE.三角形的中位线从位置关系和数量关系两方而将将图形中分散的线段关系集中起来•通 常需要再找一个中点来构造中位线,或者倍长某线段构造中位线,三. 等腰三角形“三线合一”《中点模型》 A AE如图,在△磁中,若AB=AC・通常取底边氏的中点D・则初丄万G且肋平分ZBAC.事实上,在△磁中:(£)AB=AC;②初平分ZBAC;③BD=CD、④初丄反・对于以上四条语句,任意选择两个作为条件,就可以推出另两条结论,即“知二得二”・B u四・直角三角形斜边中线如图,在△遊看,Z磁=90°,取胚的中点Q,连结助,则有BD=AD=CD=-AC. 2反过来,/£AABC中,点Q在川7边上,若BD=AD=CD=、AC,则有ZABC=90Q例题讲解例1如图,在四边形丽G?中,E、尸分别是曲、仞的中点,过点疋作曲的垂线,过点尸作切的垂线,两垂线交于点G,连结/1G、BG、CG且ZAGD=ZBGC,若肋、證所在直线互相垂直,求呼的值EF解由题意可得阳和为共顶点等顶角的两个等腰三角形,所以△必谑△07G HEGF.方法一:如图1,连结传并延长到F,使曲=云7,连EH、AH,则AH//BC. AH=BC、而/1P=万G ADLBC所以肋=加肋丄加连结加则△妙为等腰直角三角形,又因为E尸分别为阳、CD的中点,所停益皿2方法二:如图2,连结助并取中点/连结胡FH.则EH= ' AD,孔EH"AD 、FH= 1 BC. 2 2而AD=BC. ADLBC.所以△砂为等腰直角三角形,所以巴=空=迈 EF EF解:连结曰DF >由题意可得厅、ZF 分别为砒△亦G A7△磁斜边的中线,所以DF=EF 存“,而6沁的中点,所以心心仆丄加所以刃△磁中,心阿F =4\/6如图,在△磁中,氏=22,BD 丄AC 于点D, CE 丄AB 于E, F 、G 分别是应; 眩的中点,若劭=10,求尺;的长.例3 已知:在RT/^ACB和斤7△遁■中.ZACB=ZAEF=9,若尸是莎的中点,连结FGPE(1)如图1,若点忒尸分别落在边仙、/1Q上,请直接写出此时陽与肱的数量关系.(2)如图2,把图1中的△川莎绕着点£顺时针旋转,当点f落在边©的延长线上时,上述结论是否成立?若成立,请给予证明;若不成立,请说明理由.(3)如图3,若点尸落在边丽上,则上述结论是否仍然成立?若成立,请给予证明:若不解(1)易得PC=PE=、BF、即尸0与胶"相等.2(2)结论成立.理由如下:如图4,延长6P交疗的延长线于点Q,则證〃刊,易证△毋倶所以PC=PD.而Z㈤=90°,所以PE=-CD=PC2cD(3)结论仍成立,理由如下:如图5,过点F作FD//BC,交疗的延长线于点Q,易得PD=PC, FD=BC 所以兰=空=空AC BC FD而ZAFE= ZPBC= ZPFD.所以ZEAC=\8”一2ZAFE= ZEFD、如图,连结比ED、则△內,所以ZAEC= ZFED,乙CED=乙AEF=90 所以PE=、CD=PC2例4已知:△遊是等腰三角形,ZBAC=900, DELCE. DE=CE=-AC,连结個"是处2的中点(1)如图1,若0在△磁的内部,连结助,.V是別的中点,连结NE.求ilE:MN1.AE <2)如图2,将图1中的△宓绕点C逆时针旋转,使ZBCD= 30°,连结加,A•是勿的中点,连结血;求竺ACD解:(1)如图3,延长少至点尸,使得肿=\5;连结尬易证△加胫△"';从而可得BF//DE. BF= DE.延长胁CE 交于点G,则ZG=9Q\从而小B、G、Q四点共圆所以ZABF= ZACE、连结胪所以△ ABf陛“ACE (SAS),所以加=広AFLAE.而燃〃肿所以MN= 1AE. MN LAE2G(2)如图4,同(1)可得•亞V=1也 MV •丄也由题意可得AC=2CE.作EHLAC 于",则 2MN _打 AC =T【答案】略【提示】延长饰场交于点尸,则ZCBF=90c , \CME3\FMD 、从而BM=-CF=CM. 22. 我们把两条中线互相垂直的三角形称为”中垂三角形”・如图b AF.亦是△月證的中 线,且处丄庞于点只像△磁这样的三角形均称为“中垂三角形”,设BC=a, AC=b, AB=c ・(1) 猜想a‘,歹,£三者之间的关系,并加以证明;(2) 如图2,在平行四边形月万G?中,E. F, G 分别是月必BC 、切上的中点.BE LEG.AD=2y/5 . AB=3.求府的长.Eg 所以防弓◎抄'盼纠°从而近妬 F进阶训练1. 如图,△.血和△月他都是直角三角形, 曲上,连结眩”为亦的中点,连结 英中Z ABD =ZACE=90° ,且点C 在,所以PE PF EF【提示】⑴如图,连结肿,由中位线定理可得莎=莎=丽飞•在Rt △遊,Rt △加近和Rt △咖中,利用勾股怎理即可得到』+歹=5c ;(2)如图,取M 的中点〃,连结曲,AC,由中位线泄理可得FH//AC//EG.从而必 丄亦,於込APE^'FPB 、所以莎=〃,所以△月肿是"中垂三角形"从而利用(1)中结 论求得£尸的长・3. 巳知:△磁和是等腰直角三角形,ZACB=ZADE=9Q° ,尸为亦的中点・连结 DF 、CF.(1) 如图,当点D^AB 上,点疋在EC 上时,请直接写出此时线段力;G 7的数量关系 和位宜关系(不用证明);(2) 如图2.在(1)的条件下将△/!%绕点月顺时针旋转45° .请你判断此时(1) 中的结论是否仍然成立,并证明你的判断:(3) 如图3.在(1)的条件下将△川疋绕点月顺时针旋转角",请你判断此时(1) 中的结论是否仍然成立,井证明你的判断.【答案】 (1) J+F =5c\ 证明略: (2) £F=4・EB图1 B 图2【答案】(1)DF= CF. DFLCFx(2)成立:(3)成立.【提示】(2)延长DF交氏于点G,则咤△如,从而得DF=GF, CD=CG,即得证・(3)延长G7至点G使得尸片G7,连结%,则GE=CB=CA, GE LAC.可得乙CAD=乙必D・连结QG, CD.从而△ ADX'EDG JSAS)•即得证.4. 匚知:F是平行四边形对角线“所在直线上的一个动点(不与点丛Q重合)・分别过点川、Q向直线歹作垂线,垂足分别为E F, 0为川6•的中点,如图1.将直线册绕点万逆时针旋转,当ZOFE= 30°时,如图2所示,请你猜想线段併,AE,处之间有怎样的数量关系,并给予证明.[答案]图]中处二/一处:图2中OE=CF+AE・【提示】如图1,延长丹交尸C于点G,易证莎=&, AE=CG.从而R也GFE中,OF=OG=OE.而ZOFE=30° ,所U OE=CF-AE・如图2,同理可得处。

中考数学压轴题十大题型(含详细答案)

中考数学压轴题十大题型(含详细答案)

一、中考数学压轴题1.如图,在平面直角坐标系中,点O 为坐标原点,直线y =-x + m 交 y 轴的正半轴于点A ,交x 轴的正半轴于点B ,过点A 的直线AF 交x 轴的负半轴于点F ,∠AFO=45°. (1)求∠FAB 的度数;(2)点 P 是线段OB 上一点,过点P 作 PQ ⊥OB 交直线 FA 于点Q ,连接 BQ ,取 BQ 的中点C ,连接AP 、AC 、CP ,过点C 作 CR ⊥AP 于点R ,设 BQ 的长为d ,CR 的长为h ,求d 与 h 的函数关系式(不要求写出自变量h 的取值范围);(3)在(2)的条件下,过点 C 作 CE ⊥OB 于点E ,CE 交 AB 于点D ,连接 AE ,∠AEC=2∠DAP ,EP=2,作线段 CD 关于直线AB 的对称线段DS ,求直线PS 与直线 AF 的交点K 的坐标.2.已知:如图,在平面直角坐标系中,点O 为坐标原点,()2,0C .直线26y x =+与x 轴交于点A ,交y 轴于点B .过C 点作直线AB 的垂线,垂足为E ,交y 轴于点D . (1)求直线CD 的解析式;(2)点G 为y 轴负半轴上一点,连接EG ,过点E 作EH EG ⊥交x 轴于点H .设点G 的坐标为()0,t ,线段AH 的长为d .求d 与t 之间的函数关系式(不要求写出自变量的取值范围)(3)过点C 作x 轴的垂线,过点G 作y 轴的垂线,两线交于点M ,过点H 作HN GM ⊥于点N ,交直线CD 于点K ,连接MK ,若MK 平分NMB ∠,求t 的值.3.如图1,抛物线2(0)y ax bx c a =++≠的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,点E 是BD 上方抛物线上的一点,连接AE 交DB 于点F ,若AF=2EF ,求出点E 的坐标.(3)如图3,点M 的坐标为(32,0),点P 是对称轴左侧抛物线上的一点,连接MP ,将MP 沿MD 折叠,若点P 恰好落在抛物线的对称轴CE 上,请求出点P 的横坐标.4.如图,在梯形ABCD 中,AD//BC ,AB=CD=AD=5,cos 45B =,点O 是边BC 上的动点,以OB 为半径的O 与射线BA 和边BC 分别交于点E 和点M ,联结AM ,作∠CMN=∠BAM ,射线MN 与边AD 、射线CD 分别交于点F 、N .(1)当点E 为边AB 的中点时,求DF 的长;(2)分别联结AN 、MD ,当AN//MD 时,求MN 的长;(3)将O 绕着点M 旋转180°得到'O ,如果以点N 为圆心的N 与'O 都内切,求O 的半径长.5.如图,在平面直角坐标系中,直线6y x =+与x 轴交于点A ,与y 轴交于点B ,点C 在x 轴正半轴上,2ABC ACB ∠=∠.(1)求直线BC 的解析式;(2)点D 是射线BC 上一点,连接AD ,设点D 的横坐标为t ,ACD ∆的面积为S ()0S ≠,求S 与t 的函数解析式,并直接写出自变量t 的取值范围;(3)在(2)的条件下,AD 与y 轴交于点E ,连接CE ,过点B 作AD 的垂线,垂足为点H ,直线BH 交x 轴于点F ,交线段CE 于点M ,直线DM 交x 轴于点N ,当:7:12NF FC =时,求直线DM 的解析式.6.在梯形ABCD 中,//AD BC ,90B ∠=︒,45C ∠=︒,8AB =,14BC =,点E 、F 分别在边AB 、CD 上,//EF AD ,点P 与AD 在直线EF 的两侧,90EPF ∠=︒,PE PF =,射线EP 、FP 与边BC 分别相交于点M 、N ,设AE x =,MN y =.(1)求边AD 的长;(2)如图,当点P 在梯形ABCD 内部时,求关于x 的函数解析式,并写出定义域; (3)如果MN 的长为2,求梯形AEFD 的面积.7.如图,已知正方形ABCD 中,4,BC AC BD =、相交于点O ,过点A 作射线AM AC ⊥,点E 是射线AM 上一动点,连接OE 交AB 于点F ,以OE 为一边,作正方形OEGH ,且点A 在正方形OEGH 的内部,连接DH .(1)求证:EDO EAO ∆≅∆;(2)设BF x =,正方形OEGH 的边长为y ,求y 关于x 的函数关系式,并写出定义域;(3)连接AG ,当AEG ∆是等腰三角形时,求BF 的长.8.问题提出(1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.9.如图,在ABC ∆中,14AB =,45B ∠=︒,4tan 3A =,点D 为AB 中点.动点P 从点D 出发,沿DA 方向以每秒1个单位长度的速度向终点A 运动,点P 关于点D 对称点为点Q ,以PQ 为边向上作正方形PQMN .设点P 的运动时间为t 秒.(1)当t =_______秒时,点N 落在AC 边上.(2)设正方形PQMN 与ABC ∆重叠部分面积为S ,当点N 在ABC ∆内部时,求S 关于t 的函数关系式.(3)当正方形PQMN 的对角线所在直线将ABC ∆的分为面积相等的两部分时,直接写出t 的值.10.对于平面直角坐标系xOy 中的任意点()P x y ,,如果满足x y a += (x ≥0,a 为常数),那么我们称这样的点叫做“特征点”.(1)当2≤a ≤3时,①在点(1,2),(1,3),(2.5,0)A B C 中,满足此条件的特征点为__________________;②⊙W 的圆心为(,0)W m ,半径为1,如果⊙W 上始终存在满足条件的特征点,请画出示意图,并直接写出m 的取值范围;(2)已知函数()10Z x x x=+>,请利用特征点求出该函数的最小值.11.如图,在平面直角坐标系中,点(1,2)A ,(5,0)B ,抛物线22(0)y ax ax a =->交x 轴正半轴于点C ,连结AO ,AB .(1)求点C 的坐标;(2)求直线AB 的表达式; (3)设抛物线22(0)y ax ax a =->分别交边BA ,BA 延长线于点D ,E .①若2AE AO =,求抛物线表达式;②若CDB △与BOA △相似,则a 的值为 .(直接写出答案)12.如图1,在平面直角坐标系中,抛物线239334y x x =--x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C . (1)过点C 的直线5334y x =-x 轴于点H ,若点P 是第四象限内抛物线上的一个动点,且在对称轴的右侧,过点P 作//PQ y 轴交直线CH 于点Q ,作//PN x 轴交对称轴于点N ,以PQ PN 、为邻边作矩形PQMN ,当矩形PQMN 的周长最大时,在y 轴上有一动点K ,x 轴上有一动点T ,一动点G 从线段CP 的中点R 出发以每秒1个单位的速度沿R K T →→的路径运动到点T ,再沿线段TB 以每秒2个单位的速度运动到B 点处停止运动,求动点G 运动时间的最小值:(2)如图2, 将ABC ∆绕点B 顺时针旋转至A BC ''∆的位置, 点A C 、的对应点分别为A C ''、,且点C '恰好落在抛物线的对称轴上,连接AC '.点E 是y 轴上的一个动点,连接AE C E '、, 将AC E ∆'沿直线C E '翻折为A C E ∆'', 是否存在点E , 使得BAA ∆'为等腰三角形?若存在,请求出点E 的坐标;若不存在,请说明理由.13.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A . (2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,Q 是⊙C 上一动点,在线段AB 上确定点P 的位置,使PQ 的长最小,并求出其最小值. (3)如图3,矩形ABCD 中,AB =6,BC =9,以D 为圆心,3为半径作⊙D ,E 为⊙D 上一动点,连接AE ,以AE 为直角边作Rt △AEF ,∠EAF =90°,tan ∠AEF =13,试探究四边形ADCF 的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.14.(问题探究)课堂上老师提出了这样的问题:“如图①,在ABC 中,108BAC ∠=︒,点D 是BC 边上的一点,7224BAD BD CD AD ∠=︒==,,,求AC 的长”.某同学做了如下的思考:如图②,过点C 作CE AB ∥,交AD 的延长线于点E ,进而求解,请回答下列问题:(1)ACE ∠=___________度;(2)求AC 的长.(拓展应用)如图③,在四边形ABCD 中,12075BAD ADC ∠=︒∠=︒,,对角线AC BD 、相交于点E ,且AC AB ⊥,22EB ED AE ==,,则BC 的长为_____________.15. 在平面直角坐标系中,点O 为坐标原点,直线y =﹣x+4与x 轴交于点A ,过点A 的抛物线y =ax 2+bx 与直线y =﹣x+4交于另一点B ,且点B 的横坐标为1.(1)该抛物线的解析式为;(2)如图1,Q 为抛物线上位于直线AB 上方的一动点(不与B 、A 重合),过Q 作QP ⊥x 轴,交x 轴于P ,连接AQ ,M 为AQ 中点,连接PM ,过M 作MN ⊥PM 交直线AB 于N ,若点P 的横坐标为t ,点N 的横坐标为n ,求n 与t 的函数关系式;在此条件下,如图2,连接QN 并延长,交y 轴于E ,连接AE ,求t 为何值时,MN ∥AE .(3)如图3,将直线AB 绕点A 顺时针旋转15度交抛物线对称轴于点C ,点T 为线段OA 上的一动点(不与O 、A 重合),以点O 为圆心、以OT 为半径的圆弧与线段OC 交于点D ,以点A 为圆心、以AT 为半径的圆弧与线段AC 交于点F ,连接DF .在点T 运动的过程中,四边形ODFA 的面积有最大值还是有最小值?请求出该值.16.如图,抛物线25y ax bx =+-交x 轴于点A 、B (A 在B 的左侧),交y 轴于点C ,且OB OC =,()2,0A -.(1)求抛物线的解析式;(2)点P 为第四象限抛物线上一点,过点P 作y 轴的平行线交BC 于点D ,设P 点横坐标为t ,线段PD 的长度为d ,求d 与t 的函数关系式.(不要求写出t 的取值范围) (3)在(2)的条件下,F 为BP 延长线上一点,且45PFC ∠=︒,连接OF 、CP 、PB ,FOB ∆的面积为3600169,求PBC ∆的面积.17.如图①,△ABC是等腰直角三角形,在两腰AB、AC外侧作两个等边三角形ABD和ACE,AM和AN分别是等边三角形ABD和ACE的角平分线,连接CM、BN,CM与AB交于点P.(1)求证:CM=BN;(2)如图②,点F为角平分线AN上一点,且∠CPF=30°,求证:△APF∽△AMC;(3)在(2)的条件下,求PFBN的值.18.如图,在⊙O中,直径AB=10,tanA=3.(1)求弦AC的长;(2)D是AB延长线上一点,且AB=kBD,连接CD,若CD与⊙O相切,求k的值;(3)若动点P以3cm/s的速度从A点出发,沿AB方向运动,同时动点Q以32cm/s的速度从B点出发沿BC方向运动,设运动时间为t (0<t<103),连结PQ.当t为何值时,△BPQ为Rt△?19.如图,在矩形ABCD中,点E为BC的中点,连接AE,过点D作DF AE⊥于点F,过点C作CN DF⊥于点N,延长CN交AD于点M.(1)求证:AM MD=(2)连接CF,并延长CF交AB于G①若2AB=,求CF的长度;②探究当ABAD为何值时,点G恰好为AB的中点.20.在一次数学课上,李老师让同学们独立完成课本第23页第七题选择题(2)如图 1,如果 AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=()A.180° B.270° C.360° D.540°(1)请写出这道题的正确选项;(2)在同学们都正确解答这道题后,李老师对这道题进行了改编:如图2,AB∥EF,请直接写出∠BAD,∠ADE,∠DEF之间的数量关系.(3)善于思考的龙洋同学想:将图1平移至与图2重合(如图3所示),当AD,ED分别平分∠BAC,∠CEF时,∠ACE与∠ADE之间有怎样的数量关系?请你直接写出结果,不需要证明.(4)彭敏同学又提出来了,如果像图4这样,AB∥EF,当∠ACD=90°时,∠BAC、∠CDE 和∠DEF之间又有怎样的数量关系?请你直接写出结果,不需要证明.21.如图1,以AB为直径作⊙O,点C是直径AB上方半圆上的一点,连结AC,BC,过点C作∠ACB的平分线交⊙O于点D,过点D作AB的平行线交CB的延长线于点E.(1)如图1,连结AD,求证:∠ADC=∠DEC.(2)若⊙O的半径为5,求CA•CE的最大值.(3)如图2,连结AE,设tan∠ABC=x,tan∠AEC=y,①求y关于x的函数解析式;②若CBBE=45,求y的值.22.发现来源于探究.小亮进行数学探究活动,作边长为a的正方形ABCD和边长为b的正方形AEFG(a>b),开始时,点E在AB上,如图1.将正方形AEFG绕点A逆时针方向旋转.(1)如图2,小亮将正方形AEFG 绕点A 逆时针方向旋转,连接BE 、DG ,当点G 恰好落在线段BE 上时,小亮发现DG ⊥BE ,请你帮他说明理由.当a=3,b=2时,请你帮他求此时DG 的长.(2)如图3,小亮旋转正方形AEFG ,点E 在DA 的延长线上,连接BF 、DF .当FG 平分∠BFD 时,请你帮他求a :b 及∠FBG 的度数.(3)如图4,BE 的延长线与直线DG 相交于点P ,a=2b .当正方形AEFG 绕点A 从图1开始,逆时针方向旋转一周时,请你帮小亮求点P 运动的路线长(用含b 的代数式表示).23.问题探究(1)如图1.在ABC 中,8BC =,D 为BC 上一点,6AD =.则ABC 面积的最大值是_______.(2)如图2,在ABC 中,60BAC ∠=︒,AG 为BC 边上的高,O 为ABC 的外接圆,若3AG =,试判断BC 是否存在最小值?若存在,请求出最小值:若不存在,请说明理由.问题解决:如图3,王老先生有一块矩形地ABCD ,6212AB =,626BC =+,现在他想利用这块地建一个四边形鱼塘AMFN ,且满足点E 在CD 上,AD DE =,点F 在BC 上,且6CF =,点M 在AE 上,点N 在AB 上,90MFN ∠=︒,这个四边形AMFN 的面积是否存在最大值?若存在,求出面积的最大值;若不存在,请说明理由.24.问题一:如图①,已知AC =160km ,甲,乙两人分别从相距30km 的A ,B 两地同时出发到C 地.若甲的速度为80km /h ,乙的速度为60km /h ,设乙行驶时间为x (h ),两车之间距离为y (km ).(1)当甲追上乙时,x = .(2)请用x 的代数式表示y .问题二:如图②,若将上述线段AC 弯曲后视作钟表外围的一部分,线段AB 正好对应钟表上的弧AB (1小时的间隔),易知∠AOB =30°.(3)分针OD 指向圆周上的点的速度为每分钟转动 km ,时针OE 指向圆周上的点的速度为每分钟转动 °;(4)若从2:00起计时,求几分钟后分针与时针第一次重合?25.在平面直角坐标系中,点O 为坐标原点,抛物线(2)()y a x x m =++与x 轴交于点A C 、(点A 在点C 的左侧),与y 轴正半轴交于点B ,24OC OB ==.(1)如图1,求a m 、的值;(2)如图2,抛物线的顶点坐标是M ,点D 是第一象限抛物线上的一点,连接AD 交抛物线的对称轴于点N ,设点D 的横坐标是t ,线段MN 的长为d ,求d 与t 的函数关系式;(3)如图3,在(2)的条件下,当154d =时,过点D 作DE x 轴交抛物线于点E ,点P 是x 轴下方抛物线上的一个动点,连接PE 交x 轴于点F ,直线211y x b =+经过点D 交EF 于点G ,连接CG ,过点E 作EH CG 交DG 于点H ,若3CFG EGH S S =△△,求点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.F解析:(1)∠FAB=90°;(2)22d h =;(3)直线PS 与直线AF 的交点K(-2,6).【解析】【分析】(1)通过直线AB 的解析式可求出点A 、B 的坐标,可知AOB 是等腰直角三角形,再结合已知条件即可确定90FAB ∠=︒;(2)根据已知条件证明CP=AC=QC=BC 从而得出△ACP 是等腰直角三角形,在Rt △CRP 中,利用sin ∠CPR 22CR CP ==,推出2CP CR =,继而得出22BQ CR =,得出答案; (3)过点 A 作AH ⊥CE 交 EC 的延长线于点 H ,延长 CH 到点 G ,使 HG=CH ,连接AG ,证明△AHC ≌△CEP ,设AH CE n ==,得出EG=CE+CH+GH=n+2+2=n+4,再通过角的等量代换,得出∠EAG=∠G ,从而有EG=EA=n+4,在Rt △AHE 中,通过勾股定理AE²=HE²+AH²可求出n 的值为6,从而得出直线AF 的解析式y = x + 8 ,再求出直线PS 的解析式为 y=-x+4,求交点即可.【详解】解:(1)如下图,y = -x + m ,当x=0时,y=m∴A (0,m ),OA=m当y=0时,0=-x+m ,x=m ,∴B (m ,0),OB=m∴OA=OB∴∠OAB=∠OBA=45°∵∠AFO=45°,∠FAB+∠FBA+∠AFB=180°∴∠FAB=90°(2)如下图 ,∵CP 、AC 分别是 Rt △QPB 和 Rt △QAB 的斜边上的中线∴CP= 12QB ,12AC QB =, ∴CP=AC=QC=BC∴∠CAB=∠CBA设∠CAB=∠CBA=α,∴∠CBP=45°+α∴∠CPB=∠CBP=45°+α∴∠PCB=180°-(∠CPB+∠CBP )=90°-2α∵∠ACB=180°-∠CAB-∠CBA=180°-2α∴∠ACP=∠ACB-∠PCB=180°-2α-(90°-2α)=90°∵AC=CP∴△ACP 是等腰直角三角形∴∠CPA=∠CAP=45°∵CR ⊥AP ,∴∠CRP=90°,在Rt △CRP 中sin ∠CPR 22CR CP == ∴2CP CR =∵12CP BQ =, ∴22BQ CR =即22d h =(3)过点 A 作AH ⊥CE 交 EC 的延长线于点 H ,延长 CH 到点 G ,使 HG=CH ,连接AG ∴∠AHC=∠CEP=90°∴∠HAC+∠HCA=∠PCE+∠HCA∴∠HAC=∠PCE ,∵AC=CP∴△AHC ≌△CEP∴CH=PE=2,AH=CE ,∴GH=CH=2,AH CE n ==∴EG=CE+CH+GH=n+2+2=n+4设∠DAP=β,则∠AEG=2β∴α+β=45°∵∠EBD=∠EDB=∠HDA=∠HAD=45°∴∠CAH=∠HAD-α=45°-α=β∵AH 垂直平分 GC∴AG=AC∴∠GAH=∠CAH=β∴∠G=90°-β 在△EAG 中∠EAG=180°-∠G-∠AEG=180°-(90°-β)-2β =90°-β∴∠EAG=∠G∴EG=EA=n+4在 Rt △AHE 中,AE²=HE²+AH²222(4)(2)n n n +=++126,2n n ==-(舍)∴AH=OE=6,EP=EB=2∴OB=OE+BE=8∴m=8,∴A (0,8)∴OA=OF=8 , ∴F (-8,0)∴直线 AF 的解析式为 y = x + 8∵CD=CE-DE=CE-BE=6-2=4∵线段 CD 关于直线 AB 的对称线段 DS∴SD=CD=4,∠CDA=∠SDA=45°∴∠CDS=90°,∴SD ∥x 轴过点 S 分别作 SM ⊥x 轴于点 M ,SN ⊥y 轴于点 N∴四边形 OMSN 、SMED 都是矩形∴OM=SN=OE-ME=2,ON=SM=DE=BE=2∴S(2,2)∵OP=OE-EP=6-2=4,∴P(4,0)设直线 PS 的解析式为 y=ax+b∴4022a b a b +=⎧⎨+=⎩,解得:14a b =-⎧⎨=⎩∴直线 PS 的解析式为 y=-x+4设直线PS 与直线AF 的交点K(x ,y)∴48y x y x =-+⎧⎨=+⎩解得26x y =-⎧⎨=⎩∴直线PS 与直线AF 的交点K(-2,6).【点睛】本题考查的知识点是一次函数与几何图形,将一次函数的图象与几何图形综合在一起的问题,是考查学生综合素质和能力的热点题型,它充分体现了数学解题中的数形结合思想和整体转化思想.本题考查的知识点有一次函数图象与坐标轴的交点问题、等腰直角三角形的判定及性质、三角形内角和定理、全等三角形的判定及性质、矩形的性质、待定系数法求一次函数解析式、线段垂直平分线等.2.C解析:(1)112y x =-+;(2)1d t =-+;(3)6215t -= 【解析】【分析】(1)根据互相垂直两直线斜率积为-1,设出直线CE 的解析式,再将点C 坐标代入即可求解;(2)过点E 作EM ⊥y 轴于点M ,过点E 作EN x ⊥轴于点N ,通过解直角三角形可证EDM ≌EAN ,ENH ≌EMG ,得到AN =DM ,HN =GM ,进而得到AH DG =,再根据CE 解析式求出D 点坐标,即可找出d 与t 之间的函数关系式;(3)过点B 作BT CM ⊥于点T ,在直线BT 上截取TL NK =,证四边形BGMT 与四边形HNMC 均为矩形,得MN MT =,再进一步证明ENH ≌EMG ,利用全等三角形的性质通过角度计算,得出△BML 为等腰三角形且BM BL =,再用含有t 的代数式表示BM ,最后在Rt △BMG 中利用勾股定理建立等式,求出t 的值.【详解】解:(1)∵CE ⊥AB ,∴设直线CE 的解析式为:12y x c =-+, 把点C (2,0)代入上述解析式,得1c =,∴直线CD 的解析式为:112y x =-+; (2)过点E 作EM ⊥y 轴于点M ,过点E 作EN x ⊥轴于点N ,令26 112y xy x=+⎧⎪⎨=-+⎪⎩,解得22xy=-⎧⎨=⎩,∴()2,2E-,易证EDM≌EAN,ENH≌EMG,∴AN=DM ,HN=GM,∴AH DG=,由直线CE的解析式112y x=-+,可求点D(0,1)∴DG=1—t,∴1d t=-+;(3)过点B作BT CM⊥于点T,在直线BT上截取TL NK=,易证四边形BGMT与四边形HNMC均为矩形,由(2)问可知1tAH GD==-,则6tHC=-∴6tBG MT==-,∴MN MT=,∵90KNM LTM∠=∠=︒,∴ENH≌EMG,∴LNKM∠=∠,设KMNα∠=,则KMB KMNα∠=∠=,∴90NKM α∠=︒-,∴90NKM L α∠=∠=︒-,∵//BL MN ,∴2MBL BMN α∠=∠=,∴18090BML MBL L α∠=︒-∠-∠=︒-,∴BM BL =, ∵1tan 2KCH ∠=, ∴11322KH CH t ==-, ∴133322KN KH HN t t t TL =+=--=-=, ∴352BL BT TL t BM =+=-=, 在Rt BMG △中, 222BM BG GM =+,解得t =(不合题意舍去)或t =故,65t -=. 【点睛】本题一次函数综合题,考查了待定系数法求解析式,一次函数的性质,全等三角形的判定与性质,角平分线的性质,勾股定理等,利用已知条件求相等交,相等线段是解决本题的关键.3.E解析:(1)2y x 2x 3=-++;(2)E (2,3)或(1,4);(3)P 点横坐标为118【解析】【分析】(1) 抛物线2(0)y ax bx c a =++≠的顶点为C (1,4),设抛物线的解析式为2(1)4y a x =-+,由抛物线过点B,(3,0),即可求出a 的值,即可求得解析式; (2)过点E 、F 分别作x 轴的垂线,交x 轴于点M 、N ,设点E 的坐标为()2,23x xx -++,求出A 、D 点的坐标,得到OM=x ,则AM=x+1,由AF=2EF 得到22(1)33x AN AM +==,从而推出点F 的坐标21210(,)3333x x --+,由23FN EM =,列出关于x 的方程求解即可;(3)先根据待定系数法求出直线DM 的解析式为y=-2x+3,过点P 作PT ∥y 轴交直线DM 于点T ,过点F 作直线GH ⊥y 轴交PT 于点G ,交直线CE 于点H.证明△FGP ≌△FHQ ,得到FG=FH ,PT=45GH.设点P (m ,-m²+2m+3),则T (m ,-2m+3),则PT=m²-4m ,GH=1-m , 可得m²-4m=45(1-m ),解方程即可. 【详解】(1)∵抛物线的顶点为C (1,4),∴设抛物线的解析式为2(1)4y a x =-+,∵抛物线过点B,(3,0),∴20(31)4a =-+,解得a=-1,∴设抛物线的解析式为2(1)4y x =--+,即2y x 2x 3=-++;(2)如图,过点E 、F 分别作x 轴的垂线,交x 轴于点M 、N ,设点E 的坐标为()2,23x x x -++,∵抛物线的解析式为2y x 2x 3=-++,当y=0时,2023x x =-++,解得x=-1或x=3,∴A (-1.0),∴点D (0,3),∴过点BD 的直线解析式为3y x =-+,点F 在直线BD 上,则OM=x ,AM=x+1,∴22(1)33x AN AM +==, ∴2(1)2111333x x ON AN +=-=-=-, ∴21210(,)3333x x F --+,∴2210332233FN EM x x x +--++==, 解得x=1或x=2, ∴点E 的坐标为(2,3)或(1,4);(3)设直线DM 的解析式为y=kx+b ,过点D (0,3),M (32,0), 可得,3023k b b ⎧+=⎪⎨⎪=⎩,解得k=-2,b=3,∴直线DM 的解析式为y=-2x+3,∴32OM =,3OD =, ∴tan ∠DMO=2, 如图,过点P 作PT ∥y 轴交直线DM 于点T ,过点F 作直线GH ⊥y 轴交PT 于点G ,交直线CE 于点H.∵PQ ⊥MT ,∴∠TFG=∠TPF ,∴TG=2GF ,GF=2PG ,∴PT=25GF , ∵PF=QF ,∴△FGP ≌△FHQ ,∴FG=FH ,∴PT=45GH. 设点P (m ,-m²+2m+3),则T (m ,-2m+3),∴PT=m²-4m ,GH=1-m ,∴m²-4m=45(1-m ), 解得:1112018m -=,或2112018m +=(不合题意,舍去), ∴点P 的横坐标为11201-. 【点睛】 本题考查二次函数综合题、平行线分线段成比例定理、轴对称性质等知识,解题的关键是学会用转化的思想思考问题,学会用数形结合的思想解决问题,有一定难度.4.D解析:(1)DF 的长为158;(2)MN 的长为5;(3)O 的半径长为258. 【解析】【分析】(1)作EH BM ⊥于H ,根据中位线定理得出四边形BMFA 是平行四边形,从而利用cos 45B =解直角三角形即可求算半径,再根据平行四边形的性质求FD 即可; (2)先证AMB CNM ∠=∠,再证MAD CNM ∠=∠,从而证明AFM NFD ∆~∆,得到AF MF AF DF NF MF NF DF=⇒=,再通过平行证明AFN DFM ∆~∆,从而得到AF NF AF MF NF DF DF MF=⇒=,通过两式相乘得出AF NF =再根据平行得出NF DF =, 从而得出答案.(3)通过图形得出MN 垂直平分'OO ,从而得出90BAM CMN ∠=∠=︒,再利用cos 45B =解三角函数即可得出答案. 【详解】(1)如图,作EH BM ⊥于H :∵E 为AB 中点,45,cos 5AB AD DC B ====∴52AE BE ==∴cos 45BH B BE == ∴2BH = ∴2253222EH ⎛⎫=-= ⎪⎝⎭设半径为r ,在Rt OEH ∆中:()222322r r ⎛⎫=-+ ⎪⎝⎭ 解得:2516r =∵,E O 分别为,BA BM 中点 ∴BAM BEO OBE ∠=∠=∠又∵CMN BAM ∠=∠∴CMN OBE ∠=∠∴//MF AB∴四边形BMFA 是平行四边形∴2528AF BM r ===∴2515588FD AD AF =-=-= (2)如图:连接MD AN ,∵,B C BAM CMN ∠=∠∠=∠∴AMB CNM ∠=∠又∵AMB MAD ∠=∠∴MAD CNM ∠=∠又∵AFM NFD ∠=∠∴AFM NFD ∆~∆∴AF MF AF DF NF MF NF DF=⇒=① 又∵//MD AN ∴AFN DFM ∆~∆∴AF NF AF MF NF DF DF MF=⇒=② 由①⨯②得; 22AF NF AF NF =⇒=∴NF DF =∴5MN AD ==故MN 的长为5;(3)作如图:∵圆O 与圆'O 外切且均与圆N 内切设圆N 半径为R ,圆O 半径为r∴'=NO R r NO -=∴N 在'OO 的中垂线上 ∴MN 垂直平分'OO∴90NMC ∠=︒∵90BAM CMN ∠=∠=︒∴A 点在圆上∴54cos 5AB B BM BM === 解得:254BM = O 的半径长为258【点睛】 本题是一道圆的综合题目,难度较大,掌握相似之间的关系转化以及相关线段角度的关系转化是解题关键.5.A解析:(1)6y x =-+;(2)636S t =-,()6t >;(3)5599y x =+ 【解析】【分析】(1)求出点A 、B 的坐标,从而得出△ABO 是等腰直角三角形,再根据2ABC ACB ∠=∠可得△OCB 也是等腰直角三角形,从而可求得点C 的坐标,将点B 、C 代入可求得解析式;(2)存在2种情况,一种是点D 在线段BC 上,另一种是点D 在线段BC 的延长线上,分别利用三角形的面积公式可求得;(3)如下图,先证ACR CAD ∆≅∆,从而推导出//RD AC ,进而得到CF RG =,同理还可得NF DG =,RD CN =,然后利用:7:12NF FC =可得到N 、D 的坐标,代入即可求得.【详解】解:(1)直线6y x =+与x 轴交于点A ,与y 轴交于点B ,(6,0)A ∴-,(0,6)B .6OA OB ∴==.45BAO ∴∠=︒,180BAO ABC BCO ∠+∠+∠=︒,2ABC ACB ∠=∠,45BCO ∴∠=︒6OC OB ∴==,()6,0C ∴.设直线BC 的解析式为y kx b =+,将B 、C 两点坐标代得606k b b +=⎧⎨=⎩ 解得16k b =-⎧⎨=⎩∴直线BC 的解析式为6y x =-+.(2)点D 是射线BC 上一点,点D 的横坐标为t ,(,6)D t t ∴-+,6(6)12AC =--=.如下图,过点D 作DK AC ⊥于点K ,当点D 在线段BC 上时,6DK t =-+,16362S AC DK t ∴=⋅=-+()06t ≤<; 如下图,当点D 在线段BC 的延长线上时,6DK t =-,636S t ∴=-()6t >.(3)如图,延长CE 交AB 于点R ,连接DR 交BF 于点G ,交y 轴于点P .45BAO BCO ∠=∠=︒,BA BC ∴=.AO CO =,BO AC ⊥EA EC ∴=,EAC ECA ∴∠=∠.ACR CAD ∴∆≅∆.BAD BCR ∴∠=∠.AR CD ∴=.BR BD ∴=.//RD AC ∴.BH AD ⊥,HBD BAD BCR ∴∠=∠=∠.MB MC ∴=,∠MRB MRB MBR ∠=∠MR MB ∴=.CM MR ∴=.//RD AC ,::1:1CF RG CM RM ∴==.CF RG ∴=.同理NF DG =.RD CN =.∵:7:12NF FC =.:7:12DG RG ∴=.RP PD BP ==,5tan 19PG OF OBF BP OB∴==∠= 6OB ∴=,3019OF ∴=,6OC =,8419CF ∴=. 7RD GN ∴==.1ON ∴=,72PD =.52OP OB BP ∴=-=. (1,0)N ∴-,75,22D ⎛⎫ ⎪⎝⎭. 设直线 DN 的解析式为y ax c =+,将N 、D 两点代入,07522a c a c -+=⎧⎪⎨+=⎪⎩解得5959 ac⎧=⎪⎪⎨⎪=⎪⎩∴直线DM的解析式为5599y x=+.【点睛】本题考查了一次函数与图形的综合,需要用到全等、三角函数和平面直角坐标系的知识,解题关键是想办法确定函数图像上点的坐标.6.D解析:(1)6;(2)y=-3x+10(1≤x<103);(2)1769或32【解析】【分析】(1)如下图,利用等腰直角三角形DHC可得到HC的长度,从而得出HB的长,进而得出AD的长;(2)如下图,利用等腰直角三角形的性质,可得PQ、PR的长,然后利用EB=PQ+PR得去x、y的函数关系,最后根据图形特点得出取值范围;(3)存在2种情况,一种是点P在梯形内,一种是在梯形外,分别根y的值求出x的值,然后根据梯形面积求解即可.【详解】(1)如下图,过点D作BC的垂线,交BC于点H∵∠C=45°,DH⊥BC∴△DHC是等腰直角三角形∵四边形ABCD是梯形,∠B=90°∴四边形ABHD是矩形,∴DH=AB=8∴HC=8∴BH=BC-HC=6∴AD=6(2)如下图,过点P作EF的垂线,交EF于点Q,反向延长交BC于点R,DH与EF交于点G∵EF ∥AD,∴EF ∥BC∴∠EFP=∠C=45°∵EP ⊥PF∴△EPF 是等腰直角三角形同理,还可得△NPM 和△DGF 也是等腰直角三角形∵AE=x∴DG=x=GF,∴EF=AD+GF=6+x∵PQ ⊥EF,∴PQ=QE=QF∴PQ=()162x + 同理,PR=12y ∵AB=8,∴EB=8-x∵EB=QR∴8-x=()11622x y ++ 化简得:y=-3x+10 ∵y >0,∴x <103 当点N 与点B 重合时,x 可取得最小值则BC=NM+MC=NM+EF=-3x+10+614x +=,解得x=1∴1≤x <103(3)情况一:点P 在梯形ABCD 内,即(2)中的图形 ∵MN=2,即y=2,代入(2)中的关系式可得:x=83=AE ∴188176662339ABCD S ⎛⎫=⨯++⨯= ⎪⎝⎭梯形 情况二:点P 在梯形ABCD 外,图形如下:与(2)相同,可得y=3x -10则当y=2时,x=4,即AE=4 ∴()16644322ABCD S =⨯++⨯=梯形 【点睛】本题考查了等腰直角三角形、矩形的性质,难点在于第(2)问中确定x 的取值范围,需要一定的空间想象能力. 7.A解析:(1)详见解析;(2)2448x x y -+=(04x <<);(3)当AEG ∆是等腰三角形时,2BF =或43【解析】【分析】 (1)根据正方形的性质得到∠AOD=90°,AO=OD ,∠EOH=90°,OE=OH ,由全等三角形的性质即可得到结论;(2)如图1,过O 作ON ⊥AB 于N ,根据等腰直角三角形的性质得到122AN BN ON AB ====, 根据勾股定理得到()222222248OF FN ON x x x =+=-+=-+线段成比例定理即可得到结论;(3)①当AE=EG 时,△AEG 是等腰三角形,②当AE=AG 时,△AEG 是等腰三角形,如图2,过A 作AP ⊥EG 于P ③当GE=AG 时,△AEG 是等腰三角形,如图3,过G 作GQ ⊥AE 于Q ,根据相似三角形的性质或全等三角形的性质健即可得到结论.【详解】(1)∵四边形ABCD 是正方形,,OA OD AC BD ∴=⊥,90AOD ∴∠=︒,∵四边形OEGH 是正方形,,90OE OH EOH ∴=∠=︒,AOD EOH ∴∠=∠,AOD AOH EOH AOH ∴∠-∠=∠-∠,即HOD EOA ∠=∠,HDO EAO ∴∆≅∆.(2)如图1,过O 作ON⊥AB 于N ,则122AN BN ON AB ====, ∵BF=x,∴AF=4-x ,∴FN=2-x , ∴()222222248OF FN ON x x x =+=-+=-+∴248EF y x x =-+ ∵AM⊥AC,∴AE∥OB,∴BF OF AF EF=, ∴2248448x x x x y x x -+=---+, ∴)24804x x y x x-+≤=<; (3)①当AE=EG 时,△AEG 是等腰三角形,则AE=OE ,∵∠EAO=90°,∴这种情况不存在;②当AE=AG 时,△AEG 是等腰三角形,如图2,过A 作AP⊥EG 于P ,则AP∥OE,∴∠PAE=∠AEO,∴△APE∽△EAO,∴PE AE OA OE=,∵AE=AG,∴2421482x xxPE y-+==,()22248xAE yx-=-=,∴()22222224448448xx xxx xx---+=+,解得:x=2,②当GE=AG时,△AEG是等腰三角形,如图3,过G作GQ⊥AE于Q,∴∠GQE=∠EAO=90°,∴∠GEQ+∠EGQ=∠GEQ+∠AEO=90°,∴∠EGQ=∠AEO,∵GE=OE,∴△EGQ≌△OEA(AAS),∴22EQ AO==∴224242()xAE E Q-===∴43x =, ∴BF=2或43. 【点睛】本题考查了四边形的综合题,正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的性质,勾股定理,正确的作出辅助线构造全等三角形是解题的关键.8.B解析:(1)12;(2)3)【解析】【分析】(1)如图1中,过点B 作BD CA ⊥,交CA 延长线于点D ,通过构造直角三角形,求出BD 利用三角形面积公式求解即可.(2)如图示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M ,确定点P 的位置,利用勾股定理与矩形的性质求出CQ 的长度即为答案.(3)解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、,通过轴对称性质的转化,最终确定最小值转化为SN 的长.【详解】(1)如解图1所示,过点B 作BD CA ⊥,交CA 延长线于点D ,135BAC ∠=,180********BAD BAC ∴∠=-∠=-=,BD CA ⊥,交CA 延长线于点D ,BAD ∴为等腰直角三角形,且90BDA ∠=,BD AD ∴=,在BAD 中,,90BD AD BDA =∠=,222BD AD AB ∴+=,即222BD AB =,4AB =222232BD AB ∴===,解得:4BD =,6AC =,11641222ABC S AC BD ∴=⋅=⨯⨯=.(2)如解图2所示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M , D 关于AB 的对称点Q ,CQ 交AB 于点P ,PD PQ ∴=,PC PD PC PQ CQ ∴+=+=,点P 为AB 上的动点,PC PD CQ ∴+≥,∴当点P 处于解图2中的位置,PC PD +取最小值,且最小值为CQ 的长度, 点C 为半圆AB 的中点,90COB ∴∠=,90BOD COD COB ∠+∠=∠=,11903033BOD COB ∴∠=∠=⨯=, 10AB =,1110522OD AB ∴==⨯=, 在Rt ODH △中,由作图知,90OHD ∠=,且30HOD BOD ∠=∠=, 155,222DH OD QH DH ∴==∴==, 222255352OH OD DH ⎛⎫∴=-=-= ⎪⎝⎭, 由作图知,四边形OMQH 为矩形,553,2OM QH MQ OH ∴==== 515522CM OM OC ∴=+=+=, 222215535322CQ CM MQ ⎛⎫⎛⎫∴=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭,PC PD ∴+的最小值为53.(3)如解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、, 点P 关于OA 的对称点S ,点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,PE SE ∴=,FP FN =,SOA POA ∠=∠,,NOB POB OS OP ON ∠=∠==,.PE EF FP SE EF FN SN ∴++=++=,SOA NOB POA POB ∠+∠=∠+∠,E 为OA 上的点,F 为OB 上的点PE EF FP SN ∴++≥,∴当点E F 、处于解图3的位置时,PE EF FP ++的长度取最小值,最小值为SN 的长度,45POA POB AOB ∠+∠=∠=,45SOA NOB ∴∠+∠=,454590SON SOA AOB NOB ∴∠=∠+∠+∠=+=.扇形AOB 的半径为20,20OS ON OP ∴===,在Rt SON 中,90SON ∠=,20,90OS ON SON ==∠=PE EF FP ∴++的长度的最小值为202【点睛】本题主要考察了轴对称、勾股定理、圆、四边形等相关内容,理解题意,作出辅助线是做题的关键.9.A解析:(1)145;(2)2274,0314971421,2235t tSt t t⎧⎛⎫<≤⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-<<⎪⎪⎝⎭⎩;(3)t的值为477或727.【解析】【分析】(1)如下图,根据4tan3A=,可得出PN与AP的关系,从而求出t的值;(2)如下图,存在2种情况,一种是点M在△ABC内,另一种是点M在△ABC外部,分别根据正方形和三角形求面积的公式可求解;(3)如下图,存在2种情况,一种是PM所在的直线将△ABC的面积平分,另一种是QN 所在的直线将△ABC的面积平分.【详解】(1)如图1,点N在AC上图1由题意可知:PD=DQ=t ,AP=7-t∴PN=PQ=2t ∵4tan 3A = ∴43NP AP =,即2473t t =- 解得:t=145 (2)①如图2,图2四边形PQMN 是正方形,90BQM ∴∠=︒,45B ∠=︒,BQ MQ ∴=,即72t t -=解得73t =, 故当0t <≤73时,22(2)4S t t ==; ②如图3, 图390BQF ∠=︒,45B ∠=︒,7BQ FQ t ∴==-,45BFQ MFE ∠=∠=︒,则37MF MQ QF t =-=-,90M ∠=︒,37ME MF t ∴==-, 则2221149(2)(37)21222S t t t t =--=-+-71435t ⎛⎫<< ⎪⎝⎭; 综上,2274,0314971421,2235t t S t t t ⎧⎛⎫<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-<< ⎪⎪⎝⎭⎩. (3)如下图,过点C 作AB 的垂线,交AB 于点G图4∵4tan 3A = ∴设CG=4x ,则AG=3x∵∠B=45°∴△CBG 是等腰直角三角形∴GB=GC=4x∵AB=14∴3x+4x=14,解得:x=2∴1148562ABC S== ∴1282ABCS = 情况一:PM 所在的直线平分△ABC 的面积,如下图,PM 与BC 交于点E图5则28PBES=∵四边形PQMN是正方形,∴∠EPB=45°∵∠B=45°∴△PBE是等腰直角三角形∵1282PBES PE PB==∴PE=PB=214∴PB=47∵PB=AB-PA=14-(7-t)=7+t∴7+t=47t=477-情况二:如下图,QN所在线段平分△ABC的面积,QF交AC于点F,过点F作AB的垂线,交AB于点H图6同理,28AFQS=∵四边形PQMN是正方形,∴∠EQH=45°∴△FHQ是等腰直角三角形∵4 tan3A=∴设FH=4y,则AH=3y,HQ=FH=4y,∴AQ=7y∴174282AFQS y y==,解得:2∵AQ=AB-QB=14-(7-t)=7+t∴2解得:27∴综上得:t的值为477或727.【点睛】本题考查动点问题,解题关键是根据动点的变化情况,适当划分为几种不同的形式分别分析求解.10.A。

2021年中考数学压轴题:中点问题

2021年中考数学压轴题:中点问题

中考数学压轴题分析:中点问题
【分析】
题(1)求出点A、B的坐标即可得到AB的解析式。

利用顶点坐标公式可以得到抛物线顶点的坐标。

题(2)求线段和的最值,那么还是需要利用二次函数的性质。

首先设出点P的坐标,然后表示出点D的坐标。

再表示出线段PD与BD的长度即可。

然后列出代数式,利用配方法或者顶点坐标公式求解。

题(3)先设向右平移m个单位,再表示出平移后的抛物线解析式。

根据口诀“左加右减自变量,上加下减常数项”即可得到平移后的结论。

再与AB的解析式联立,进而得到一个关于x 的一元二次方程,由于交点那么就可以用x1和x2分别表示M、N的横坐标。

由于MN的中点为A,那么只需令x1+x2=8即可。

中考数学压轴题解析

中考数学压轴题解析

中(Zhong)考数学压轴题解析一.解(Jie)答题1.如(Ru)图,在(Zai)△ABC中(Zhong)(BC>AC),∠ACB=90°,点(Dian)D在(Zai)AB边(Bian)上,DE⊥AC于点E.(1)若=,AE=2,求EC的长;(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.2.阅读理解:如图①,如果四边形ABCD满足AB=AD,CB=CD,∠B=∠D=90°,那么我们把这样的四边形叫做“完美筝形”.将一张如图①所示的“完美筝形”纸片ABCD先折叠成如图②所示形状,再展开得到图③,其中CE,CF为折痕,∠BCE=∠ECF=∠FCD,点B′为点B的对应点,点D′为点D的对应点,连接EB′,FD′相交于点O.简单应用:(1)在平行四边形、矩形、菱形、正方形四种图形中,一定为“完美筝形”的是;(2)当图③中的∠BCD=120°时,∠AEB′=°;(3)当图②中的四边形AECF为菱形时,对应图③中的“完美筝形”有个(包含四边形ABCD).拓展提升:当图③中的∠BCD=90°时,连接AB′,请探求∠AB′E的度数,并说明理由.3.在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E.DF与线段AC(或AC的延长线)相交于点F.(1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长;(2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.求证:BE+CF=AB;(3)如图3,将(2)中的∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线相交于点F,作DN⊥AC于点N,若DN⊥AC于点N,若DN=FN,求证:BE+CF=(BE﹣CF).4.如(Ru)图(Tu)1,在(Zai)△ABC中(Zhong),∠ACB=90°,AC=BC,∠EAC=90°,点(Dian)M为(Wei)射线(Xian)AE上任意一(Yi)点(不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM、射线AE于点F、D.(1)直接写出∠NDE的度数;(2)如图2、图3,当∠EAC为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由;(3)如图4,若∠EAC=15°,∠ACM=60°,直线CM与AB交于G,BD=,其他条件不变,求线段AM的长.5.如图,在▱ABCD中,AB=6,BC=4,∠B=60°,点E是边AB上的一点,点F是边CD上一点,将▱ABCD沿EF折叠,得到四边形EFGH,点A的对应点为点H,点D的对应点为点G.(1)当点H与点C重合时.①填空:点E到CD的距离是;②求证:△BCE≌△GCF;③求△CEF的面积;(2)当点H落在射线BC上,且CH=1时,直线EH与直线CD交于点M,请直接写出△MEF的面积.6.如图,在平面直角坐(Zuo)标系中,四边形(Xing)OABC的(De)顶点(Dian)O是坐标原(Yuan)点,点(Dian)A 在(Zai)第一象限,点(Dian)C在第四象限,点B的坐标为(60,0),OA=AB,∠OAB=90°,OC=50.点P是线段OB上的一个动点(点P不与点O、B重合),过点P与y轴平行的直线l交边OA或边AB于点Q,交边OC或边BC于点R,设点P横坐标为t,线段QR的长度为m.已知t=40时,直线l恰好经过点C.(1)求点A和点C的坐标;(2)当0<t<30时,求m关于t的函数关系式;(3)当m=35时,请直接写出t的值;(4)直线l上有一点M,当∠PMB+∠POC=90°,且△PMB的周长为60时,请直接写出满足条件的点M 的坐标.7.如图1,点P为∠MON的平分线上一点,以P为顶点的角的两边分别与射线OM,ON交于A,B两点,如果∠APB绕点P旋转时始终满足OA•OB=OP2,我们就把∠APB叫做∠MON的智慧角.(1)如图2,已知∠MON=90°,点P为∠MON的平分线上一点,以P为顶点的角的两边分别与射线OM,ON交于A,B两点,且∠APB=135°.求证:∠APB是∠MON的智慧角.(2)如图1,已知∠MON=α(0°<α<90°),OP=2.若∠APB是∠MON的智慧角,连结AB,用含α的式子分别表示∠APB的度数和△AOB的面积.(3)如图3,C是函数y=(x>0)图象上的一个动点,过C的直线CD分别交x轴和y轴于A,B两点,且满足BC=2CA,请求出∠AOB的智慧角∠APB的顶点P的坐标.8.如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.9.已(Yi)知抛物线(Xian)y=x2+c与(Yu)x轴(Zhou)交于(Yu)A(﹣1,0),B两(Liang)点,交(Jiao)y轴(Zhou)于点C.(1)求抛物线的解析式;(2)点E(m,n)是第二象限内一点,过点E作EF⊥x轴交抛物线于点F,过点F作FG⊥y轴于点G,连接CE、CF,若∠CEF=∠CFG.求n的值并直接写出m的取值范围(利用图1完成你的探究).(3)如图2,点P是线段OB上一动点(不包括点O、B),PM⊥x轴交抛物线于点M,∠OBQ=∠OMP,BQ交直线PM于点Q,设点P的横坐标为t,求△PBQ的周长.10.如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A,C间的一个动点(含端点),过点P作PF⊥BC于点F,点D、E的坐标分别为(0,6),(﹣4,0),连接PD、PE、DE.(1)请直接写出抛物线的解析式;(2)小明探究点P的位置发现:当P与点A或点C重合时,PD与PF的差为定值,进而猜想:对于任意一点P,PD与PF的差为定值,请你判断该猜想是否正确,并说明理由;(3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE周长最小时“好点”的坐标.11.如图,已知二次函数y=x2+(1﹣m)x﹣m(其中0<m<1)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴为直线l.设P为对称轴l上的点,连接PA、PC,PA=PC(1)∠ABC的度数(Shu)为;(2)求(Qiu)P点坐标(Biao)(用含(Han)m的代数式(Shi)表示);(3)在坐标轴上(Shang)是否存在着点(Dian)Q(与(Yu)原点O不重合),使得以Q、B、C为顶点的三角形与△PAC相似,且线段PQ的长度最小?如果存在,求出所有满足条件的点Q的坐标;如果不存在,请说明理由.12.如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D和点C关于抛物线的对称轴对称,直线AD与y轴交于点E.(1)求直线AD的解析式;(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值;(3)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是以AM为边的矩形.若点T和点Q关于AM所在直线对称,求点T的坐标.13.如图,在平面直角坐标系中,抛物线y=﹣x2﹣x+2与x轴交于B、C两点(点B在点C的左侧),与y轴交于点A,抛物线的顶点为D.(1)填空:点A的坐标为(,),点B的坐标为(,),点C的坐标为(,),点D的坐标为(,);(2)点P是线段BC上的动点(点P不与点B、C重合)①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是线段AB上的动点(点Q不与点A、B重合),点R是线段AC上的动点(点R不与点A、C 重合),请直接写出△PQR周长的最小值.2016中考数学压(Ya)轴题参考答案与试题(Ti)解析一.解答(Da)题1.(2015•杭州)如(Ru)图,在(Zai)△ABC中(Zhong)(BC>AC),∠ACB=90°,点(Dian)D在(Zai)AB边上,DE⊥AC于点E.(1)若=,AE=2,求EC的长;(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.【分析】(1)易证DE∥BC,由平行线分线段成比例定理列比例式即可求解;(2)分三种情况讨论:①若∠CFG=∠ECD,此时线段CP是△CFG的FG边上的中线;②若∠CFG=∠EDC,此时线段CP为△CFG的FG边上的高线;③当CD为∠ACB的平分线时,CP既是△CFG的FG边上的高线又是中线.【解答】解:(1)∵∠ACB=90°,DE⊥AC,∴DE∥BC,∴,∵,AE=2,∴EC=6;(2)①如图1,若∠CFG=∠ECD,此时线段CP是△CFG的FG边上的中线.证明:∵∠CFG+∠CGF=90°,∠ECD+∠PCG=90°,又∵∠CFG=∠ECD,∴∠CGF=∠PCG,∴CP=PG,∵∠CFG=∠ECD,∴CP=FP,∴PF=PG=CP,∴线段CP是△CFG的FG边上的中线;②如图2,若∠CFG=∠EDC,此时线段CP为△CFG的FG边上的高线.证明:∵DE⊥AC,∴∠EDC+∠ECD=90°,∵∠CFG=∠EDC,∴∠CFG+∠ECD=90°,∴∠CPF=90°,∴线段CP为△CFG的FG边上的高线.③如图3,当CD为∠ACB的平分线时,CP既是△CFG的FG边上的高线又是中线.【点(Dian)评】本题主要考查了平行线分线段成比例定理、等腰三角形的判定、三角形的有关概念,分类讨论,能全面(Mian)的思考问题是解决问题的关键.2.(2015•淮安(An))阅读理解:如(Ru)图(Tu)①,如果四(Si)边形(Xing)ABCD满(Man)足AB=AD,CB=CD,∠B=∠D=90°,那么我们把这样的四边形叫做“完美筝形”.将一张如图①所示的“完美筝形”纸片ABCD先折叠成如图②所示形状,再展开得到图③,其中CE,CF为折痕,∠BCE=∠ECF=∠FCD,点B′为点B的对应点,点D′为点D的对应点,连接EB′,FD′相交于点O.简单应用:(1)在平行四边形、矩形、菱形、正方形四种图形中,一定为“完美筝形”的是正方形;(2)当图③中的∠BCD=120°时,∠AEB′=80°;(3)当图②中的四边形AECF为菱形时,对应图③中的“完美筝形”有5个(包含四边形ABCD).拓展提升:当图③中的∠BCD=90°时,连接AB′,请探求∠AB′E的度数,并说明理由.【分析】(1)由平行四边形、矩形、菱形、正方形的性质和“完美筝形”的定义容易得出结论;(2)先证出∠AEB′=∠BCB′,再求出∠BCE=∠ECF=40°,即可得出结果;(3)由折叠的性质得出BE=B′E,BC=B′C,∠B=∠CB′E=90°,CD=CD′,FD=FD′,∠D=∠CD′F=90°,即可得出四边形EBCB′、四边形FDCD′是“完美筝形”;由题意得出∠OD′E=∠OB′F=90°,CD′=CB′,由菱形的性质得出AE=AF,CE=CF,再证明△OED′≌△OFB′,得出OD′=OB′,OE=OF,证出∠AEB′=∠AFD′=90°,即可得出四边形CD′OB′、四边形AEOF是“完美筝形”;即可得出结论;当图③中的∠BCD=90°时,四边形ABCD是正方形,证明A、E、B′、F四点共圆,得出,由圆周角定理即可得出∠AB′E的度数.【解答】解:(1)①∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠A=∠C≠90°,∠B=∠D≠90°,∴AB≠AD,BC≠CD,∴平行四边形不一定为“完美筝形”;②∵四(Si)边形(Xing)ABCD是矩(Ju)形,∴∠A=∠B=∠C=∠D=90°,AB=CD,AD=BC,∴AB≠AD,BC≠CD,∴矩形不一(Yi)定为(Wei)“完(Wan)美筝形(Xing)”;③∵四(Si)边形ABCD是菱形,∴AB=BC=CD=AD,∠A=∠C≠90°,∠B=∠D≠90°,∴菱形不一定为“完美筝形”;④∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD,∴正方形一定为“完美筝形”;∴在平行四边形、矩形、菱形、正方形四种图形中,一定为“完美筝形”的是正方形;故答案为:正方形;(2)根据题意得:∠B′=∠B=90°,∴在四边形CBEB′中,∠BEB′+∠BCB′=180°,∵∠AEB′+∠BEB′=180°,∴∠AEB′=∠BCB′,∵∠BCE=∠ECF=∠FCD,∠BCD=120°,∴∠BCE=∠ECF=40°,∴∠AEB′=∠BCB′=40°+40°=80°;故答案为:80;(3)当图②中的四边形AECF为菱形时,对应图③中的“完美筝形”有5个;理由如下;根据题意得:BE=B′E,BC=B′C,∠B=∠CB′E=90°,CD=CD′,FD=FD′,∠D=∠CD′F=90°,∴四边形EBCB′、四边形FDCD′是“完美筝形”;∵四边形ABCD是“完美筝形”,∴AB=AD,CB=CD,∠B=∠D=90°,∴CD′=CB′,∠CD′O=∠CB′O=90°,∴∠OD′E=∠OB′F=90°,∵四边形AECF为菱形,∴AE=AF,CE=CF,AE∥CF,AF∥CE,∴D′E=B′F,∠AEB′=∠CB′E=90°,∠AFD′=∠CD′F=90°,在△OED′和△OFB′中,,∴△OED′≌△OFB′(AAS),∴OD′=OB′,OE=OF,∴四边形CD′OB′、四边形AEOF是“完美筝形”;∴包含四边形ABCD,对应图③中的“完美筝形”有5个;故答案为:5;当图③中的∠BCD=90°时,如图所示:四边形ABCD是正方形,∴∠BAD=90°,∵∠EB′F=90°,∴∠BAD+∠EB′F=180°,∴A、E、B′、F四点共圆,∵AE=AF,∴,∴∠AB′E=∠AB′F=∠EB′F=45°.【点(Dian)评】本题是四(Si)边形综合题目,考查了平行四边形、矩形、菱形、正方形的性质、“完(Wan)美筝形(Xing)”的判定与性质、全等(Deng)三角形的判定与性质、四点共圆、圆周角定理等知识;本题难度较大,综合性强,熟练掌握(Wo)“完(Wan)美筝形(Xing)”的定义,并能进行推理论证与计算是解决问题的关键.3.(2015•重庆)在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E.DF与线段AC(或AC的延长线)相交于点F.(1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长;(2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.求证:BE+CF=AB;(3)如图3,将(2)中的∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线相交于点F,作DN⊥AC于点N,若DN⊥AC于点N,若DN=FN,求证:BE+CF=(BE﹣CF).【分析】(1)如图1,易求得∠B=60°,∠BED=90°,BD=2,然后运用三角函数的定义就可求出BE的值;(2)过点D作DM⊥AB于M,作DN⊥AC于N,如图2,易证△MBD≌△NCD,则有BM=CN,DM=DN,进而可证到△EMD≌△FND,则有EM=FN,就可得到BE+CF=BM+EM+CF=BM+FN+CF=BM+CN=2BM=2BD×cos60°=BD=BC=AB;(3)过点D作DM⊥AB于M,如图3.同(1)可得:∠B=∠ACD=60°,同(2)可得:BM=CN,DM=DN,EM=FN.由DN=FN可得DM=DN=FN=EM,从而可得BE+CF=BM+EM+CF=CN+DM+CF=NF+DM=2DM,BE﹣CF=BM+EM﹣CF=BM+NF﹣CF=BM+NC=2BM.然后在Rt△BMD中,运用三角函数就可得到DM=BM,即BE+CF=(BE﹣CF).【解答】解:(1)如图1,∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠B=∠C=60°,BC=AC=AB=4.∵点D是线段BC的中点,∴BD=DC=BC=2.∵DF⊥AC,即∠AFD=90°,∴∠AED=360°﹣60°﹣90°﹣120°=90°,∴∠BED=90°,∴BE=BD×cos∠B=2×cos60°=2×=1;(2)过(Guo)点(Dian)D作(Zuo)DM⊥AB于(Yu)M,作(Zuo)DN⊥AC于(Yu)N,如(Ru)图(Tu)2,则有∠AMD=∠BMD=∠AND=∠CND=90°.∵∠A=60°,∴∠MDN=360°﹣60°﹣90°﹣90°=120°.∵∠EDF=120°,∴∠MDE=∠NDF.在△MBD和△NCD中,,∴△MBD≌△NCD,∴BM=CN,DM=DN.在△EMD和△FND中,,∴△EMD≌△FND,∴EM=FN,∴BE+CF=BM+EM+CF=BM+FN+CF=BM+CN=2BM=2BD×cos60°=BD=BC=AB;(3)过点D作DM⊥AB于M,如图3.同(1)可得:∠B=∠ACD=60°.同(2)可得:BM=CN,DM=DN,EM=FN.∵DN=FN,∴DM=DN=FN=EM,∴BE+CF=BM+EM+CF=CN+DM+CF=NF+DM=2DM,BE﹣CF=BM+EM﹣CF=BM+NF﹣CF=BM+NC=2BM.在Rt△BMD中,DM=BM•tanB=BM,∴BE+CF=(BE﹣CF).【点(Dian)评】本题主要考查了等边三角形的判定与性质、四边形的内角和定理、全等三角形的判定与性质、三角函数的定义、特殊角的三角函数值等知(Zhi)识,通过证明三角形全等得到(Dao)BM=CN,DM=DN,EM=FN是解(Jie)决本题的关键.4.(2015•济(Ji)南)如图(Tu)1,在(Zai)△ABC中(Zhong),∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM、射线AE于点F、D.(1)直接写出∠NDE的度数;(2)如图2、图3,当∠EAC为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由;(3)如图4,若∠EAC=15°,∠ACM=60°,直线CM与AB交于G,BD=,其他条件不变,求线段AM的长.【分析】(1)根据题意证明△MAC≌△NBC即可;(2)与(1)的证明方法相似,证明△MAC≌△NBC即可;(3)作GK⊥BC于K,证明AM=AG,根据△MAC≌△NBC,得到∠BDA=90°,根据直角三角形的性质和已知条件求出AG的长,得到答案.【解答】解:(1)∵∠ACB=90°,∠MCN=90°,∴∠ACM=∠BCN,在(Zai)△MAC和(He)△NBC中(Zhong),,∴△MAC≌△NBC,∴∠NBC=∠MAC=90°,又(You)∵∠ACB=90°,∠EAC=90°,∴∠NDE=90°;(2)不(Bu)变,在(Zai)△MAC≌△NBC中(Zhong),,∴△MAC≌△NBC,∴∠N=∠AMC,又(You)∵∠MFD=∠NFC,∠MDF=∠FCN=90°,即∠NDE=90°;(3)作GK⊥BC于K,∵∠EAC=15°,∴∠BAD=30°,∵∠ACM=60°,∴∠GCB=30°,∴∠AGC=∠ABC+∠GCB=75°,∠AMG=75°,∴AM=AG,∵△MAC≌△NBC,∴∠MAC=∠NBC,∴∠BDA=∠BCA=90°,∵BD=,∴AB=+,AC=BC=+1,设BK=a,则GK=a,CK=a,∴a+a=+1,∴a=1,∴KB=KG=1,BG=,AG=,∴AM=.【点(Dian)评】本题考查的是矩形的判定和(He)性质以及三角形全等的判定和性质,正确作出辅助线、利用方程的思想是解题的关键,注意旋转的性质的灵活运用.5.(2015•沈(Shen)阳)如图,在(Zai)▱ABCD中(Zhong),AB=6,BC=4,∠B=60°,点(Dian)E是(Shi)边(Bian)AB上的一点,点F是边CD上一点,将▱ABCD沿EF折叠,得到四边形EFGH,点A的对应点为点H,点D的对应点为点G.(1)当点H与点C重合时.①填空:点E到CD的距离是2;②求证:△BCE≌△GCF;③求△CEF的面积;(2)当点H落在射线BC上,且CH=1时,直线EH与直线CD交于点M,请直接写出△MEF的面积.【分析】(1)①解直角三角形即可;②根据平行四边形的性质和折叠的性质得出∠B=∠G,∠BCE=∠GCF,BC=GC,然后根据AAS即可证明;③过E点作EP⊥BC于P,设BP=m,则BE=2m,通过解直角三角形求得EP=m,然后根据折叠的性质和勾股定理求得EC,进而根据三角形的面积就可求得;(2)过E点作EQ⊥BC于Q,通过解直角三角形求得EP=n,根据折叠的性质和勾股定理求得EH,然后根据三角形相似对应边成比例求得MH,从而求得CM,然后根据三角形面积公式即可求得.【解答】解:(1)如图1,①作CK⊥AB于K,∵∠B=60°,∴CK=BC•sin60°=4×=2,∵C到AB的距离和E到CD的距离都是平行线AB、CD间的距离,∴点E到CD的距离是2,故答案为2;②∵四边形ABCD是平行四边形,∴AD=BC,∠D=∠B,∠A=∠BCD,由折叠(Die)可知,AD=CG,∠D=∠G,∠A=∠ECG,∴BC=GC,∠B=∠G,∠BCD=∠ECG,∴∠BCE=∠GCF,在(Zai)△BCE和(He)△GCF中(Zhong),,∴△BCE≌△GCF(ASA);③过(Guo)E点(Dian)作(Zuo)EP⊥BC于(Yu)P,∵∠B=60°,∠EPB=90°,∴∠BEP=30°,∴BE=2BP,设BP=m,则BE=2m,∴EP=BE•sin60°=2m×=m,由折叠可知,AE=CE,∵AB=6,∴AE=CE=6﹣2m,∵BC=4,∴PC=4﹣m,在RT△ECP中,由勾股定理得(4﹣m)2+(m)2=(6﹣2m)2,解得m=,∴EC=6﹣2m=6﹣2×=,∵△BCE≌△GCF,∴CF=EC=,∴S△CEF=××2=;(2)①当H在BC的延长线上,且位于C点的右侧时,如图2,过E点作EQ⊥BC于Q,∵∠B=60°,∠EQB=90°,∴∠BEQ=30°,∴BE=2BQ,设BQ=n,则BE=2n,∴QE=BE•sin60°=2n×=n,由折叠可知,AE=HE,∵AB=6,∴AE=HE=6﹣2n,∵BC=4,CH=1,∴BH=5,∴QH=5﹣n,在Rt△EHQ中,由勾股定理得(5﹣n)2+(n)2=(6﹣2n)2,解得n=,∴AE=HE=6﹣2n=,∵AB∥CD,∴△CMH∽△BEH,∴=,即(Ji)=,∴MH=,∴EM=﹣=∴S△EMF=××2=.②如(Ru)图(Tu)3,当(Dang)H在(Zai)线段(Duan)BC上(Shang)时,过(Guo)E点作EQ⊥BC于Q,∵∠B=60°,∠EQB=90°,∴∠BEQ=30°,∴BE=2BQ,设BQ=n,则BE=2n,∴QE=BE•sin60°=2n×=n,由折叠可知,AE=HE,∵AB=6,∴AE=HE=6﹣2n,∵BC=4,CH=1,∴BH=3∴QH=3﹣n在Rt△EHQ中,由勾股定理得(3﹣n)2+(n)2=(6﹣2n)2,解得n=∴BE=2n=3,AE=HE=6﹣2n=3,∴BE=BH,∴∠B=60°,∴△BHE是等边三角形,∴∠BEH=60°,∵∠AEF=∠HEF,∴∠FEH=∠AEF=60°,∴EF∥BC,∴DF=CF=3,∵AB∥CD,∴△CMH∽△BEH,∴=,即=,∴CM=1∴EM=CF+CM=4∴S△EMF=×4×2=4.综上,△MEF的面积为或4.【点(Dian)评】本题是四边形综合题,考查了解直角三角形,平行四边形的性质,折(Zhe)叠的性质勾股定理的应用,三角形相似的判定和性质,三角形面积等,熟练掌握性质定理是解题的关键.6.(2015•沈(Shen)阳)如图,在平面直角坐标系中,四边形(Xing)OABC的(De)顶点(Dian)O是坐(Zuo)标原点,点(Dian)A在第一象限,点C在第四象限,点B的坐标为(60,0),OA=AB,∠OAB=90°,OC=50.点P是线段OB上的一个动点(点P不与点O、B重合),过点P与y轴平行的直线l交边OA 或边AB于点Q,交边OC或边BC于点R,设点P横坐标为t,线段QR的长度为m.已知t=40时,直线l恰好经过点C.(1)求点A和点C的坐标;(2)当0<t<30时,求m关于t的函数关系式;(3)当m=35时,请直接写出t的值;(4)直线l上有一点M,当∠PMB+∠POC=90°,且△PMB的周长为60时,请直接写出满足条件的点M 的坐标.【分析】(1)利用等腰三角形的性质以及勾股定理结合B点坐标得出A,C点坐标;(2)利用锐角三角函数关系结合(1)中所求得出PR,QP的长,进而求出即可;(3)利用(2)中所求,利用当0<t<30时,当30≤t≤60时,分别利用m与t的关系式求出即可;(4)利用相似三角形的性质,得出M点坐标即可.【解答】解:(1)如图1,过点A作AD⊥OB,垂足为D,过点C作CE⊥OB,垂足为E,∵OA=AB,∴OD=DB=OB,∵∠OAB=90°,∴AD=OB,∵点(Dian)B的坐标(Biao)为:(60,0),∴OB=60,∴OD=OB=×60=30,∴点(Dian)A的坐(Zuo)标为:(30,30),∵直(Zhi)线(Xian)l平(Ping)行于(Yu)y轴且当t=40时,直线l恰好过点C,∴OE=40,在Rt△OCE中,OC=50,由勾股定理得:CE===30,∴点C的坐标为:(40,﹣30);(2)如图2,∵∠OAB=90°,OA=AB,∴∠AOB=45°,∵直线l平行于y轴,∴∠OPQ=90°,∴∠OQP=45°,∴OP=QP,∵点P的横坐标为t,∴OP=QP=t,在Rt△OCE中,OE=40,CE=30,∴tan∠EOC=,∴tan∠POR==,∴PR=OP•tan∠POR=t,∴QR=QP+PR=t+t=t,∴当0<t<30时,m关于t的函数关系式为:m=t;(3)由(2)得:当0<t<30时,m=35=t,解得:t=20;如图3,当30≤t≤40时,m=35显然不可能;当40<t<60时,∵OP=t,则BP=QP=60﹣t,∵PR∥CE,∴△BPR∽△BEC,∴=,∴=,解得:PR=90﹣t,则(Ze)m=60﹣t+90﹣t=35,解(Jie)得:t=46,综上(Shang)所述:t的(De)值为(Wei)20或(Huo)46;(4)如(Ru)图(Tu)4,当∠PMB+∠POC=90°且△PMB的周长为60时,此时t=40,直线l恰好经过点C,则∠MBP=∠COP,故此时△BMP∽△OCP,则=,即=,解得:x=15,故M1(40,15),同理可得:M2(40,﹣15),综上所述:符合题意的点的坐标为:M1(40,15),M2(40,﹣15).【点(Dian)评】此题主要考查了一次函数综合以及相似三角形的判(Pan)定与性质和勾股定理等知识,利用分类讨论以及数形结合得出是解题关键.7.(2015•宁(Ning)波)如图(Tu)1,点(Dian)P为(Wei)∠MON的(De)平分线上一点,以(Yi)P为顶点的角的两边分别与射线OM,ON交于A,B两点,如果∠APB绕点P旋转时始终满足OA•OB=OP2,我们就把∠APB叫做∠MON的智慧角.(1)如图2,已知∠MON=90°,点P为∠MON的平分线上一点,以P为顶点的角的两边分别与射线OM,ON交于A,B两点,且∠APB=135°.求证:∠APB是∠MON的智慧角.(2)如图1,已知∠MON=α(0°<α<90°),OP=2.若∠APB是∠MON的智慧角,连结AB,用含α的式子分别表示∠APB的度数和△AOB的面积.(3)如图3,C是函数y=(x>0)图象上的一个动点,过C的直线CD分别交x轴和y轴于A,B两点,且满足BC=2CA,请求出∠AOB的智慧角∠APB的顶点P的坐标.【分析】(1)由角平分线求出∠AOP=∠BOP=∠MON=45°,再证出∠OAP=∠OPB,证明△AOP∽△POB,得出对应边成比例,得出OP2=OA•OB,即可得出结论;(2)由∠APB是∠MON的智慧角,得出,证出△AOP∽△POB,得出对应角相等∠OAP=∠OPB,即可得出∠APB=180°﹣α;过点A作AH⊥OB于H,由三角形的面积公式得出:S△AOB=OB•AH,即可得出S△AOB=2sinα;(3)设点C(a,b),则ab=3,过点C作CH⊥OA于H;分两种情况:①当点B在y轴正半轴上时;当点A在x轴的负半轴上时,BC=2CA不可能;当得A在x轴的正半轴上时;先求出,由平行线得出△ACH∽△ABO,得出比例式:=,得出OB=3b,OA=,求出OA•OB=,根据∠APB是∠AOB的智慧角,得出OP,即可得出点P的坐标;②当点B在y轴的负半轴上时;由题意得出:AB=CA,由AAS证明△ACH≌△ABO,得出OB=CH=b,OA=AH=a,得出OA•OB=,求出OP,即可得出点P的坐标.【解答】(1)证明:∵∠MON=90°,P为∠MON的平分线上一点,∴∠AOP=∠BOP=∠MON=45°,∵∠AOP+∠OAP+∠APO=180°,∴∠OAP+∠APO=135°,∵∠APB=135°,∴∠APO+∠OPB=135°,∴∠OAP=∠OPB,∴△AOP∽△POB,∴,∴OP2=OA•OB,∴∠APB是(Shi)∠MON的智慧(Hui)角;(2)解(Jie):∵∠APB是(Shi)∠MON的智慧(Hui)角,∴OA•OB=OP2,∴,∵P为(Wei)∠MON的平分线上(Shang)一点,∴∠AOP=∠BOP=α,∴△AOP∽△POB,∴∠OAP=∠OPB,∴∠APB=∠OPB+∠OPA=∠OAP+∠OPA=180°﹣α,即(Ji)∠APB=180°﹣α;过点A作AH⊥OB于H,连接AB;如图1所示:则S△AOB=OB•AH=OB•OAsinα=OP2•sinα,∵OP=2,∴S△AOB=2sinα;(3)设点C(a,b),则ab=3,过点C作CH⊥OA于H;分两种情况:①当点B在y轴正半轴上时;当点A在x轴的负半轴上时,如图2所示:BC=2CA不可能;当点A在x轴的正半轴上时,如图3所示:∵BC=2CA,∴,∵CH∥OB,∴△ACH∽△ABO,∴=,∴OB=3b,OA=,∴OA•OB=•3b==,∵∠APB是∠AOB的智慧角,∴OP===,∵∠AOB=90°,OP平分∠AOB,∴点P的坐标为:(,);②当点B在y轴的负半轴上时,如图4所示:∵BC=2CA,∴AB=CA,在(Zai)△ACH和(He)△ABO中(Zhong),,∴△ACH≌△ABO(AAS),∴OB=CH=b,OA=AH=a,∴OA•OB=a•b=,∵∠APB是(Shi)∠AOB的智慧(Hui)角,∴OP===,∵∠AOB=90°,OP平(Ping)分(Fen)∠AOB,∴点(Dian)P的坐标为:(,﹣);综上所述:点P的坐标为:(,),或(,﹣).。

中考数学与中点有关的问题试题(24题)

〔二讲〕与中点有关的几何题〔2014年昌平二模〕24.[探究]如图1,在△ABC 中, D 是AB 边的中点,AE ⊥BC 于点E ,BF ⊥AC 于点F ,AE ,BF 相交于点M ,连接DE ,DF . 则DE ,DF 的数量关系为.[拓展]如图2,在△A B C 中,C B = C A ,点D 是AB 边的中点,点M 在△A B C 的内部,且∠MBC =∠MAC . 过点M 作ME ⊥BC 于点E ,MF ⊥AC 于点F ,连接DE ,DF . 求证:DE =DF ;[推广]如图3,若将上面[拓展]中的条件"CB =CA "变为"CB ≠CA ",其他条件不变,试探究DE 与DF 之间的数量关系,并证明你的结论.ADBE CM F A D BECMF MABCDFE图3图2图1海淀2-海淀25. 在矩形ABCD 中, 点F 在AD 延长线上,且DF = DC , M 为AB 边上一点, N 为MD 的中 点, 点E 在直线CF 上〔点E 、C 不重合〕.〔1〕如图1, 若AB =BC , 点M 、A 重合, E 为CF 的中点,试探究BN 与NE 的位置关系与BMCE的值, 并证明你的结论; 〔2〕如图2,且若AB =BC , 点M 、A 不重合, BN =NE ,你在〔1〕中得到的两个结论是否成立, 若成立,加以证明; 若不成立, 请说明理由;〔3〕如图3,若点M 、A 不重合,BN =NE ,你在〔1〕中得到的结论两个是否成立, 请直接写出你的结论.丰台1-24.已知:△ABC 和△ADE 是两个不全等的等腰直角三角形,其中BA =BC ,DA =DE ,联结EC ,取EC 的中点M ,联结BM 和DM .〔1〕如图1,如果点D 、E 分别在边AC 、AB 上,那么BM 、DM 的数量关系与位置关系是;〔2〕将图1中的△ADE 绕点A 旋转到图2的位置时,判断〔1〕中的结论是否仍然成立,并说明理由.海淀1-24. 在□ABCD 中,∠A =∠DBC , 过点D 作DE =DF , 且∠EDF=∠ABD , 连接EF 、 EC ,N 、P 分别为EC 、BC 的中点,连接NP .〔1〕如图1,若点E 在DP 上, EF 与DC 交于点M , 试探究线段NP 与线段NM 的数量关系与∠ABD 与∠MNP 满足的等量关系,请直接写出你的结论;〔2〕如图2,若点M 在线段EF 上, 当点M 在何位置时,你在〔1〕中得到的结论仍然成立,写出你确定的点M 的位置,并证明〔1〕中的结论.图1图213、〔2014燕山一模〕24.如图1,已知ABC ∆是等腰直角三角形,︒=∠90BAC ,点D 是BCD C B A EMMEA B C DMBDCFE ANPPN AEFCDBEDMBCAEDMBCAMBCA的中点.作正方形DEFG ,使点A 、C 分别在DG 和DE 上,连接 AE ,BG .〔1〕试猜想线段BG 和AE 的数量关系是;〔2〕将正方形DEFG 绕点D 逆时针方向旋转)3600(︒≤<︒αα, ①判断〔1〕中的结论是否仍然成立?请利用图2证明你的结论; ②若4==DE BC ,当AE 取最大值时,求AF 的值.1、〔2014年门头沟二模〕24. 在△ABC 中,AB=AC ,分别以AB 和AC 为斜边,向△ABC 的外侧作等腰直角三角形,M 是BC 边中点中点,连接MD 和ME〔1〕如图24-1所示,若AB=AC ,则MD 和ME 的数量关系是〔2〕如图24-2所示,若AB ≠AC 其他条件不变,则MD 和ME 具有怎样的数量和位置关系?请给出证明过程; 〔3〕 在任意△ABC 中,仍分别以AB 和AC 为斜边,向△ABC 的内侧..作等腰直角三角形,M 是BC 的中点,连接MD 和ME ,请在图24-3中补全图形,并直接判断△MED 的形状.〔2014年昌平二模〕24.[探究]DE =DF . …………………………………………………………………………………1分[拓展]如图2,连接CD . ∵在△A B C 中 ,C B = C A , ∴∠CAB =∠CBA . ∵∠MBC =∠MAC ,∴∠MAB =∠MBA . ……………………………2分 ∴AM =BM .∵点 D 是 边 AB 的 中点 ,∴点M 在CD 上. ………………………………………3分 ∴CM 平分∠FCE . ∴∠FCD =∠ECD .∵ME ⊥BC 于E ,MF ⊥AC 于F , ∴MF =ME . 又∵CM =CM , ∴△CMF ≌△CME . ∴CF =CE . ∵CD =CD ,∴△CFD ≌△CED .∴DE =DF .………………………………………4分 [推广] DE =DF .如图3,作AM 的中点G ,BM 的中点H .∵点 D 是 边 AB 的 中点 , ∴1//,.2DG BM DG BM =同理可得:1//,.2DH AM DH AM = ∵ME ⊥BC 于E ,H 是BM 的中点, ∴在Rt △BEM 中, 1.2HE BM BH ==∴DG =HE . ……………………………………………………5分 同理可得:.DH FG = ∵DG //BM ,DH //GM ,∴四边形DHMG 是平行四边形.图2F MCE BD A图3H GF M CE BD A∴∠DGM =∠DHM .∵∠MGF =2∠MAC ,∠MHE =2∠MBC , 又∵∠MBC =∠MAC , ∴∠MGF =∠MHE .∴∠DGM +∠MGF =∠DHM +∠MHE .∴∠DGF =∠DHE . ……………………………………6分 ∴△DHE ≌△FGD .∴DE =DF . ……………………………………………………7分〔海淀二模〕25. 解:〔1〕BN 与NE 的位置关系是BN ⊥NE ;CE BM.证明:如图,过点E 作EG ⊥AF 于G , 则∠EGN =90°.∵ 矩形ABCD 中,AB =BC , ∴ 矩形ABCD 为正方形.∴AB=AD =CD ,∠A =∠ADC =∠DCB =90°. ∴EG//CD , ∠EGN =∠A , ∠CDF =90°. ………………………………1分 ∵E 为CF 的中点,EG//CD ,∴GF =DG =11.22DF CD =∴1.2GE CD =∵N 为MD <AD >的中点, ∴AN =ND =11.22AD CD =∴GE =AN , NG=ND+DG=ND+AN=AD=AB .……………………………2分∴△NGE ≌△BAN . ∴∠1=∠2. ∵∠2+∠3=90°, ∴∠1+∠3=90°. ∴∠BNE =90°.∴BN ⊥NE .……………………………………………………………3分 ∵∠CDF =90°, CD =DF , 可得 ∠F =∠FCD =45°,2.CF CD .于是122.2CF CECE CE BMBACDCD……………………………………4分 〔2〕在〔1〕中得到的两个结论均成立.证明:如图,延长BN 交CD 的延长线于点G ,连结BE 、GE ,过E 作EH ⊥CE ,交CD 于点H .∵ 四边形ABCD 是矩形,∴AB ∥CG .∴∠MBN =∠DGN ,∠BMN =∠GDN .∵N 为MD 的中点, H A BC DEM NF 321GFEA (M )CDNB∴MN=DN.∴△BMN≌△GDN.∴MB=DG,BN=GN.∵BN=NE,∴BN=NE=GN.∴∠BEG=90°.……………………………………………5分∵EH⊥CE,∴∠CEH=90°.∴∠BEG=∠CEH.∴∠BEC=∠GEH.由〔1〕得∠DCF=45°.∴∠CHE=∠HCE=45°.∴EC=EH,∠EHG=135°.∵∠ECB=∠DCB+∠HCE=135°,∴∠ECB=∠EHG.∴△ECB≌△EHG.∴EB=EG,CB=HG.∵BN=NG,∴BN⊥NE. ……………………………………………6分∵BM =DG= HG-HD= BC-HD=CD-HD =CH=2CE,∴CEBM =22. ……………………………………………7分〔3〕BN⊥NE;CEBM 不一定等于22. …………………………………………8分〔2012丰台一模〕24.解:〔1〕BM=DM且BM⊥DM.………2分〔2〕成立.……………3分理由如下:延长DM至点F,使MF=MD,联结CF、BF、BD.易证△EMD≌△CMF.………4分∴ED=CF,∠DEM=∠1.∵AB=BC,AD=DE,且∠ADE=∠ABC=90°,∴∠2=∠3=45°,∠4=∠5=45°.∴∠BAD=∠2+∠4+∠6=90°+∠6.∵∠8=360°-∠5-∠7-∠1,∠7=180°-∠6-∠9,∴∠8=360°-45°-〔180°-∠6-∠9〕-〔∠3+∠9〕=360°-45°-180°+∠6+∠9- 45°-∠9=90°+∠6 .∴∠8=∠BAD.………5分又AD=CF.∴△ABD≌△CBF.∴BD=BF,∠ABD=∠CBF.………6分∴∠DBF=∠ABC=90°.∵MF=MD,∴BM=DM且BM⊥DM.〔海淀一模〕9解:〔1〕 NP =MN ,∠ABD +∠MNP =180︒<或其它变式与文字叙述,各1分>.………2分 〔2〕点M 是线段EF 的中点<或其它等价写法>. 证明:如图, 分别连接BE 、CF .∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥DC ,∠A =∠DCB , ∴∠ABD =∠BDC . ∵∠A =∠DBC , ∴∠DBC =∠DCB . ∴ DB =DC .①………………………3分 ∵∠EDF =∠ABD ,∴∠EDF =∠BDC .∴∠BDC-∠EDC =∠EDF-∠EDC .即∠BDE =∠CDF .②又 DE =DF ,③由①②③得△BDE ≌△CDF .…………………………………………4分 ∴ EB =FC , ∠1=∠2.∵N 、P 分别为EC 、BC 的中点, ∴NP ∥EB , NP =EB 21.同理可得 MN ∥FC ,MN =FC 21.∴NP = NM . …………………………………………………5分∵NP ∥EB , ∴∠NPC =∠4.∴∠ENP =∠NCP +∠NPC =∠NCP +∠4. ∵MN ∥FC ,∴∠MNE =∠FCE =∠3+∠2=∠3+∠1.∴∠MNP =∠MNE +∠ENP =∠3+∠1+∠NCP +∠4=∠DBC +∠DCB =180︒-∠BDC =180︒-∠ABD .∴∠ABD +∠MNP =180︒.……………………………………7分〔2014燕山一模〕解析:24. 解:〔1〕AE BG =; …………………2分 〔2〕①成立.以下给出证明: 如图,连接AD ,∵在 Rt BAC ∆中,D 为斜边BC 中点,∴BD AD =,BC AD ⊥,∴︒=∠+∠90GDB ADG . …………………3分 ∵四边形EFGD 为正方形, ∴DG DE =,且︒=∠90GDE , ∴︒=∠+∠90ADE ADG , ∴ADE BGD ∠=∠. ……4分 在BDG ∆和ADE ∆中, ⎪⎩⎪⎨⎧=∠=∠=,,,ED GD ADE BDG AD BD ∴BDG ∆≌ADE ∆,M 1 32 4P N A EF C DB BACDEGFEDMBC∴AE BG =.……………………5分②由①可得AE BG =,当BG 取得最大值时,AE 取得最大值.当旋转角为︒270时,AE BG =,最大值为642=+. ………6分 如图,此时13222=+=EF AE AF . ……………………7分〔2014年门头沟二模〕24. 〔1〕MD =ME ……………1分〔2〕如图,作DF ⊥AB ,EG ⊥AC ,垂足分别为F 、G . 因为DF 、EG 分别是等腰直角三角形ABD 和等腰直角三角形ACE 斜边上的高,所以F 、G 分别是AB 、AC 的中点.又∵M 是BC 的中点,所以MF 、MG 是△ABC 的中位线. ∴12MF AC =,12MG AB =,MF //AC ,MG //AB .∴∠BFM =∠BAC ,∠MGC =∠BAC .∴∠BFM =∠MGC .所以∠DFM =∠MGE .……………2分∵DF 、EG 分别是直角三角形ABD 和直角三角形ACE 斜边上的中线, ∴12EG AC =,12DF AB =. ∴MF =EG ,DF =NG .……………3分∴△DFM ≌△MGE .∴DM =ME .……………4分 ∠FMD=∠GEM∴∠DME =∠FMD+∠FMG+∠GME=∠GEM+∠MGC +∠GME ∵EG ⊥AC ∴∠EGC=900∵∠GEM+∠MGC +∠GME+∠EGC=1800∴∠DME=900……………5分〔3〕作图正确得一分……………6分△MDE 是等腰直角三角形.……………7分BA CDE GF。

北师大版中考数学复习:中点问题常考热点 专项练习题汇编(Word版,含答案)

北师大版中考数学复习:中点问题常考热点专项练习题汇编一.选择题1.如图,在正方形ABCD中,点E是边BC的中点,连接AE、DE,分别交BD、AC于点P、Q,过点P作PF⊥AE交CB的延长线于F,下列结论正确的有:()①AP=FP,②AE=AO,③若四边形OPEQ的面积为4,则该正方形ABCD的面积为36,④CE•EF=EQ•DE.A.4个B.3个C.2个D.1个2.如图,矩形ABCD中,AB=2,AD=2,动点P从点A出发向终点D运动,连BP,并过点C作CH⊥BP,垂足为H.①△ABP∽△HCB;②AH的最小值为﹣;③在运动过程中,BP扫过的面积始终等于CH扫过的面积;④在运动过程中,点H的运动路径的长为π,其中正确的有个()个.A.1B.2C.3D.43.如图,在矩形ABCD中,E,F分别为边BC,CD的中点,线段AE,AF与对角线BD分别交于点G,H.设矩形ABCD的面积为S,则以下4个结论中:①AG:GE=2:1;②BG:GH:HD=1:1:1;③S1+S2+S3=S;④S2:S4:S6=1:2:4.正确的结论有()A.1个B.2个C.3个D.4个4.如图,在△ABC中,D是AC边上的中点,连接BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连接AC',若AD=AC′=2,BD=3,则点D到BC′的距离为()A.B.C.D.5.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE⊥BF;②S△BCF=5S△BGE;③QB=QF;④tan∠BQP=.A.1B.2C.3D.46.正方形ABCD中,对角线AC、BD相交于点O,DE平分∠ADO交AC于点E,把△ADE 沿AD翻折,得到△ADE′,点F是DE的中点,连接AF,BF,E′F.若AE=.下列结论:①AD垂直平分EE′,②tan∠ADE=﹣1,③C△ADE﹣C△ODE=2﹣1,④S四边形AEFB=,其中结论正确的个数是()A.4个B.3个C.2个D.1个7.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S△ABC=2S△ABF.其中正确的结论有()A.4个B.3个C.2个D.1个8.如图,正方形ABCD的边CD与正方形CGFE的边CE重合,O是EG的中点,∠EGC 的平分线GH过点D,交BE于H,连接OH、FH、EG与FH交于M,对于下面四个结论:①GH⊥BE;②HO BG;③S正方形ABCD:S正方形ECGF=9﹣4:4;④EM:MG =1:(1+),其中正确的结论有()A.1个B.2个C.3个D.4个9.如图,正方形ABCD中,P为对角线上的点,PB=AB,连PC,作CE⊥CP交AP的延长线于E,AE交CD于F,交BC的延长线于G,则下列结论:①E为FG的中点;②FG2=4CF•CD;③AD=DE;④CF=2DF.其中正确的个数是()A.1个B.2个C.3个D.4个二.填空题10.如图,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE的中点,BF⊥BC交CM的延长线于点F,BD=2,CD=1.下列结论:①∠AED =∠ADC,②=,③BF=2AC,④BE=DE.其中结论正确的个数有.11.如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=4,BC=4,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F,若△AB′F为直角三角形,则AE的长为.12.已知:△ABC中,D为BC的中点,E为AB上一点,且BE=AB,F为AC上一点,且CF=AC,EF交AD于P,则EP:PF=.13.如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC 边上,且BM=6.P为对角线BD上一点,则PM﹣PN的最大值为.14.如图,正方形ABCD的边CD与正方形CGFE的边CE重合,O是EG的中点,∠EGC 的平分线GH过点D,交BE于H,连接OH、FH、EG与FH交于M,对于下面四个结论:①GH⊥BE;②HO BG;③点H不在正方形CGFE的外接圆上;④△GBE∽△GMF.其中正确的结论有.15.如图,正方形ABCD中,F为AB上一点,E是BC延长线上一点,且AF=EC,连接EF,DE,DF,M是FE中点,连接MC,设FE与DC相交于点N.则4个结论:①DN=DG;②△BFG∽△EDG∽△BDE;③CM垂直BD;④若MC=,则BF=2;正确的结论有.16.如图,四边形ABCD中,AB=AD,∠DAB=90°,AC与BD交于点H,AE⊥BC于点E,AE交BD于点G,点F是BD的中点,连接EF,若HG=10,GB=6,tan∠ACB=1,则下列结论:①∠DAC=∠CBD;②DH+GB=HG;③4AH=5HC;④EC﹣EB=EF;其中正确结论序号是.17.如图,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,点O是AB中点,连接OH,则OH=.18.如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP 翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有(写出所有正确结论的序号)①△CMP∽△BP A;②四边形AMCB的面积最大值为10;③当P为BC中点时,AE为线段NP的中垂线;④线段AM的最小值为2;⑤当△ABP≌△ADN时,BP=4﹣4.三.解答题19.在矩形ABCD中,AB=12cm,BC=16cm,EF分别是AB、BD的中点,连接EF,点P 从点E出发沿EF方向匀速运动,速度为1cm/s.同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动,连接PQ.设运动时间为t(0<t<8)s.解答下列问题:(1)如图①,求证:△BEF∽△DCB;(2)如图②,过点Q作QG⊥AB,垂足为G,若四边形EPQG为矩形,t=;(3)当△PQF为等腰三角形时,请直接写出t的值.20.如图①,在Rt△ABC中,∠ABC=90°,AB=BC,延长CA至点E,作DE⊥CE交BA 的延长线于点D,连接CD,点F为CD的中点,连接EF,BF.(1)直接写出线段EF和BF之间的数量关系为;(2)将△ADE绕点A顺时针旋转到图②的位置,猜想EF和BF之间的关系,并加以证明;(3)若AC=3,AE=2,将△ADE绕点A顺时针旋转,当A,E,B共线时,请直接写出EF的长.参考答案一.选择题1.解:连接AF.∵PF⊥AE,∴∠APF=∠ABF=90°,∴A,P,B,F四点共圆,∴∠AFP=∠ABP=45°,∴∠P AF=∠PF A=45°,∴AP=FP,故①正确,设BE=EC=a,则AE=a,OA=OC=OB=OD=a,∴,即AE=AO,故②正确,根据对称性可知,△OPE≌△OQE,∴S△OEQ=S四边形OPEQ=2,∵OB=OD,BE=EC,∴CD=2OE,OE∥CD,∴,△OEQ∽△CDQ,∴S△ODQ=4,S△CDQ=8,∴S△CDO=12,∴S正方形ABCD=48,故③错误,∵∠EPF=∠DCE=90°,∠PEF=∠DEC,∴△EPF∽△ECD,∴,∵EQ=PE,∴CE•EF=EQ•DE,故④正确,故选:B.2.解:①∵四边形ABCD是矩形,∴∠BAP=90°,AD∥BC,∴∠APB=∠HBC.∵CH⊥BP,∴∠BHC=90°.∴∠BAP=∠CHB=90°.∴△ABP∽△HCB.∴①的结论正确;②如下图,点H的运动轨迹是以BC的中点为圆心,AB为半径的圆弧,设BC的中点为O,∵AH+HO≥AO,∴当A,H,O在一条直线上时,AH最小.∵BC=2,∴OB=BC=.∴AO==,∴AH的最小值=AO﹣OB=﹣,∴②的结论正确;③BP扫过的面积=.∵点H的运动轨迹是以BC的中点为圆心,AB为半径的圆弧,∴CH扫过的面积为S扇形OBH+S△OHC.∵CD=2,BC=2,∴tan∠DBC=,∴∠DBC=30°,∴∠HOC=2∠DBC=60°,∴∠BOH=120°.∴CH扫过的面积为S扇形OBH+S△OHC=+××=π+,∴③的结论错误;④∵点H的运动轨迹是以BC的中点为圆心,AB为半径的圆弧,∴点H的运动路径的长为:=.∴④的结论错误;综上,正确的结论有:①②,故选:B.3.解:①∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵E是BC的中点,∴BE=BC,∵AD∥BE,∴==2,即AG:GE=2:1;故①正确;②∵AD∥BE,∴,∴BG=BD,同理得:DH=BD,∴BG=GH=HD,∴BG:GH:HD=1:1:1;故②正确;③∵AD∥BE,∴△BEG∽△DAG,∴=,∵BG=GH=HD,∴S5=S3=S4,设S1=x,则S5=S3=S4=2x,∴S=12x,同理可得:S2=x,∴S1+S2+S3=x+x+2x=4x=S;故③正确;④由③知:S6=6x﹣x﹣x=4x,∴S2:S4:S6=1:2:4,故④正确;所以本题的4个结论都正确;故选:D.4.解:如图,连接CC',交BD于点M,过点D作DH⊥BC'于点H,∵AD=AC′=2,D是AC边上的中点,∴DC=AD=2,由翻折知,△BDC≌△BDC',BD垂直平分CC',∴DC=DC'=2,BC=BC',CM=C'M,∴AD=AC′=DC'=2,∴△ADC'为等边三角形,∴∠ADC'=∠AC'D=∠C'AC=60°,∵DC=DC',∴∠DCC'=∠DC'C=×60°=30°,在Rt△C'DM中,∠DC'C=30°,DC'=2,∴DM=1,C'M=DM=,∴BM=BD﹣DM=3﹣1=2,在Rt△BMC'中,BC'===,∵S△BDC'=BC'•DH=BD•CM,∴DH=3×,∴DH=,故选:B.5.解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故①正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S△BCF=5S△BGE,故②正确.根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,故③正确;∵QF=QB,PF=1,则PB=2,在Rt△BPQ中,设QB=x,∴x2=(x﹣1)2+4,∴x=,∴QB=,PQ===,∴tan∠BQP==,故④错误;故选:C.6.解:如图,连接EB、EE′,作EM⊥AB于M,EE′交AD于N.∵四边形ABCD是正方形,∴AB=BC=CD=DA,AC⊥BD,AO=OB=OD=OC,∠DAC=∠CAB=∠DAE′=45°,根据对称性,△ADE≌△ADE′≌△ABE,∴DE=DE′,AE=AE′,∴AD垂直平分EE′,故①正确,∴EN=NE′,∵∠NAE=∠NEA=∠MAE=∠MEA=45°,AE=,∴AM=EM=EN=AN=1,∵ED平分∠ADO,EN⊥DA,EO⊥DB,∴EN=EO=1,AO=DO=+1,∴tan∠ADE=tan∠ODE==﹣1,故②正确,∴AB=AD=AO=2+,∴C△ADE﹣C△ODE=AD+AE﹣DO﹣EO=,故③错误,∴S△AEB=S△AED=×1×(2+)=1+,S△BDE=S△ADB﹣2S△AEB=1+,∵DF=EF,∴S△EFB=,∴S四边形AEFB=S△AEB+S△BEF=,故④错误,故选:C.7.解:如图,过D作DM∥BE交AC于N,交BC于M,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∴∠EAC=∠ACB,∵BE⊥AC于点F,∴∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴=,∵AE=AD=BC,∴=,∴CF=2AF,故②正确;∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DN垂直平分CF,∴DF=DC,故③正确;∵CF=2AF,∴S△ABC=3S△ABF.∴④不正确;其中正确的结论有3个,故选:B.8.解:∵四边形ABCD是正方形,∴BC=DC,∠BCE=90°,同理可得CE=CG,∠DCG=90°,在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴∠BEC=∠DGC,∵∠EDH=∠CDG,∠DGC+∠CDG=90°,∴∠EDH+∠BEC=90°,∴∠EHD=90°,即HG⊥BE,故①正确;在△BGH和△EGH中,,∴△BGH≌△EGH(ASA),∴BH=EH,又∵O是EG的中点,∴HO=BG,且HO∥BG,故②正确;设EC和OH相交于点N.设HN=a,则BC=2a,设正方形ECGF的边长是2b,则NC=b,CD=2a,∵OH∥BC,∴△DHN∽△DGC,∴=,即=,即a2+2ab﹣b2=0,解得:a=b=(﹣1+)b,或a=(﹣1﹣)b(舍去),则=﹣1;则S正方形ABCD:S正方形ECGF=(﹣1)2=3﹣2,故③错误;∵EF∥OH,∴△EFM∽△OMH,∴==,∴=,=,∴===,故④正确.故选:C.9.解:①如图:正方形ABCD中BA=BC,∠ABP=∠CBP,BP=BP,∴△ABP≌△CBP,那么∠1=∠2,在直角三角形ABG中∠1与∠G互余,∠PCE=90°,那么∠2与∠5互余,∴∠5=∠G,∴EC=EG.在直角三角形FCG中∠3与∠G互余,∠4与∠5也互余,而∠5=∠G,∴∠3=∠4,∴EC=EF,从而得出EG=EF,即E为FG的中点.∴①正确.③∵AB=BC,∠ABD=∠CBD,BP=BP,∴△ABP≌△CBP,∴∠1=∠2,∵AB∥CD,∴∠1=∠DF A,∵AB=BP,∴∠1=∠BP A,∵∠DPF=∠APB,∵EF=CE,∴∠3=∠4,∴∠4=∠DPE,∴D、P、C、E四点共圆,∴∠DEA=∠DCP,∵∠1+∠DAP=90°,∠2+∠DCP=90°,∴∠DAP=∠DCP=∠DEA,∴AD=DE,∴③正确,②∵∠3=∠4,AD=DE(③已求证),∴△CEF∽△CDE,∴=,即CE2=CF•CD,∵∠3=∠4,∴CE=EF,∵E为FG的中点.∴FG=2CE,即CE=FG,∴=CF•CD,即FG2=4CF•CD,∴②正确.④∵四边形ABCD是正方形,∴△PDF∽△PBA,∴==,∴=,∴=,即CF=DF,∴④错误,综上所述,正确的由①②③.故选:C.二.填空题(共9小题)10.解:①∠AED=90°﹣∠EAD,∠ADC=90°﹣∠DAC,∵AD平分∠CAB,∴∠EAD=∠DAC,∴∠AED=∠ADC,故①正确;②∵∠EAD=∠DAC,∠ADE=∠ACD=90°,∴△ADE∽△ACD,∴,∵AC的值未知,故②不一定正确;③连接DM,∵MD为斜边AE的中线,∴DM=MA,∴∠MDA=∠MAD=∠DAC,∴DM∥BF∥AC,∴,∴,∴BF=2AC,故③正确;④由③知,,∵,∴DM∥AC,DM⊥BC,∴∠MDA=DAC=DAM,∵∠ADE=90°,∴DM=MA=ME,∵BM=2AM,∴BE=EM,∴ED=BE,故④正确,故答案为:3个.11.解:①如图1中,当∠AFB′=90°时.在Rt△ABC中,∵∠B=30°,AC=4,∴AB=2AC=8,∵BD=CD,∴BD=CD=BC=2,由折叠的性质得:∠BFD=90°,B'E=BE,∴∠BDF=60°,∴∠EDB=∠EDF=30°,∴∠B=∠EDB=30°,∴BE=DE=B'E,∵∠C=∠BFD=90°,∠DBF=∠ABC=90°,∴△BDF∽△BAC,∴,即=,解得:BF=3,设BE=DE=x,在Rt△EDF中,DE=2EF,∴x=2(3﹣x),解得:x=2,∴AE=8﹣2=6.②如图2中,当∠AB′F=90°时,作EH⊥AB′交AB′的延长线于H.设AE=x.∵AD=AD,CD=DB′,∴Rt△ADC≌Rt△ADB′(HL),∴AC=AB′=4,∵∠AB′E=∠AB′F+∠EB′F=90°+30°=120°,∴∠EB′H=60°,在Rt△EHB′中,B′H=B′E=(8﹣x),EH=B′H=(8﹣x),在Rt△AEH中,∵EH2+AH2=AE2,∴[(8﹣x)]2+[4+(8﹣x)]2=x2,解得:x=,综上所述,满足条件的AE的值为6或.故答案为:6或.12.解:∵BE=AB,CF=AC,∴则=,=,分别作EE1,FF1平行于BC且与AD交于E1、F1两点.则EE1∥FF1,∴△EE1P∽△FF1P,=,==,==,又BD=CD,∴=,∴==,故答案为:.13.解:如图所示,以BD为对称轴作N的对称点N',连接MN′并延长交BD于P,连NP,根据轴对称性质可知,PN=PN',∴PM﹣PN=PM﹣PN'≤MN',当P,M,N'三点共线时,取“=”,∵正方形边长为8,∴AC=AB=,∵O为AC中点,∴AO=OC=,∵N为OA中点,∴ON=,∴ON'=CN'=,∴AN'=,∵BM=6,∴CM=AB﹣BM=8﹣6=2,∴==,∴PM∥AB∥CD,∠CMN'=90°,∵∠N'CM=45°,∴△N'CM为等腰直角三角形,∴CM=MN'=2,即PM﹣PN的最大值为2,故答案为:2.14.解:①如图,∵四边形ABCD和四边形CGFE是正方形,∴BC=CD,CE=CG,∠BCE=∠DCG,在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴∠BEC=∠BGH,∵∠BGH+∠CDG=90°,∠CDG=∠HDE,∴∠BEC+∠HDE=90°,∴GH⊥BE,故①正确;②∵GH是∠EGC的平分线,∴∠BGH=∠EGH,在△BGH和△EGH中,,∴△BGH≌△EGH(ASA),∴BH=EH,又∵O是EG的中点,∴HO是△EBG的中位线,∴OH∥BG,HO=BG,故②正确;③由①得△EHG是直角三角形,∵O为EG的中点,∴OH=OG=OE,∴点H在正方形CGFE的外接圆上,故③错误;④如图2,连接CF,由③可得点H在正方形CGFE的外接圆上,∴∠HFC=∠CGH,∵∠HFC+∠FMG=90°,∠CGH+∠GBE=90°,∴∠FMG=∠GBE,又∵∠EGB=∠FGM=45°,∴△GBE∽△GMF,故④正确;故答案为:①②④.15.解:正方形ABCD中,AD=CD,在△ADF和△CDE中,,∴△ADF≌△CDE(SAS),∴∠ADF=∠CDE,DE=DF,∴∠EDF=∠FDC+∠CDE=∠FDC+∠ADF=∠ADC=90°,∴∠DEF=45°,∵∠DGN=45°+∠FDG,∠DNG=45°+∠CDE,∠FDG≠∠CDE,∴∠DGN≠∠DNG,∴DN≠DH,判断出①错误;∵△DEF是等腰直角三角形,∵∠ABD=∠DEF=45°,∠BGF=∠EGD(对顶角相等),∴△BFG∽△EDG,∵∠DBE=∠DEF=45°,∠BDE=∠EDG,∴△EDG∽△BDE,∴△BFG∽△EDG∽△BDE,故②正确;连接BM、DM.∵△AFD≌△CED,∴∠FDA=∠EDC,DF=DE,∴∠FDE=∠ADC=90°,∵M是EF的中点,∴MD=EF,∵BM=EF,∴MD=MB,在△DCM与△BCM中,,∴△DCM≌△BCM(SSS),∴∠BCM=∠DCM,∴CM在正方形ABCD的角平分线AC上,∴MC垂直平分BD;故③正确;过点M作MH⊥BC于H,则∠MCH=45°,∵MC=,∴MH=×=1,∵M是EF的中点,BF⊥BC,MH⊥BC,∴MH是△BEF的中位线,∴BF=2MH=2,故④正确;综上所述,正确的结论有②③④.故答案是:②③④.16.解:①以BD中点F为圆心,BD为直径可以作出△ABC的外接圆,∵tan∠ACB=45°,∴∠ACB=∠ADB=45°,∴A、B、C、D四点共圆,∴∠DAC=∠CBD,故①正确;②∵△ABH∽△GDA,∴AB2=BH•DG,即AB2=16×(10+DH),叉∵BD=AB,即16+DH=AB,解得DH=8,∵DH+GB=8+6=14≠10,∴DG+GB≠HG,故②错误;③∵△AHG∽△BHA,∴AH2=BH•HG=160,∴AH=4,根据相交弦定理:AH•HC=BH•DH,∴HC=,∴4AH=5HC,故③正确;④∵BD=BH+DH=24,△ABD为等腰直角三角形,∴AB=12,∵AC=AH+HC=,且△AEC是等腰直角三角形,∴AE=CE=,根据勾股定理可得,BE=,∴CE﹣BE=,由△ABH∽△DCH,得CD=,而FN=CD=,BF=12,由勾股定理可得,BN=,BE=,∴EN=BN﹣BE=,EF=,∴CE﹣EB=EF,故④正确.综上,正确的结论是①③④.故答案为:①③④.17.解:在BD上截取BE=CH,连接CO,OE,∵∠ACB=90°,CH⊥BD,∵AC=BC=3,CD=1,∴BD=,∴△CDH∽△BDC,∴,∴CH=,∵△ACB是等腰直角三角形,点O是AB中点,∴AO=OB=OC,∠A=∠ACO=∠BCO=∠ABC=45°,∴∠OCH+∠DCH=45°,∠ABD+∠DBC=45°,∵∠DCH=∠CBD,∴∠OCH=∠ABD,在△CHO与△BEO中,,∴△CHO≌△BEO,∴OE=OH,∠BOE=∠HOC,∵OC⊥BO,∴∠EOH=90°,即△HOE是等腰直角三角形,∵EH=BD﹣DH﹣CH=﹣﹣=,∴OH=EH×=,故答案为:.18.解:∵∠APB=∠APE,∠MPC=∠MPN,∵∠CPN+∠NPB=180°,∴2∠NPM+2∠APE=180°,∴∠MPN+∠APE=90°,∴∠APM=90°,∵∠CPM+∠APB=90°,∠APB+∠P AB=90°,∴∠CPM=∠P AB,∵四边形ABCD是正方形,∴AB=CB=DC=AD=4,∠C=∠B=90°,∴△CMP∽△BP A.故①正确,设PB=x,则CP=4﹣x,∵△CMP∽△BP A,∴=,∴CM=x(4﹣x),∴S四边形AMCB=[4+x(4﹣x)]×4=﹣x2+2x+8=﹣(x﹣2)2+10,∴x=2时,四边形AMCB面积最大值为10,故②正确,当PB=PC=PE=2时,由折叠知,AE=AB=AD,∠AEP=∠B=90°,∴∠AEN=90°=∠D,∵AN=AN,∴Rt△ADN≌Rt△AEN(HL),∴DN=EN,设ND=NE=y,在Rt△PCN中,(y+2)2=(4﹣y)2+22解得y=,∴NE≠EP,故③错误,作MG⊥AB于G,∴MG=AD=4,根据勾股定理得:AM==,∴AG最小时AM最小,∵AG=AB﹣BG=AB﹣CM=4﹣x(4﹣x)=(x﹣2)2+3,∴x=2时,AG最小值=3,∴AM最小值==5,故④错误.∵△ABP≌△ADN时,∴△ABP≌△ADN≌△AEN≌△AEP,∴∠P AB=∠DAN=22.5°,在AB上取一点K使得AK=PK,设PB=z,∴∠KP A=∠KAP=22.5°∵∠PKB=∠KP A+∠KAP=45°,∴∠BPK=∠BKP=45°,∴PB=BK=z,AK=PK=z,∴z+z=4,∴z=4﹣4,∴PB=4﹣4,故⑤正确.故答案为①②⑤.三.解答题(共22小题)19.(1)证明:∵四边形ABCD是矩形,∴AB∥CD,AD∥BC,∴∠EBF==∠CDB,∵E、F分别是AB、BD的中点,∴EF是△ABD的中位线,∴EF∥AD,∴EF∥BC,∴∠EFB=∠CBD,∴△BEF∽△DCB;(2)当四边形EPQG为矩形时,如图所示,在矩形ABCD中,AB=12cm,BC=16cm,∴BD=20cm,AD=BC=16cm,∵E、F分别是AB、BD的中点,∴BF=DF=10cm,EF=AD=×16=8m,∴QF=(2t﹣10)cm,PF=(8﹣t)cm,∵四边形EPQG是矩形,∴PQ∥BE,∴△QPF∽△BEF,∴,∴,解得:t=,∴当t=时,四边形EPQG为矩形,故答案为;(3)当点Q在DF上,PF=QF,如图所示,∵PF=(8﹣t)cm,QF=(10﹣2t)cm,∴8﹣t=10﹣2t,解得:t=2,当点Q在BF上,PF=QF,如图所示,∵PF=(8﹣t)cm,QF=(2t﹣10)cm,∴8﹣t=2t﹣10,∴t=6,当点Q在BF上,PQ=QF,如图所示,过点Q作QG⊥EF于点G,则GQ∥BE,∴△QGF∽△BEF,∴,∵PQ=QF,∴GF=PF=(8﹣t),∴,∴t=,当点Q在BF上,PQ=PF,如图所示,过点P作PM⊥BF于点M,则∠PMF=∠BEF=90°,∵∠PFM=∠BFE,∴△PFM∽△BFE,∴,∵PQ=PF,∴MF=QF=(2t﹣10),∴,∴t=,综上所述,t=2或6或或时,△PQF是等腰三角形.20.解:(1)如图①中,结论:EF=BF.理由:∵DE⊥CE,∴∠CED=90°,∵∠CBD=90°,CF=DF,∴BF=CD,EF=CD,∴EF=BF.故答案为:EF=BF.(2)如图②中,结论:EF=BF,EF⊥BF.理由:过点C作CT∥DE交EF的延长线于点T,连接BT,ET,延长DE交BC于点J,设AB交DJ于点K.∵CT∥DE,∴∠CTF=∠DEF,∵∠CFT=∠DFE,CF=DF,∴△CFT≌△DFE(AAS),∴FT=EF,CT=DE,∵CT∥DJ,∴∠TCB=∠DJB,∵∠AEK=∠JBK=90°,∠AKE=∠JKB,∴∠EAK=∠BJK,∴∠BCT=∠BAE,∵AE=DE,CT=DE,∴CT=AE,∵CB=AB,∴△BCT≌△BAE(SAS),∴BT=BE,∠CBT=∠ABE,∴∠TBE=ABC=90°,∴△EBT是等腰直角三角形,∵FT=EF,∴BF⊥EF,BF=EF.(3)如图③﹣1中,当点E在BA的延长线上时,∵AB=BC,AC=3,∠ABC=90°,∴AB=AC=3,∵AE=2,∴BE=5,∵△BFE是等腰直角三角形,∴EF=AE=如图③﹣2中,当点E在线段AB上时,同法可得EF=,综上所述,满足条件的EF的长为或.。

(完整)中考数学压轴题精选含答案

一、解答题1.如图,在直角梯形ABCD 中,AB ∥CD ,∠B =90°,AB =4,BC =8,CD =2m (m >2),P 为CD 中点,以P 为圆心,CP 为半径作半圆P ,交线段AC 于点E ,交线段AD 于点F .(1)当E 为CA 中点时,①求证:E 是弧CF 的中点.②求此时m 的值.(2)连结PF ,若PF 平行△ABC 的某一边时求出满足条件的m 值.(3)连结PE ,将PE 绕着点E 顺时针旋转90°得到EP ',连结AP ',当AP '⊥AC 时,求此时CE 的长.2.如图1,在菱形ABCD 中,∠D =120°,AB =8,点M 从A 开始,以每秒1个单位的速度向点B 运动;点N 从C 出发,沿C →D →A 方向,以每秒2个单位的速度向点A 运动,若M 、N 同时出发,其中一点到达终点时,另一个点也随之停止运动.设运动的时间为t 秒,过点N 作NQ ⊥DC ,交AC 于点Q .(1)当t =2时,求线段NQ 的长;(2)设△AMQ 的面积为S ,直接写出S 与t 的函数关系式及t 的取值范围;(3)在点M 、N 运动过程中,是否存在t 值,使得△AMQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.3.如图,在平面直角坐标系中,抛物线2y x bx c =-++,与y 轴交于点A 与x 轴交于点E 、B .且点()0,5A ,()5,0B ,点P 为抛物线上的一动点.(1)求二次函数的解析式;(2)如图1,过点A 作AC 平行于x 轴,交抛物线于点C ,若点P 在AC 的上方,作PD 平行于y 轴交AB 于点D ,连接PA ,PC ,当245AOE APCD S S ∆=四边形时,求点P 坐标; (3)设抛物线的对称轴与AB 交于点M ,点Q 在直线AB 上,当以点M 、E 、P 、Q 为顶点的四边形为平行四边形时,请直接写出点Q 的坐标.4.如图,抛物线2y ax bx c =++与x 轴交于A ,B 两点,与y 轴交于C 点,OA =1,OB =OC =3.(1)求抛物线的表达式;(2)如图1,点D 为第一象限抛物线上一动点,连接DC ,DB ,BC ,设点D 的横坐标为m ,△BCD 的面积为S ,求S 的最大值;(3)如图2,点P (0,n )是线段OC 上一点(不与点O 、C 重合),连接PB ,将线段PB 以点P 为中心,旋转90°得到线段PQ ,是否存在n 的值,使点Q 落在抛物线上?若存在,请求出满足条件的n 的值,若不存在,请说明理由.5.如图,抛物线223y x x =--+与x 轴交于A 、B 两点,与y 轴交于C 点.(1)在第二象限内的抛物线上确定一点P ,使四边形PBOC 的面积最大.求出点P 的坐标.(2)点M 为抛物线上一动点,x 轴上是否存在一点Q ,使点B 、C 、M 、Q 的顶点的四边形是平行四边形,若存在,请直接写出Q 点的坐标;若不存在,请说明理由.6.已知抛物线经过()30A -,,()1,0B ,52,2C ⎛⎫ ⎪⎝⎭三点,其对称轴交x 轴于点H ,一次函数()0y kx b k =+≠的图象经过点C ,与抛物线交于另一点D (点D 在点C 的左边),与抛物线的对称轴交于点E . (1)求抛物线的解析式;(2)在抛物线上是否存在点F ,使得点A 、B 、E 、F 构成的四边形是平行四边形,如果存在,求出点F 的坐标,若不存在请说明理由(3)设∠CEH=α,∠EAH =β,当αβ>时,直接写出k 的取值范围7.如图1,直线l 1:y =kx 与直线l 2:y =﹣12x +b 相交于点A (4,3),直线l 2:y =﹣12x +b 与x 轴交于点B ,点E 为线段AB 上一动点,过点E 作EF ∥y 轴交直线l 1于点F ,连接BF .(1)求k、b的值;(2)如图2,若点F坐标为(8,6),∠OFE的角平分线交x轴于点M.①求线段OM的长;②点N在直线l1的上方,当△OFN和△OFM全等时,直接写出点N的坐标.8.如图,抛物线y=ax2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点,与y轴交于点C.直线l与抛物线交于A、D两点,与y轴交于点E,点D的坐标为(4,3).(1)求抛物线的解析式与直线l的解析式;(2)若点P是抛物线上的点且在直线l上方,连接PA、PD,求当△PAD面积最大时点P 的坐标及该面积的最大值;(3)若点Q是y轴上的点,且∠ADQ=45°,求点Q的坐标.9.如图,在△ABC中,AB=AC,⊙是△ABC的外接圆,连接BO并延长交边AC于点D.(1)如图1,求证:∠BAC=2∠ABD;(2)如图2,过点B作BH⊥AC于点H,延长BH交⊙O于点G,连接OC,CG,OC交BG于点F,求证:BF=2HG;(3)如图3,在(2)的条件下,若AD=2,CD=3,求线段BF的长.10.如图1,在平面直角坐标系中,抛物线y=ax2+154x+c与x轴负半轴相交于点A(﹣20,0),与y轴相交于点B(0,﹣15).(1)求抛物线的函数表达式及直线AB的函数表达式;(2)如图2,点C是第三象限内抛物线上的一个动点,连接AC、BC,直线OC与直线AB 相交于点D,当△ABC的面积最大时,求此时△ABC面积的最大值及点C的坐标;(3)在(2)的条件下,点E为线段OD上的一个动点,点E从点O开始沿OD以每秒10个单位长度的速度向点D运动(运动到点D时停止),以OE为边,在OD的左侧做正方形OEFG,设正方形OEFG与△OAD重叠的面积为S,运动时间为t秒.当t>3时,请直接写出S与t之间的函数关系式为(不必写出t的取值范围).11.在平面直角坐标系xOy中,点A(a,b)和点B(c,d).给出如下定义:以AB为边,作等边三角形ABC,按照逆时针方向排列A,B,C三个顶点,则称等边三角形ABC为点A,B的逆序等边三角形.例如,当1,0,3,0a b c d=-===时,点A,B的逆序等边三角形ABC如图①所示.(1)已知点A(-1,0),B(3,0),则点C的坐标为___;请在图①中画出点C,B的逆序等边三角形CBD,点D的坐标为___.(2)图②中,点B(3,0),点A在以点M(-2,0)为圆心1为半径的圆上,求点A,B的逆序等边三角形ABC的顶点C的横坐标取值范围.(3)图③中,点A在以点M(-2,0)为圆心1为半径的圆上,点B在以N(3,0)为圆心2为半径的圆上,且点B的纵坐标0d>,点A,B的逆序等边三角形ABC如图③所示.若点C 恰好落在直线y x t=+上,直接写出t的取值范围.12.已知:如图1,一次函数y=mx+5m的图像与x轴、y轴分别交于点A、B,与函数y=-23x的图像交于点C,点C的横坐标为-3.(1)求点B的坐标;(2)若点Q为直线OC上一点,且S△QAC=2S△AOC,求点Q的坐标;(3)如图2,点D为线段OA上一点,∠ACD=∠AOC.点P为x轴负半轴上一点,且点P到直线CD和直线CO的距离相等.①在图2中,只利用圆规.....作图找到点P的位置; (保留作图痕迹,不得在图2中作无关元素.)②求点P的坐标.13.在平面直角坐标系xOy中,⊙O的半径为1.对于线段AB,给出如下定义:若线段AB沿着某条直线l对称可以得到⊙O的弦A′B′,则称线段AB是⊙O的以直线l为对称轴的“反射线段”,直线l称为“反射轴”.(1)如图,线段CD,EF,GH中是⊙O的以直线l为对称轴的“反射线段”有;(2)已知A点坐标为(0,2),B点坐标为(1,1),①若线段AB是⊙O的以直线l为对称轴的“反射线段”,求反射轴l与y轴的交点M的坐标.②若将“反射线段”AB沿直线y=x的方向向上平移一段距离S,其反射轴l与y轴的交点的纵坐标yM的取值范围为12≤yM136≤,求S.(3)已知点M,N是在以原点为圆心,半径为2的圆上的两个动点,且满足MN=1,若MN是⊙O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,求反射轴l未经过的区域的面积.(4)已知点M,N是在以(2,013MN2=MN是⊙O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,请直接写出反射轴l与y轴交点的纵坐标的取值范围.14.△ABC为等边三角形,AB=4,AD⊥BC于点D,点E为AD的中点.(1)如图1,将AE绕点A顺时针旋转60°至AF,连接EF交AB于点G,求证:G为EF中点.(2)如图2,在(1)的条件下,将△AEF绕点A顺时针旋转,旋转角为α,连接BE,H为BE的中点,连接DH,GH.当30°<α<120°时,猜想∠DHG的大小是否为定值,并证明你的结论.(3)在△AEF绕点A顺时针旋转过程中,H为BE的中点,连接CH,问线段CH何时取得最大值,请说明理由,并直接写出此时△ADH的面积.15.在ABC中,AB AC=,D是边AC上一点,F是边AB上一点,连接BD、CF交于点E,连接AE,且.(1)如图1,若90BAC∠=︒,,,求点B到AE的距离;(2)如图2,若E为BD中点,连接FD,FD平分,G为CF上一点,且,求证:;(3)如图3,若,12BC=,将ABD△沿着AB翻折得,点H为的中点,连接HA、HC,当周长最小时,请直接写出的值.16.在平面直角坐标系xOy中,已知抛物线y=x2﹣2x﹣3与x轴交于A、B两点,与y轴交于C点,D为抛物线顶点.(1)连接AD,交y轴于点E,P是抛物线上的一个动点.①如图一,点P是第一象限的抛物线上的一点,连接PD交x轴于F,连接,若,求点P的坐标.②如图二,点P在第四象限的抛物线上,连接AP、BE交于点G,若,则w有最大值还是最小值?w的最值是多少?(2)如图三,点P是第四象限抛物线上的一点,过A、B、P三点作圆N,过点P作PM x⊥轴,垂足为I,交圆N于点M,点P在运动过程中,线段是否变化?若有变化,求出MI的取值范围;若不变,求出其定值.(3)点Q是抛物线对称轴上一动点,连接OQ、AQ,设AOQ外接圆圆心为H,当的值最大时,请直接写出点H的坐标.17.如图,在平面直角坐标系中,矩形OABC,点A在y轴上,点C在x轴上,其中B(﹣2,3),已知抛物线y=﹣34x2+bx+c经过点A和点B.(1)求抛物线解析式;(2)如图1,点D (﹣2,﹣1)在直线BC 上,点E 为y 轴右侧抛物线上一点,连接BE 、AE ,DE ,若S △BDE =4S △ABE ,求E 点坐标;(3)如图2,在(2)的条件下,P 为射线DB 上一点,作PQ ⊥直线DE 于点Q ,连接AP ,AQ ,PQ ,若△APQ 为直角三角形,请直接写出P 点坐标.18.如图1,点A ,点B 的坐标分别(a ,0),(0,b ),且b =+4,将线段BA 绕点B 逆时针旋转90°得到线段BC .(1)直接写出a = ,b = ,点C 的坐标为 ;(2)如图2,作CD ⊥x 轴于点D ,点M 是BD 的中点,点N 在△OBD 内部,ON ⊥DN ,求2+ON =DN .(3)如图3,点P 是第二象限内的一个动点,若∠OPB =90°,求线段CP 的最大值.19.如图1,已知抛物线)(3343y x x =+-与x 轴交于A 、B 两点,与y 轴交于点C ,(1)写出A 、B 、C 三点的坐标.(2)若点P 为OBC 内一点,求OP BP CP ++的最小值.(3)如图2,点Q 为对称轴左侧抛物线上一动点,点()4,0D ,直线DQ 分别与y 轴、直线AC 交于E 、F 两点,当CEF △为等腰三角形时,请直接写出CE 的长.20.已知等边△ABC ,M 在边BC 上,MN ⊥AC 于N ,交AB 于点P .(1)求证:BP =BM ;(2)若MC =2BM ,求证:MP =MN .(3)若E ,F 分别在AB 、AC 上,且△MEF 为等边三角形,当MEF ABC S S ∆∆的值最小时,BM BC= .【参考答案】**科目模拟测试 一、解答题 1.(1)①见解析;②5m =;(2)m 的值为25或6;(3)25CE =【解析】【分析】(1)①连接DE ,证明ADC ∆是等腰三角形,根据“三线合一”的性质可得ADE CDE ∠=∠,证得EC EF =,从而可得结论;②根据勾股定理得到AC 45=,由E 为AC 中点得EC 25=,再证明DEC CBA ,由相似三角形的性质列出比例式,求出m 的值即可;(2)分PF //AC 和PF //BC 两种情况求解即可; (3)设CE =x ,作PG ⊥AC ,则2x GE =,45AE x =- 证明PGE EAP '≅得AP GE '=,再证明AP EBAC ',列比例式求出x 的值即可.【详解】解:(1)如图,连接DE∵CD 是圆P 的直径,∴∠DEC =90°,即DE ⊥AC∵E 为CA 中点∴AE =CE∴AD =CD∴ADE CDE ∠=∠∴EC EF =∴E 是CF 的中点;②在Rt △ABC 中,∠B =90°,AB =4,BC =8,∴22224845AC AB BC +=+∵E 是AC 的中点∴11452522EC AC ==⨯= ∵AB //CD ,90B ∠=︒∴90B DCB ∠+∠=︒∴90DCB∠=︒,即90DCE BCA∠+∠=︒∵90CDE DCE∠+∠=︒∴CDE BCA∠=∠又90B DEC∠=∠=︒∴DEC CBA∆∆∽∴CE DCAB AC=,即252=445m解得,5m=;(2)分两种情况:①当PF//AC时,如图,则有PDF CDA∆∆∴PF PDAC CD=,即245PF mm=∴25=PF∴25m=②当PF//BC时,如图,过点A作AH⊥DC,垂足为H,则四边形AHCB是矩形,∴AH//BC,HC=AB=4,AH=BC=8∴PF//AH∵90DCB∠=︒∴90FPD∠=︒∴45PDF PFD∠=∠=︒∴45HAD HDA∠=∠=︒∴DH=AH,即248m-=解得,6m=综上,m的值为256;(3)过点P 作PG AC ⊥于点G ,如图,∵PE =PC ∴1,2GE CE EPG CPG =∠=∠ ∵90PEP '∠=︒∴90P EA PEG '∠+∠=︒又90PEG GPE ∠+∠=︒∴P EA EPG '∠=∠又90P AE PGE '∠=∠=︒,PE P E '=∴P AE EPG '∆≅∆∴AP GE '=设CE x =,则45,2x AE x GE AP '=== ∵90,90BCA DCA GPC PCH ∠+∠=︒∠+∠=︒∴GPC BCA ∠=∠∴EPG BCP ∠=∠∴P EA BCA '∠=∠又90P AE B '∠=∠=︒∴AP E BAC '∆∆ ∴AP AB AE BC '=42825x = ∴5x =25CE =【点睛】本题主要考查了全等三角形的判定与性质,圆的基本概念,相似三角形的判定与性质,正确作出辅助线以及进行分类讨论是解答本题的关键.2.(143;(2)S =()()22330434348t t t ⎧+≤≤⎪⎪⎨⎪≤⎪⎩<;(3)存在,当t =247s 或(32-163)s或163s时,△AMQ为等腰三角形.【解析】【分析】(1)首先求得CN的长,在直角△CNQ中利用三角函数即可求得NQ的长;(2)当0≤t≤4时,N在CD上,首先求得CQ,则AQ长即可求得,再根据△CAB=30°,AM=t,据此即可求得△AMQ的长;当4<t≤8时,利用相似求得AQ的长,进而求得△AMQ的面积,得到函数解析式;(3)分三种情形讨论求解即可.【详解】解:(1)当t=2时,CN=2×2=4,∵在△ACD中,AD=DC,∴∠DCA=1801202︒-︒=30°,在直角△CNQ中,NQ=CN•tan30°=4×33=433;(2)由题意得,AM=t,当0≤t≤4时,CN=2t,∵∠D=120°,AB=CD=8,∴∠DCA=30°,连接BD,与AC相交于点定O,过点Q作QG⊥AB于点G,∴OC=CD•cos30︒3AC3∴在Rt△CNQ中,NQ23t,CQ43t,∴AQ=AC-CQ343,QG=12AQ,∴S=12AM• QG =233t+,当4<t≤8时,延长QN,交AB于G,交CD延长线于H,如图:ND =2t -8,∠HDN =60°,∴HD =12ND =t -4, ∴CH =t -4+8=t +4,∴CQ =23cos303CH =︒(t +4), ∴AQ =AC -CQ =83-233(t +4),QG =12AQ , S =12•AM • QG 234363t t =-+. 综上,S =()()223230433434863t t t t t t ⎧-+≤≤⎪⎪⎨⎪-+≤⎪⎩<; (3)①当0<t ≤4时,只有MA =MQ 符合条件,过点M 作ME ⊥AC 于点E ,则AE =EQ =AM •cos30︒=32t , ∴AQ =3t ,由(2)知AQ 343, 3433, 解得t =247; ②当4<t ≤8时,由(2)知AQ 323t +4),AQ =AM 时,)4t +=t ,解得tAQ =MQ 时,AM ,t )4t ⎤+⎥⎦, 解得t =163.综上所述,当t =247s 或(s 或163s 时,△AMQ 为等腰三角形. 【点睛】本题考查了菱形的性质以及三角函数,正确进行分请情况进行讨论是关键.3.(1)245y x x =-++;(2)1(2,9)P ,2(3,8)P ;(3)1(9,4)Q -,2(0,5)Q ,3(1,6)Q -,4(5,10)Q -【解析】【分析】(1)直接将(0,5)A ,(5,0)B 代入2y x bx c =-++,求解即可;(2)先求出AB 的解析式,设点P 的横坐标为t ,则()2,45P t t t -++,(,5)D t t -+,用t 表示出PD ,最后利用245AOE APCD S S ∆=四边形求出结果; (3)分三种情况讨论解答:①当EM 为平行四边形的对角线时;②当EP 为对角线时;③当EQ 为对角线时.【详解】(1)将点(0,5)A ,(5,0)B 分别代入2y x bx c =-++得25505b c c -++=⎧⎨=⎩, 45b c =⎧∴⎨=⎩, ∴二次函数的解析式为245y x x =-++;(2)//AC x 轴,点()0,5A ,∴当5y =时,2455x x -++=,10x ∴=,24x =,()4,5C ∴,4AC ∴=,设直线AB 的解析式为y mx n =+,将(0,5)A ,(5,0)B 分别代入得505n m n =⎧⎨=+⎩, 解得:1m =-,5n =∴直线AB 的解析式为5y x =-+;设点P 的横坐标为t ,则()2,45P t t t -++,(,5)D t t -+()2245(5)5PD t t t t t ∴=-++--+=-+,4AC =,()22114521022APCD S AC PD t t t t ∴=⨯=⨯⨯-+=-+四边形 函数245y x x =-++,当0y =时,有2450x x -++=,11x ∴=-,25x =,(1,0)E ∴-,1OE ∴=,又5OA =,11515222AOE S OE OA ∆∴=⨯⨯=⨯⨯=, 245AOE APCD S S ∆=四边形, 22452101252t t ∴-+=⨯=, 解得:12t =,23t =,∴点1(2,9)P ,2(3,8)P ;(3)∵2(2)9y x =--+,∴当x =2时,y =-2+5=3,∴M (2,3),设P (m ,2(2)9m --+,(,5)Q n n -+,而E (-1,0),①当EM 为平行四边形的对角线时,(平行四边形的对角线互相平分)得:21222(2)950322m n m n +-+⎧=⎪⎪⎨--+-++⎪=⎪⎩, 解得121261,52m m n n ==-⎧⎧⎨⎨=-=⎩⎩ (舍), ∴点Q 的坐标为(-5,10);②当EP 为对角线时,212220(2)93522m m m n -++⎧=⎪⎪⎨--+-+⎪=⎪⎩,解得121223,10m m n n ==⎧⎧⎨⎨=-=⎩⎩, ∴点Q 的坐标为(-1,6)或(0,5);③当EQ 为对角线时,21222053(2)922n m n m -++⎧=⎪⎪⎨-+--+⎪=⎪⎩, 解得121261,92m m n n ==-⎧⎧⎨⎨==⎩⎩(舍), 点Q 的坐标为(9,-4),综上所得:1(9,4)Q -,2(0,5)Q ,3(1,6)Q -,4(5,10)Q -.【点睛】本题考查了待定系数法求函数关系式,平行四边形的性质和判定,解本题的关键是分类思想的运用.4.(1)2y x 2x 3=-++;(2)278;(3)存在,n =1或n 3+33- 【解析】【分析】(1)通过待定系数法求解函数解析式即可;(2)作DF ⊥x 轴于点F ,交BC 于点E ,根据12S DE OB =⋅求得S 关于m 的解析式,根据二次函数的性质求解即可;(3)过点P 作PB 的垂线,交抛物线于点1Q 和2Q ,作1Q M y ⊥轴于点M ,2Q N y ⊥轴于点N ,利用全等三角形的性质求解即可.【详解】解:(1)设函数关系式为2y ax bx c =++由题意,得A (-1,0),B (3,0),C (0,3)∴(1)(3)y a x x =+-把C (0,3)代入得,1a =-∴2y x 2x 3=-++(2)作DF ⊥x 轴于点F ,交BC 于点E设直线BC 关系式为y =kx +b ,代入(3,0),(0,3)得k =-1,b =3,∴y =-x +3∵点D 的横坐标为m ,则DF =223m m -++,EF =-m +3∴DE =23m m -+22133327(3)()22228S DE OB m m m =⋅=-+=--+ ∵302-<,∴S 的最大值是278(3)过点P 作PB 的垂线,交抛物线于点1Q 和2Q ,作1Q M y ⊥轴于点M ,2Q N y ⊥轴于点N∴1290Q MP Q NP BOP ∠=∠=∠=︒∵1190Q PM PQ M ∠+∠=︒,190Q PM BPO ∠+∠=︒,∴1PQ M BPO ∠=∠又∵1BP PQ =,∴1Q PM PBO △≌△∴1MQ OP n ==,3MP OB ==,∴1()3Q n n +,代入抛物线,得2323n n n +=-++解得11n =,20n =(舍去)同理,2PN Q PBO ≌,∴2Q (-n ,n -3)代入抛物线,得2323n n n =-+-- 解得13+33n -=2333n --=舍去) 综上,存在n 的值,n =1或n 3+33-【点睛】 此题考查了二次函数与几何的综合应用,涉及了待定系数法求解析式,二次函数的性质,全等三角形的判定与性质,解题的关键是熟练掌握二次函数以及全等三角形的判定与性质.5.(1)315,24⎛⎫- ⎪⎝⎭;(2)Q 1(-5,0),Q 2(-1,0),Q 3 ()720,,Q 4)720,. 【解析】【分析】(1)分别求出点B 、C 的坐标,连接PB ,PC ,PO ,设点P 坐标为()2,23m m m --+,四边形PBOC 的面积为S ,根据=BOP COP S S S +△△得到S 关于m 的二次函数解析式,根据二次函数的性质即可求解;(2)分点M 在x 轴上方或点M 在x 轴下方两种情况讨论,分别求出点M 的坐标,根据平行四边形的性质即可求出点Q 的坐标. 【详解】解:(1)把0x =代入223y x x =--+得y =3, ∴点C 坐标为(0,3);把y =0代入223y x x =--+得2x 2x 30--+=, 解得123,1x x =-=, ∵点B 在x 轴负半轴上, ∴点B 坐标为(-3,0); 如图1,连接PB ,PC ,PO ,∵点P 在第二象限抛物线223y x x =--+上,∴设点P 坐标为()2,23m m m --+(-3<m <0),设四边形PBOC 的面积为S , ∴=BOP COP S S S +△△2211232m m OB O m C =--++ ()()2332223m m m +=+--- 2399222m m =--+, ∵302-<,∴当322b m a =-=-时,S 有最大值, 此时,215234m m --+=, ∴当点P 坐标为315,24⎛⎫- ⎪⎝⎭时,四边形PBOC 的面积最大;(2)存在,如图2,分点M 在x 轴上方或点M 在x 轴下方两种情况讨论. ①当点M 在x 轴上方时,点M 与点C 纵坐标相等,∴2233x x --+=, 解得122,0x x =-=, ∴CM 1=2,∵四边形BQCM 1是平行四边形, ∴CM =BQ =2,∴满足条件的点Q 有两个,分别是Q 1(-5,0),Q 2(-1,0); ②当点M 在x 轴下方时,点M 与点C 纵坐标互为相反数, ∴2233x x --+=-, 解得1271,71x x =--=-,∴点M 2坐标为()713---,,点M 3坐标为()713--,,由平行四边形的性质得点B 向右平移3个单位,向上平移3个单位得到点C ,∴点M 2向右平移3个单位,向上平移3个单位得到点Q 3,点M 3向右平移3个单位,向上平移3个单位得到点Q 4,∴Q 3的坐标为()720-+,,Q 4的坐标为()720+,;综上所述,满足条件的点Q 的坐标有四个,分别是Q 1(-5,0),Q 2(-1,0),Q 3()720-+,,Q 4()720+,.【点睛】本题为二次函数综合题,难度较大,解决第(1)步,关键是理解函数图象上点的坐标特点,将四边形分割为两个三角形,分别表示出三角形面积,得到函数解析式,并利用二次函数性质求解;解决第(2)步关键是理解平行四边形的性质,利用分类讨论思想求解,注意要充分考虑各种情况,不要漏解.6.(1)y =12x 2+x −32;(2)(3,6)或(-5,6)或(−1,-2);(3)−12<k <56且k≠0或56<k<43【解析】【分析】(1)把A(−3,0),B(1,0),52,2C⎛⎫⎪⎝⎭代入y=ax2+bx+c,解方程组即可;(2)把C点坐标代入直线CD,得2k+b=52,分两种情况:①若AB为平行四边形的边时,②若AB为平行四边形的对角线时,得关于k、b的方程组,解方程组即可求解;(3)分两种情况:①当E点在x轴上方时,②E点在x轴下方时,根据当α=β时,列方程,可求出k的值,进而求出k的取值范围.【详解】解:(1)设抛物线的解析式为y=ax2+bx+c,∵抛物线经过A(−3,0),B(1,0),C(2,52)三点,∴9305 422a b ca b ca b c⎧⎪-+=⎪++=⎨⎪⎪++=⎩,∴12132abc⎧⎪⎪⎨⎪⎪-⎩===,∴抛物线的解析式为y=12x2+x−32;(2)如图1所示,将C点坐标代入直线CD,得2k+b=52,当x=−1时,y=−k+b,即E(−1,−k+b).①若AB为平行四边形的边时,则F(-1+4,−k+b)或F(-1-4,−k+b),即:F(3,−k +b )或F (-5,−k +b ), 把F (3,−k +b )代入y =12x 2+x −32,得−k +b =6, 把F (-5,−k +b ),代入y =12x 2+x −32,得−k +b =6, 又∵2k +b =52, ∴k =76-,b =296∴F (3,6)或(-5,6);②若AB 为平行四边形的对角线时,则F 和E 关于x 轴对称, ∴F (−1,k -b ), ∴k -b =-2, 又∵2k +b =52, ∴k =16,b =136,∴F (−1,-2),综上所述:F 的坐标为(3,6)或(-5,6)或(−1,-2); (3)如图2所示,①当E 点在x 轴上方时,如图2所示,当α=β时,∵∠EHA =90°, ∴∠AEC =90°, ∴∠AEH =∠EGH , ∵∠AHF =∠FHG =90°, ∴AHF FHG ∽, ∴AE AHEG EH=, ∵A (−3,0),E (−1,−k +b ),G (bk-,0),∴()()2222221k bk bbk bk+-+=-+⎛⎫-++-+⎪⎝⎭,∴k2−bk−2=0,联立方程220522k bkk b⎧--=⎪⎨+=⎪⎩,解得k=−12(k=43舍去),随着E点向下移动,∠CEH的度数越来越大,∠EAH的度数越来越小,当E点和H点重合时(如图3所示),α和β均等于0,此时联立方程522k bk b⎧+⎪⎨⎪-+⎩==,解得5656kb⎧=⎪⎪⎨⎪=⎪⎩,因此当−12<k<56且k≠0时,α>β;②E点在x轴下方时,如图4所示,当α=β时,∵∠EHA=90°,∴∠AEC=90°,根据①可得此时k=43(k=−12舍去),随着E点向下移动,∠CEH的度数越来越小,∠EAH的度数越来越大,因此当56<k <43时,α>β.综上所述可得,当α>β时,k 取值范围为−12<k <56且k ≠0或56<k <43.【点睛】本题考查的是一次函数、二次函数和相似三角形的判定和性质的综合应用,掌握待定系数法求函数解析式和数形结合思想方法是解题的关键.7.(1)34k =,5b =;(2)①OM =5;②()3,6N 或724,55N ⎛⎫ ⎪⎝⎭【解析】 【分析】(1)分别将将(4,3)A 代入y kx =和12y x b =-+中,求解即可;(2)①设直线AB 与y 轴交与点C ,与FM 交于点D ,证明△AFD ≌△EFD ,得到AD =ED ,利用中点坐标公式求得点D 坐标,用待定系数法求得直线FD 的函数表达式,令0y =,即可求得点M 的坐标,从而求得OM ;②点N 在直线l 1的上方,当△OFN 和△OFM 全等时,满足题意的点N 有两个,分别画出相关的图形,分类讨论求解即可. 【详解】解:(1)∵直线l 1:y kx =和直线l 2:12y x b =-+相交于点A∴将(4,3)A 代入y kx =中,得:43k = 解得:34k =∴将(4,3)A 代入12y x b =-+中,得:1432b -⨯+=解得:5b =∴3,54k b == (2)① 设直线AB 与y 轴交与点C ,与FM 交于点D ,如下图:∵34k =,5b = ∴直线l 1的函数表达式为34y x =,直线l 2的函数表达式为152y x =-+∵(4,3)A ∴22345OA +设直线AB 与y 轴交与点C ,与FM 交于点D 则()0,5C ∴5OC = ∴5OA OC == ∴∠OCA =∠OAC ∵//FE y 轴 ∴∠OCA =∠FEA 又∵∠OAC =∠FAE ∴∠FAE =∠FEA ∴FA =FE又∵FM 是∠OFE 的角平分线 ∴∠AFM =∠EFM 又∵FD =FD ∴△AFD ≌△EFD ∴AD =ED ∴点D 为AE 的中点 ∵//FE y 轴∴点F 和点E 的横坐标相同 将8x =代入152y x =-+中,得1y =∴()8,1E ∵(4,3)A ,()8,1E ∴()6,2D设线段FM 所在的直线函数表达式为()0y ax b a =+≠将()()8,6,6,2F D 代入y ax b =+中,得:8662k b k b +=⎧⎨+=⎩解得:210k b =⎧⎨=-⎩∴线段FM 所在的直线函数表达式为210y x =- 令0y =,得2100x -= 解得:5x = ∴()5,0M ∴OM =5② 当,OFN FOM 全等时,有两种情况,情况一,如下图所示:∵OFN FOM ≅△△∴∠OFN =∠FOM ,FN =OM ,ON =FM ∴//FN OM ∵OM =5 ∴FN =5,8F x =∴853N x =-=,6N F y y == ∴()3,6N情况二,当△OMF 和△ONF 关于直线l 1对称时,如下图所示:∵OFN FOM ≅△△∴ON =OM =5,∠NOF =∠MOF ∵OP =OP ∴△NOP ≌△MOP ∴PN =PM ∵()8,6F∴10OF 又∵1122OMFF SOM y OF PM =⋅=⋅ ∴F OM y OF PM ⋅=⋅ ∴56==310PM ⨯∴MN =2PM =6,OP 4 ∵1122OMN N S MN OP OM y =⋅=⋅△ ∴642455N y ⨯==∴75N x ==∴724,55N ⎛⎫⎪⎝⎭综上所述,满足题意点有两个,分别是:()3,6N 或724,55N ⎛⎫⎪⎝⎭【点睛】本题考查用待定系数法求一次函数表达式,三角形全等的性质和证明,两条直角交点的求法以及三角形的等面积法等知识点,牢记相关内容并能灵活应用数形结合思想解题是本题的关键.8.(1)y 14=-x 2+x +3;y 12=x +1;(2)△PAD 的面积的最大值为274,P (1,154);(3)点Q 的坐标为(0,133)或(0,﹣9) 【解析】 【分析】(1)由A (﹣2,0)、B (6,0)设抛物线的解析式为y =a (x +2)(x ﹣6),把D (4,3)的代入解析式解方程即可,再利用待定系数法求解一次函数的解析式; (2)如图1中,过点P 作PT y ∥轴交AD 于点T .设P (m ,14- m 2+m +3),则T(m,12m+1),再利用面积列函数关系式,再利用二次函数的性质求解最值即可;(3)如图2中,将线段AD绕点A逆时针旋转90°得到AT,则T(﹣5,6),设DT交y轴于点Q,则∠ADQ=45°,再求解直线DT的解析式为y13=-x133+,作点T关于AD的对称点T′(1,﹣6),求解直线DT′的解析式为y=3x﹣9,设DQ′交y轴于点Q′,则∠ADQ′=45°,从而可得答案.【详解】解:(1)∵抛物线y=ax2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点,∴设抛物线的解析式为y=a(x+2)(x﹣6),∵D(4,3)在抛物线上,∴3=a(4+2)×(4﹣6),解得a14 =-,∴抛物线的解析式为y14=-(x+2)(x﹣6)14=-x2+x+3,∵直线l经过A(﹣2,0)、D(4,3),设直线l的解析式为y=kx+m(k≠0),则2043k mk m-+=⎧⎨+=⎩,解得,121km⎧=⎪⎨⎪=⎩,∴直线l的解析式为y12=x+1;(2)如图1中,过点P作PT y∥轴交AD于点T.设P(m,14-m2+m+3),则T(m,12m+1).∵S△PAD12=•(xD﹣xA)•PT=3PT,∴PT的值最大值时,△PAD的面积最大,∵PT14=-m2+m+312-m﹣114=-m212+m+214=-(m﹣1)294+,∵14-<0,抛物线开口向下,∴m=1时,PT的值最大,最大值为94,此时△PAD的面积的最大值为274,P(1,154).(3)如图2中,将线段AD绕点A逆时针旋转90°得到AT,过D作DM x⊥轴于,M过T作TN x轴于,N90,,TNA AMD TAD AD AT90,TAN ATN TAN DAM,ATN DAM,ATN DAM≌6,3,235,TN AM AN DM ON∴T(﹣5,6),设DT交y轴于点Q,则∠ADQ=45°,∵D(4,3),∴直线DT的解析式为y13=-x133+,∴Q(0,133),作点T关于AD的对称点T',同理可得T'(1,﹣6),则直线DT′的解析式为y=3x﹣9,设DQ′交y轴于点Q′,则∠ADQ′=45°,∴Q′(0,﹣9),综上所述,满足条件的点Q的坐标为(0,133)或(0,﹣9).【点睛】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,待定系数法,等腰直角三角形的性质等知识,解题的关键是学会利用参数构建二次函数解决最值问题,学会构造特殊三角形解决问题,属于中考压轴题.二次函数综合题中面积问题的解题通法:(1)直角坐标系中图形面积的求法,以“S三角形=12×水平底×铅直高”为基础求解.(2)图形面积的数量关系:①找出所求图形的顶点,其中动点的坐标根据函数关系式用含未知数的代数式表示出来;②结合图形作辅助线,并将关键线段的长度用含未知数的代数式表示出来;③利用面积公式用含未知数的代数式表示出图形的面积;④列方程求解.(3)图形面积的最值,解题思路跟(1)中的前三步相同,然后利用函数的增减性求解.9.(1)证明见解析;(2)证明见解析,(3)15714BF=.【解析】【分析】(1)连接OA并延长AO交BC于E,证明∠BAC=2∠BAE和∠ABD=∠BAE即可得结论,(2)利用直角三角形两锐角互余、圆周角定理进行导角,得出MCG△和△FCG是等腰三角形,得出BM=MC=FG=CG,MH=HG,进而由BF=BM+MH-FH=FG-FH+HG,得出结论;(3)过O点作OP⊥AC,由垂径定理得出12PD=,再由52ABOADOS AB BOS AD OD===和平行线分线段成比例定理求出7724DH DP==,由勾股定理进而可求BH,再利用相似三角形对应边成比例求出HG,即可得BF长.【详解】解:(1)连接OA并延长AO交BC于E,∵AB=AC,∴AB AC=,∵AE过圆心O,∴AE BC⊥,BE EC=,∴∠BAC=2∠BAE,∵OA=OB,∴∠ABD=∠BAE,∴∠BAC=2∠ABD;(2)如解图(2),连接OA并延长AO交BC于E,AE交BF于M,连接MC,设2BACα∠=,则ABD BAE EACα∠=∠=∠=∵AE =EC ,AE ⊥BC ,∴BM =MC ,∴∠MBC =∠MCB ,∵BG ⊥AC ,AE ⊥BC ,∴∠EAC +∠ACE =90°,∠HBC +∠ACE =90°,∴EAC HBC MCB α∠=∠=∠=,∴2CMG MBC MCB α∠=∠+∠=,∵BC BC =,∴2G BAC α∠=∠=,∴∠G =∠CMG ,∴CG =CM =BM ,∵AC ⊥BG ,∴MH =HG ,∵OA =OC ,∴ACO EAC α∠=∠=∴9090CFG ACO α∠=︒-∠=︒-,∵180FCG CFG G ∠=︒-∠-∠,即180(90)290FCG ααα∠=︒-︒--=︒-,∴FCG CFG ∠=∠,∴FG =CG ,∴BM =MC =FG =CG ,又∵MH =HG ,∴BF =BM +MH -FH =FG -FH +HG ,∴BF =2HG .(3)过O 点作OP ⊥AC ,如解图(3)∵AO 是∠BAC 的角平分线,∴点O 到AB 、AC 的距离相等, ∴ABO ADO SAB BO S AD OD==, ∵AD =2,CD =3,∴AB =AC =5, ∴5=2BO OD ,即:2=7OD BD , ∵OP ⊥AC ,∴52AP PC ==,12PD =, ∵BH AC ⊥, ∴OP //BH ,∴27DP OP OD DH BH BD ===, ∴7724DH DP ==, ∴154AH AD DH =+=,5-4HC DC DH ==,∵在Rt ABH中,BH == ∵BAH G ∠=∠,AHB GHC ∠=∠, ∴AHB GHC △△,∴AH BH HG CH = 即:AH HC BHHG =, 51544=⨯, ∴HG =, 由(2)得BF =2HG ,∴BF = 【点睛】 本题是圆的综合题,主要考查了圆周角定理,涉及了相似三角形的判定和性质、勾股定理、等腰三角形的判定和性质等知识点,解题关键是利用同弧或等弧所对圆周角相等、直角三角形的两锐角相等找出图中角之间的关系,从而利用相似或勾股定理解题.10.(1)291515404y x x =+-,y =﹣34x ﹣15;(2)面积最大值225,C (﹣10,﹣30);(3)S =﹣2553t +160t ﹣240. 【解析】【分析】(1)利用待定系数法将点A (﹣20,0),B (0,﹣15)代入抛物线y =ax 2+154x +c 即可求出抛物线的函数表达式;设AB 的函数表达式是y =kx +b ,然后利用待定系数法将点A (﹣20,0),B (0,﹣15)代入y =kx +b 即可求出直线AB 的函数表达式;(2)作CE ⊥OA 于E ,交AB 于F ,设C (a ,940a 2+154a ﹣15),F (a ,﹣34a ﹣15),根据题意表示出CF 的长度,进而表示出ABC S ∆,然后利用二次函数的性质求解即可;(3)作AN ⊥OD 于N ,AD 与FG 交于点I ,首先根据题意求出OC 的解析式,然后联立33154y x y x =⎧⎪⎨=--⎪⎩求出点D 的坐标,然后求出AD OD =,利用等腰三角形三线合一性质求出ON 的长度,进而利用勾股定理求出AN 的长度,表示出S △AON ,然后证明出△GFI ∽△OGH ∽△ANO ,利用相似三角形的性质表示出S △IJF =803(t ﹣3)2,S △GOH =253t ,最后利用面积之间的关系即可求出S 与t 之间的函数关系式.【详解】解:(1)由题意得,将点A (﹣20,0),B (0,﹣15)代入抛物线y =ax 2+154x +c 得, 21515(20)(20)04c a c =-⎧⎪⎨-+⨯-+=⎪⎩, ∴15940c a =-⎧⎪⎨=⎪⎩, ∴291515404y x x =+-, 设AB 的函数表达式是y =kx +b ,将点A (﹣20,0),B (0,﹣15)代入y =kx +b 得,∴15200b k b =-⎧⎨-+=⎩, ∴1534b k =-⎧⎪⎨=-⎪⎩, ∴y =﹣34x ﹣15; (2)如图1,作CE ⊥OA 于E ,交AB 于F ,设C (a ,940a 2+154a ﹣15),F (a ,﹣34a ﹣15), ∴FC =(﹣315)4a -﹣(2940a +154a ﹣15)=﹣2940a ﹣92a , ∴ABC S ∆=12CF •AO =12(﹣2940a ﹣92a )×20=﹣94(a +10)2+225, ∴当a =﹣10时,ABC S ∆=225, 当a =﹣10时,y =29(10)40⨯-+()15104⨯-﹣15=﹣30, ∴C (﹣10,﹣30);(3)如图2,作AN ⊥OD 于N ,∵C (﹣10,﹣30),∴OC 的解析式是:y =3x ,由33154y x y x =⎧⎪⎨=--⎪⎩得, 412x y =-⎧⎨=-⎩, ∴D (﹣4,﹣12),∵A (﹣20,0),OD 22412+10∴AD ()2220412-++=20,∴AD OD=,又∵AN⊥OD,∴ON=12OD=AN=S△AON=1160 22AN ON=⨯=,∵OE,OD=,∴DE=,∴JE=3(),∴FJ=EF﹣JEt﹣3(t)=(t﹣3),∵OG AN FJ∥∥,∴GOH OAN DAN AJF∠=∠=∠=∠,又∵90G ANO F∠=∠=∠=︒,∴△GFI∽△OGH∽△ANO,∴IJFAONSS∆∆=(FJAN)2=2,GOHAONSS∆∆=(OGAN)2)2,∴S△IJF=803(t﹣3)2,S△GOH=253t,∴S=S正方形OEFG﹣S△IJF﹣S△GOH=10t2﹣53t2﹣803(t﹣3)2=﹣2553t+160t﹣240,故答案是:S=﹣2553t+160t﹣240.【点睛】此题考查了待定系数法求二次函数和一次函数表达式,二次函数与一次函数综合问题,相似三角形的性质和判定,二次函数中最大面积问题等知识,解题的关键是正确分析题目中的条件,设出点的坐标,根据相似三角形的性质以及勾股定理表示出相应的线段和面积.11.(1)(1,,图见解析(2)1322Cx-≤≤1122t<≤【解析】【分析】(1)根据等边三角形的性质,勾股定理求解即可;(2)根据题意以MB为边作等边三角形MM B',以M'为圆心1为半径作M',根据线段中点坐标公式求解即可;(3)在(2)的基础上,先求得最小值,再确定2个圆心,第1个是A 点运动点C 对应的圆心P ',第2个是点B 的运动时点C 轨迹的对应的圆心P ,进而根据线段和最大,当,,P P Q '共线时候,t 最大,根据(2)的方法求解即可.(1)过点C 作CE x ⊥轴于点E ,作出点C ,B 的逆序等边三角形CBD ,如图1,()()1,03,0A B -,,ABC 是等边三角形()1131222AE BE AB ∴===--=,33CE AE ==()1,0E ∴,(1,3C ,ABC BCD 是等边三角形∴60DCB ABC ∠=∠=︒,AB AC BC CD BD ====,CD AB CD AB ∴=∥(5,23D ∴ 故答案为:(1,23,(5,23(2)如图2,以MB 为边作等边三角形MM B ',以M '为圆心1为半径作M ', 点B (3,0),点A 在以点M (-2,0)为圆心1为半径的圆上, ∴点A ,B 的逆序等边三角形ABC 的顶点C 在M '23122M x '-+∴== M '的半径为1∴111122C x -≤≤+ 即1322C x -≤≤(3)如图3,设N 与x 轴交于点G ,以GM 为边向上作等边三角形MGH ,以点H 为圆心1为半径,作H ,设直线y x =为1l ,y x t =+为2l ,过点H 作1HJ l ⊥,交x 轴于点J ,交1l 于点S ,交2l 于点L ,过点H ,作HI x ⊥轴于点I ,设2l 与x 轴的交点为T ,则OT t =根据题意,当C 点在第二象限时,能找到t 的最小值,根据定义可知,B 点与G 点重合时,A 点在M 上运动,则C 点在H 上运动,当2l 与H 相切时,t 最小, ()2,0M -,()3,0N ,M 的半径为1,N 的半径为2, 2,321OM OG ∴==-=3MG ∴=33HI ∴=1322MI MG == 1,02I ⎛⎫∴- ⎪⎝⎭ 1332H ⎛∴- ⎝⎭1l 与x 轴的夹角为45°,1HJ l ⊥,HI x ⊥轴, HIJ ∴是等腰直角三角形 HI IJ ∴=HJ ∴===12OI =12OJ ∴1,02J ⎫∴⎪⎪⎝⎭1LJ HJ HL ∴=-=12l l ∥ LTJ ∴是等腰直角三角形1TJ ∴===⎝3122OJ =1122TO TJ JO ⎫=-==⎪⎪⎝⎭即t 12, B 的纵坐标0d >,则12t > 如图4,作,M N 的逆序等边三角形MNP ',以P '为圆心,1为半径作P ',则1PP AM '==,连接,AM PP ',ANP MNP '是等边三角形,,,60AN NP MN NP ANP MNP ''∴==∠=∠=︒PNP ANM '∴∠=∠PP N AMN '≌∴当,,P P Q '共线时候,t 最大以P 为圆心,2为半径作半圆P ,当直线y x t =+与半圆P 相切时,设切点为Q ,当C 点与Q 点重合时,即可取得t 的最大值,最大值即为T O '的长,()()2,0,3,0M N - ∴1532P ⎛' ⎝⎭过点P '作P P x '''⊥轴于点P '',如图,。

中考数学压轴题100题及答案

中考数学压轴题100题精选【001】如图,已知抛物线2(1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.【C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接写出t 的值.【003】如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D (8,8).抛物线y=ax2+bx 过A 、C 两点. (1)直接写出点A 的坐标,并求出抛物线的解析式;A P 图16(2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E ,①过点E 作EF ⊥AD 于点F ,交抛物线于点G .当t 为何值时,线段EG 最长? ②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形? 请直接写出相应的t 值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考压轴题之中点问题解题思路:几何问题一般是添加辅助线构造全等三角形。

涉及到中点问题通常有以下三种思路: (1) 找中点使之成为中位线构造全等三角形。

(2) 倍长中线法构造全等三角形。

(3) 直角三角形中取斜边中点,斜边中线为斜边的一半。

总之核心就是能构造出全等三角形,则思路正确。

2012丰台二模1、在△ABC 中,D 为BC 边的中点,在三角形内部取一点P ,使得∠ABP =∠ACP .过点P作PE ⊥AC 于点E ,PF ⊥AB 于点F .(1)如图1,当AB =AC 时,判断的DE 与DF 的数量关系,直接写出你的结论; (2)如图2,当AB AC ,其它条件不变时,(1)中的结论是否发生改变?请说明理由.图1 图2AEFPD CCE AD F P2、如图,D是△ABC中AB边的中点,△BCE和△ACF都是等边三角形,M、N分别是CE、CF的中点.(1)求证:△DMN是等边三角形;求证:DP=DQ.同学们,如果你觉得解决本题有困难,可以阅读下面两位同学的解题思路作为参考:小聪同学发现此题条件中有较多的中点,因此考虑构造三角形的中位线,添加出了一些辅助线;小慧同学想到要证明线段相等,可通过证明三角形全等,如何构造出相应的三角形呢?她考虑将△NCM绕顶点旋转到要证的对应线段的位置,由此猜想到了所需构造的三角形的位置.3、在矩形ABCD 中, 点F 在AD 延长线上,且DF = DC , M 为AB 边上一点, N 为MD 的中 点, 点E 在直线CF 上(点E 、C 不重合).(1)如图1, 若AB =BC , 点M 、A 重合, E 为CF 的中点,试探究BN 与NE 的位置关系及BMCE的值, 并证明你的结论; (2)如图2,且若AB =BC , 点M 、A 不重合, BN =NE ,你在(1)中得到的两个结论是否成立, 若成立,加以证明; 若不成立, 请说明理由;(3)如图3,若点M 、A 不重合,BN =NE ,你在(1)中得到的结论两个是否成立, 请直接写出你的结论.图1 图2 图3F A ) N DC E NM B F E C B F N M E C B已知:在如图1所示的锐角三角形ABC中,CH⊥AB于点H,点B关于直线CH的对称点为D,AC边上一点E满足∠EDA=∠A,直线DE交直线CH于点F.(1) 求证:BF∥AC;(2) 若AC边的中点为M,求证:2;DF EM(3) 当AB=BC时(如图2),在未添加辅助线和其它字母的条件下,找出图2中所有与BE相等的线段,并证明你的结论.图1 图22012丰台一模已知:△ABC 和△ADE 是两个不全等的等腰直角三角形,其中BA =BC ,DA =DE ,联结EC ,取EC 的中点M ,联结BM 和DM .(1)如图1,如果点D 、E 分别在边AC 、AB 上,那么BM 、DM 的数量关系与位置关系是 ;(2)将图1中的△ADE 绕点A 旋转到图2的位置时,判断(1)中的结论是否仍然成立,并说明理由.DCB AEMMEABCD2009北京中考问题:如图1,在菱形ABCD 和菱形BEFG 中,点A B E ,,在同一条直线上,P 是线段DF 的中点,连结PG PC ,.若60ABC BEF ∠=∠=,探究PG 与PC 的位置关系及PGPC的值.小聪同学的思路是:延长GP 交DC 于点H ,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)写出上面问题中线段PG 与PC 的位置关系及PGPC的值; (2)将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)若图1中2(090)ABC BEF αα∠=∠=<<,将菱形BEFG 绕点B 顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出PGPC 的值(用含α的式子表示). 解:(1)线段PG 与PC 的位置关系是 ;PGPC= . (2)D A BE F C P G 图1 D C G PA B F图22012昌平二模8、如图,在Rt △ABC 中,∠ABC =90°,过点B 作BD ⊥AC 于D ,BE 平分∠DBC ,交AC于E ,过点A 作AF ⊥BE 于G ,交BC 于F ,交BD 于H . (1)若∠BAC =45°,求证:①AF 平分∠BAC ;②FC =2HD . (2)若∠BAC =30°,请直接写出FC 与HD 的等量关系.9.(2012石景山一模)(1)如图1,在矩形ABCD 中,AB=2BC ,M 是AB 的中点.直接写出∠BMD 与∠ADM 的倍数关系;(2)如图2,若四边形ABCD 是平行四边形, AB=2BC ,M 是AB 的中点,过C 作CE⊥AD 与AD 所在直线交于点E .①若∠A 为锐角,则∠BME 与∠AEM 有怎样的倍数关系,并证明你的结论; ②当︒<∠<︒A 0时,上述结论成立;当︒<∠≤︒180A 时,上述结论不成立.G AB DE HC H G ED C B AM D BA CEADC已知:△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,点M是CE的中点,连接BM.(1)如图①,点D在AB上,连接DM,并延长DM交BC于点N,可探究得出BD与BM的数量关系为;(2)如图②,点D不在AB上,(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由.图①图②中考压轴题之中点问题答案2012丰台二模2012朝阳二模2012海淀二模2012海淀一模2012西城一模2012丰台一模(1)BM=DM且BM⊥DM.………2分(2)成立.……………3分理由如下:延长DM至点F,使MF=MD,联结CF、BF、BD.易证△EMD≌△CMF.………4分∴ED=CF,∠DEM=∠1.∵AB=BC,AD=DE,且∠ADE=∠ABC=90°,∴∠2=∠3=45°, ∠4=∠5=45°.∴∠BAD=∠2+∠4+∠6=90°+∠6.∵∠8=360°-∠5-∠7-∠1,∠7=180°-∠6-∠9,∴∠8=360°-45°-(180°-∠6-∠9)-(∠3+∠9)=360°-45°-180°+∠6+∠9- 45°-∠9=90°+∠6 .∴∠8=∠BAD.………5分又AD=CF.∴△ABD≌△CBF.∴BD=BF,∠ABD=∠CBF.………6分∴∠DBF =∠ABC =90°. ∵MF =MD ,∴BM =DM 且BM ⊥DM ..…………7分 2009北京中考.解:(1)线段PG 与PC 的位置关系是PG PC ⊥;PGPC= ··························································································································· 2分(2)猜想:(1)中的结论没有发生变化.证明:如图,延长GP 交AD 于点H ,连结CH CG ,. P 是线段DF 的中点, FP DP ∴=.由题意可知AD FG ∥. GFP HDP ∴∠=∠.GPF HPD ∠=∠, GFP HDP ∴△≌△.GP HP ∴=,GF HD =. 四边形ABCD 是菱形,CD CB ∴=,60HDC ABC ∠=∠=.由60ABC BEF ∠=∠=,且菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,可得60GBC ∠=.HDC GBC ∴∠=∠. 四边形BEFG 是菱形, GF GB ∴=. HD GB ∴=.HDC GBC ∴△≌△.CH CG ∴=,DCH BCG ∠=∠.120DCH HCB BCG HCB ∴∠+∠=∠+∠=.即120HCG ∠=.CH CG =,PH PG =,PG PC ∴⊥,60GCP HCP ∠=∠=.PGPC ∴= ························································································································ 6分 (3)PGPC=tan(90)α-. ·································································································· 8分D CGPABFH2012昌平二模2012石景山一模(1)∠BMD= 3 ∠ADM ………… 2分 (2)联结CM ,取CE 的中点F ,联结MF ,交DC 于N∵M 是AB 的中点,∴MF ∥AE ∥BC ,∴∠AEM=∠1,∠2=∠4, ……… 3分∵AB=2BC ,∴BM=BC ,∴∠3=∠4. ∵CE ⊥AE ,∴MF ⊥EC ,又∵F 是EC 的中点,∴ME=MC ,∴∠1=∠2. ……….4分∴∠1=∠2=∠3. ∴∠BME =3∠AEM. ………. 5分(3)当0°<∠A<120°时,结论成立;当︒<∠≤︒180120A 时,结论不成立. …………7分 F A MB CED43212012顺义一模2011朝阳一模. (1)BD=2BM. ……………………………………………………………………………2分(2)结论成立.证明:连接DM,过点C作CF∥ED,与DM的延长线交于点F,连接BF,可证得△MDE≌△MFC.………………………………… 3分∴DM=FM, DE=FC.∴AD=ED=FC.作AN⊥EC于点N.由已知∠ADE=90°,∠ABC=90°,可证得∠1=∠2, ∠3=∠4.……………………………4分∵CF∥ED,∴∠1=∠FCM.∴∠BCF=∠4+∠FCM =∠3+∠1=∠3+∠2=∠BAD.∴△BCF≌△BAD. …………………………………………………………………………5分∴BF=BD,∠5=∠6.∴∠DBF=∠5+∠ABF=∠6+∠ABF=∠ABC=90°.∴△DBF是等腰直角三角形. ………………………………………………………………6分∵点M是DF的中点,则△BMD是等腰直角三角形.∴BD=2BM. ……………………………………………………………………………… 7分。

相关文档
最新文档