浅谈初中数学教学中思想和方法
浅谈初中数学思想和方法的教学

学生 学 习惯于 的需 要 , 使学 生 在 这 知识 的 学 习 , 结概 括 之 中 不 断发 现 总 数学 知识 的新 天地 。激 发 出求 新 求 异思 想 , 开拓 新 的 思维 。 发展 自己的
教 师在 教学 中不 单单 要 解 放 学 生 的嘴 , 他 们 敢 闯 , 要 教 给学 生 创新 思维 , 使 还 培养 自已的创新 能力 。 提 问题 的方 法 , 他们 会 问 , 践 证 明 引导 学 生多 角 度 多方 面 的 思 考 问 使 实 面 向新 世 纪 的创新 教育 , 教师还 要具 备很 好 的创 新 素 质 。要有 强 烈 题 , 出 问题 , 培 养学 生 创新 能 力 的 好方 法 。如 在 教 学三 角 形 内 角 和 的敬 业 、 献进 取精 神 , 提 是 奉 以及 崇高 的职 业道 德 , 要有 广博 精 深 的文 化科 学 时 , 师 问学 生 : 三角 形 的 内角 和为 什 么要 是 为 1 0 , 不 定其 它 的 知识 索质 。要 有创 造性 的教 学方 法 , 教 “ 8度 而 这些 方法 表现 在语 言 、 导 问题 、 引 模 度 数 ? 学 生 说 : 角是 3 0度 。教 师 : , 为什 么 周 角 的度 数 定 为 3 0 型制 造 , 演能 力等 等 方 方 面面 上 能 激 发 学生 在 学 习 知 识 上 的 不 断 需 ” 周 6 好 那 6 表 度 ?沉 默 了一 段 时 间 , 学 生 说 : 3 0度 能 被 很 多 数 整 除 。 学 生 们 要 。采取 “ 有 “6 ” 授人 以鱼 , 如授 人 以渔” 不 的教 学策 略 。这 样 方 能很 好地 施 展 哦— — , 生们 在 教 学 中 既 学 会 了 提 问 问 题 , 增 长 了 知 识 , 拓 了 创 新 教育 。 学 又 开
新课标下浅谈初中数学思想和数学方法的教学

由于初 中学 生数 学知 识 比较贫 乏 , 抽 数 学 思 概 括 数 学 思 想 一 般 可 分 两 步 进 行 :
是 揭 示 数 学 思 想 的 内容 、 律 , 将 数 学 【】张 冠 乎 . 学 思 想 是 解 题 的 灵 魂 [】 中 规 即 4 数 J.
学 数 学 教 育初 中版 , 中学 数 学 教 育 杂 志
数 学 教 材 是 采 用 蕴 含 披 露 的 方 式 将 数 [ 3 】黄殊 悌 , 光 耀 . 谈 中 学 数 学 思 想 方 林 浅 学 思 想 溶 于 数 学 知识 体 系 中 , 因此 , 时 对 适
一
法 教 学 的 实施 方 案 【】福 建 中 学 数 学 , J.
20 04, 2. 1
1 对 数 学 思 想 方 法 的 认 识
理 念 , 映 出数 学 基 本 概 念 和 各 知 识 点 所 反 代 表 的 实 体 同抽 象 的 数 学 思 想 方法 之 间 的
中 。 如 概 念 的 形 成 过 程 、 论 的 推 导 过 诸 结
去 , 而 实 现 从 个 别 性 认 识 上 升 为 一 般 性 从
思 规 通 X- )+( ) 中学 数 学 知 识 结 构 涵 盖 了 辩 证 思 想 的 程 、 路 的探 索 过 程 、 律 的揭 示 过 程 等 等 认 识 。比 如 , 过 解 方 程 ( -2 x一2 一 都 蕴 藏 着 大 量 的 数 学 思 想 方 法 。 如 : 行 2 0 发 现 也 可 用 换 元 法 来 求 解 。 此 基 础 例 进 = , 在 同 底 数 幂 的 乘 法 教 学 时 , 数 的 运 算 特 例 上 推 广 也 可 用 换 元 法 求 解 。 此 概 括 出 换 从 由 从 中 , 象 概 括 出幂 的 一 般 运 算 性 质 。 让 学 元 法 可 以 将 复 杂 方 程 转 化 为 简 单 方 程 , 抽 先 而 认 识 到 化 归 思 想 是 对 换 元 法 的 高 度 概 后 将 底 数 一 般 化 : 算 a 接 着 再 将 指 数 括 , 可 进 一 步 认 识 到 数 学 思 想 是 数 学 的 计 a , 还
浅谈初中数学教学方法

浅谈初中数学教学方法浅谈初中数学教学方法11、结合初中数学大纲就初中数学教材进行数学思想方法的教学研究,要通过对教材完整的分析和研究,理清和把握教材的体系和脉络,统揽教材全局,高屋建瓴。
然后,建立各类概念、知识点或知识单元之间的界面关系,归纳和揭示其特殊性质和内在的一般规律。
例如,在“因式分解”这一章中,我们接触到许多数学方法——提公因式法、运用公式法、分组分解法、十字相乘法等。
这是学习这一章知识的重点,只要我们学会了这些方法,按知识──方法──思想的顺序提炼数学思想方法,就能运用它们去解决成千上万分解多项式因式的问题。
又如:结合初中代数的消元、降次、配方、换元方法,以及分类、变换、归纳、抽象和数形结合等方法性思想,进一步确定数学知识与其思想方法之间的结合点,建立一整套丰富的教学范例或模型,最终形成一个活动的知识与思想互联网络。
2、以数学知识为载体将数学思想方法有机地渗透入教学计划和教案内容之中教学计划的制订应体现数学思想方法教学的综合考虑,要明确每一阶段的载体内容、教学目标、展开步骤、教学程序和操作要点。
数学教案则要就每一节课的概念、命题、公式、法则以至单元结构等教学过程进行渗透思想方法的具体设计。
要求通过目标设计、创设情境、程序演化、归纳总结等关键环节,在知识的发生和运用过程中贯彻数学思想方法,形成数学知识、方法和思想的一体化。
应充分利用数学的现实原型作为反映数学思想方法的基础。
数学思想方法是对数学问题解决或构建所做的整体性考虑,它________于现实原型又高于现实原型,往往借助现实原型使数学思想方法得以生动地表现,有利于对其深人理解和把握。
例如:分类讨论的思想方法始终贯穿于整个数学教学中。
在教学中要引导学生对所讨论的对象进行合理分类(分类时要做到不重复、不遗漏、标准统一、分层不越级),然后逐类讨论(即对各类问题详细讨论、逐步解决),最后归纳总结。
教师要帮助学生掌握好分类的方法原则,形成分类思想。
浅谈初中数学教学中数学思想方法的运用

浅谈初中数学教学中数学思想方法的运用摘要:好的数学思想方法是成功解决数学问题的关键,对学生的学习起到事半功倍的效果,可以说,数学概念是数学思想方法的直接体现。
教师在初中数学教育中必须重视学生数学思想方法的培养。
特别是在九年级的数学教学中,教师要引导学生运用这种方法提高其做题思路,帮助他们快速掌握难点和重点。
本文就此谈谈初中数学教学中思想方法的重要性以及如何培养这种思想方法。
关键词:初中数学数学思想方法运用新课标明确指出思想方法的运用要呈现出上升趋势,并且教师要不断地深化,在数学教育中集中体现。
数学思想方法是学生形成科学思维方法的重要理论基础,尤其是针对九年级的学生。
他们即将步入高中,教师在教学中要为学生升入高中的学习做好铺垫。
学生掌握好的数学思想方法能够使他们在步入高中时不落后其他学生,也能增长他们的自信心。
为此,教师在初中九年级的数学教学过程中,要积极开展有利于学生培养数学思想方法的课堂活动。
一、初中数学教学中数学思想方法的重要性科学的数学思想方法能够对学生理解概念的知识有很大帮助。
教师在数学概念讲解中渗透科学思想方法也有利于学生创新思维的培养,开拓学生的思维,使学生不断加深对数学的理解,这样一来,学生就能够对数学的学习充满信心,学习也会更加有动力。
教师在初中数学教学中贯彻落实科学思想方法能够很好地体现数学的精髓部分。
在全球化竞争激烈的时代,需要大批创新型人才。
创新型人才需要有严谨的逻辑思维能力以及创新思维能力。
科学的数学思想方法可以培养学生严谨的逻辑思维能力和创新意识。
在诸多数学概念中,蕴含着非常多的数学思想,它们都是从古至今数学家们留下的精华。
教师在初中数学概念教学中充分挖掘其中深刻的数学思想方法,可以使得学生了解到数学学科的发展历程。
可以说,掌握基本的数学思想方法是学生在学习阶段必须做到的,也是教师教学数学必须达到的教学目标。
二、初中数学教学中数学思想方法的运用1.传授转化思想的方法。
转化思想也称为化归思想,就是将不好解决的问题转化到已经解决的问题中,最终解决问题的一种思想。
浅谈初中数学思想方法的培养

X XaY“ hna i ¨ o i r 】
素 质教 育
浅谈初中数学思想方法的培养
房 爱菊
( 齐河县焦庙镇 中学 , 山东 新的教学大纲要求 , 在传授 知识和技能的同时还要关注
学生 学 习 的 过 程 和方 法 , 注学 生 的情 感 、 关 态度 、 价值 观 等 方
面的培养, 眼于学生 的终身学 习与可持续性发展 。数学思 着 想、 数学方法作为数学基础知识 的重要组成部分 , 在教学大 纲 中明确提 出来 , 是对学生实施创新教 育 、 培养 创新能力的 重要保证。在教学 中培养学生的数 学思想 、 方法可从 以下几
个 方 面人 手:
一
使学生在这些过程中展开思维 ,从而发展他们获取新知识 、 运用新知识解决问题 的能力 。 如判断一次 函数 v一 + : x 3和二次 函数 y x 2+ 图像的 =2 x l - 交点 。 一般解法是代入法 , 即把 y -+ = x 3代入 y x-x l 然 =王2 + ,
的数 学概念具有更高的抽象和概括水平 。 数学方法是以数学 为工具进行科学研究的方法 , 是数学思想 的具体反映。对于 数学 思想 、 方法来说 , 思想是 其相 应的方法 的精神实 质和理 论基础 , 方法则是实施 有关 思想的技术手段 , 中学数学 中出 现的数学方法都体现着一 定的数学思想 。 运用数学方法解 决
德州
2 12 ) 5 1 0
二、 遵循认 知规 律 , 把握教 学原则 。 逐步培养数学思想、
数 学 方 法 1 透方法 , . 渗 了解 思 想 教 师 要重 视 数 学 概 念 、 式 、 理 、 则 的提 出 过 程 , 公 定 法 重 视 知识 的形 成 、 展 过 程 , 视 解 决 问 题 和规 律 的概 括 过 程 , 发 重
浅谈初中数学思想方法教学

律 ab b a的学 习 等 。 x=x
二 、 学 课 中应 渗 透 的数 学 思想 方 法 的 途径 数 1通 过 小 结和 复 习提 炼 概 括 数 学 思 想 方 法 。 由 于 同一 内 .
长 和 宽 相 等 的长 方 形 , 即正 方 形 是一 种 特 殊 的 长方 形 , 集合 思 的 面积 . 原 草 坪 的边 长 为 Y, 设 想 可 使 数 学与 逻 辑 更 趋 于 统一 .从 而 有 利 于数 学 理 论 与 应 用 的研 究 。利用 集 合思 想 解 决 问题 , 以 防止 在 分 类 过程 中 出现 可
2培 养提 出 问题 的 能 力。 学 中要 注 重 培 养学 生 提 出问题 . 教
3建模 思 想 方法 。 学 建 模思 想 方法 就 是 把 现实 世 界 中有 的 能 力 , 设 问 题 情 境 , 学 生 留下 思 考 的时 间和 空 间 , 励 . 数 创 给 鼓 待 解 决 或 未 解 决 的 问 题 , 数 学 的 角 度 发 现 问 题 、 出 问 题 、 学 生用 批 判 的眼 光 看 问题 .教 师 要鼓 励 学 生 在 学 习 和生 活 中 从 提 理 解 问题 . 过 转 化 过 程 . 结 为一 类 已经解 决 或 较 易 解 决 的 多 用批 判 的眼 光去 观 察 、 分析 问题 。培养 学 生从 各 个方 面 提 通 归 去
为 一种 科 学 语 言 。 描 述 世 界 的工 具 , 是 贮存 和交 流 信 息 的 是 也
浅谈初中教学数学中几种常见的思想方法
分 组 . 生 合作 交流 、 纳 总 结 , 出结 论— — 有 三 种情 况 : 学 归 得
一 一
在 研 究与 解 决 数学 问题 时 。要 根 据 数 学对 象 的 本 质 属 学 教 学 中应 正 确 使 用 , 握 新 旧 知 识 的 区别 与 联 系 。如 在 掌
绝 运算 法 则 时 . 完 性 , 对 象 区 分 为不 同种 类 , 后 进 行 分 析 , 到 解 决 问 题 学 习实 数 的相 反 数 、 对 值 概 念 和 运 算 律 、 将 然 达 的 目的 。 学 中 的分类 是 按 照 数学 对 象 的相 同 点 和 差异 点 , 全 可 以 通 过 复 习有 理 数 的 相 反 数 、 对 值 、 算 律 和 运 算 数 绝 运 将 数学 对 象 区分 为不 同种类 的思 想方 法 ,分 类 以 比较 为 基 法 则 类 比得 出 。 比 的对 象 间 可 能 会 表 现 出 差 异 。如 有 理 类
以 看 出其 共 性 : 含 有一 个 未 知数 且 未 知 数 的次 数 是 1 的 只 次
整 式 方 程 叫一 元 一 次 方 程 , 标 准 形 式 是 a + = f 、 为 已 其 ) b 0a b 【
例: 较 I+ I I +BI 试比 A B 与 AI I 的大小
解 : 、 同号时 , l+ -Af I f 当A B 有 A B『f B + 当A B 、异号时, f+ { l 有 A Bf A l Bl < + 当A B 、 中至少有一个为零时, I+ II +B 有 A B =All I
浅谈在初中数学教学中数学思想方法的渗透
b
一
以可根据方程 的特点 , 含 有 的未知项 由 ( 一1 所 以 将 z ) 换为 y这样原方程 就转化 为关于 Y的一元二 次方 程 , , 问题就简单化了. 解: Y 令 —z 1 则 2 一5 一 , +2 . —0
0
4 渗透 函数 与方 程思 想 。 养 学 生数 学 建模 能 培
力
函数 是 对 于 客 观 事 物 的 运 动 变 化 过 程 中 , 个 变 各 量 之 间 的相 依 关 系 , 用 函 数 形 式 把 这 种 数 量 关 系 表 运 示 出来 并 加 以研 究 , 而 使 问 题 得 到 解 决 . 函 数 的 概 从 与 念 有 必 然 联 系 的 概 念 是 方 程 . 数 能 反 映 的 变 化 在 某 函 特 定 状 态 时 ( 量 值 相 等 ) 以 由 一个 方 程 来 描 述 . 如 可
一
所 以 一3或 一÷ , 故原方程 的解为 z =3或 一
3
2
2 渗透数 形 结合 的思 想方法 , 高学 生 的数 形 提 转 化能 力和迁 移思 维 的能力
数 形 结 合 思 想 : 学 数 学 研 究 的 对 象 是 现 实 世 界 中 的空间形式与数量关系. 是数形 结合 的根本依 据. 这 数 形 结 合 , 是 把 抽 象 的数 学 符 号 、 母 与 直 观 的 图 形 结 就 字 合 , 抽 象 思 维 与形 象 思 维 相 结 合 . 使
一
1 渗 透化 归思 想 。 高学 生解 决 问题 的 能力 提
化 归 思 想 : 未 知 向 已知 转 化 , 一 种 重 要 的思 维 将 是 模 式 , 是 解 决 数 学 问题 的一 种 重 要 的 思 想 和 方 法 . 也 正 是 通 过 不 断 的 转化 , 不 熟 悉 的 问 题 , 规 范 的 问题 转 把 不 化 为 规 范 化 的 问 题 , 复 杂 的 问题 转 化 为 简 单 的 问题 . 把 例 1 解 方 程 : ( 一1 。 5 z 1 + 2 2 z ) 一 ( — ) —0
初中数学课堂教学中渗透数学思想方法的策略与途径
初中数学课堂教学中渗透数学思想方法的策略与途径1. 引导学生提出问题:通过提问的方式,激发学生的思考和求解问题的能力。
教师可以在课堂上提出一些有趣的问题,引导学生猜想、推理和证明,让学生主动思考并积极参与到解决问题的过程中。
2. 提供具体的问题背景:将数学与生活实际联系起来,引起学生的兴趣。
教师可以通过讲解一些生活中的例子,让学生理解数学的应用,激发他们对数学思想的认识和兴趣。
3. 培养学生的数学思维:鼓励学生提出不同的解题思路,并进行探究。
教师可以通过提出一些开放性问题,引导学生探索不同的解题路径,培养他们的创新思维和解决问题的能力。
4. 引导学生进行数学推理和证明:数学是一门严谨的学科,教师可以通过引导学生进行数学推理和证明,培养他们的逻辑思维和严谨性。
教师可以提出一些需要证明的问题,引导学生使用数学方法进行证明,让学生体验到数学思想的严密性和美感。
5. 创设情境和游戏化教学:通过创设情境和游戏化的方式,激发学生对数学思想的兴趣和热爱。
教师可以设计一些有趣的数学题目,让学生在解题中体验到数学思想的乐趣,从而激发他们对数学的兴趣。
在实施这些策略和途径时,教师要注意以下几点:1. 关注学生的思维过程:关注学生的思维过程和解题思路,及时给予鼓励和指导。
不仅注重结果,还要注重过程,培养学生的解题能力和思维能力。
2. 尊重学生的个性和差异:学生的数学理解能力和学习方式各不相同,教师要尊重学生的个性和差异,灵活调整教学方法和策略,帮助每个学生发展自己的数学思维。
3. 创设良好的学习氛围:营造积极向上的学习氛围,激发学生对数学的兴趣和热情。
教师要给予学生积极的反馈和肯定,鼓励学生的探索和创新。
渗透数学思想方法是一种有效的数学教学策略,通过引导学生思考和解决问题,创设情境和游戏化教学等途径,可以培养学生的数学思维和解题能力,提高他们对数学学科的理解和认识。
教师在教学中要灵活运用这些策略和途径,根据学生的实际情况进行指导和激励,帮助他们更好地理解和掌握数学思想。
浅谈在初中数学中渗透数学思想和数学方法
提升 学 生 的数 学素 质 , 利 于形 成学 生 数学 有
一
() 1 分式 方程 的求 解 是 分 式 方 程 转化 为
元 二次方程求解 。
( ) 直 角 三 角 形 ; 非 直 角 三 形 问 题 2解 把
的 有 效 思 想 。 中 数 学 教 材 中 下 列 内容 体 化 为 直 角 三 角 形 问 题 。 初
2 1 数形结 合思 想 . 数 形 结 合 是 初 中 数 学 中 最 重 要 、 基 最 1在初 中数学中渗透数学思想 和数学 方 法 的 意 义 本 的 思 想 方 法 之 一 , 解 决 许 多 数 学 问 题 是 () 1九年 制义务 教 育数 学新 课标 准 明确 提 建 设和进 一步学 习所 需要 的数学 基础 知识 和 基 本技 能 , 内容 是 代数 、 何 的 基本 概念 、 其 几 规律 和 由它们反 映 出来 的数 学思 想方 法。 这 ”
ห้องสมุดไป่ตู้
才 , 习不 是仅 仅 把知 识 装进 学 习者 的 头 脑 角 函 数 , 是 用 代 数 方 法 解 决 何 问题 。 学 这
直 线 与 圆 、 与 圆 的 位 置关 系 等 都 是 化 为 时 , 具 备 较 强 的分 析 和 判 断 能 力 , 类讨 圆 应 分 同时 , 让学生 同时获 取数 学思想 和方 法 , 进而 数 量 关 系 来 处 理 的 。 论 思 想 既 是 重 要 的 解 题 手 段 , 就 是 衡 量 又 () 7 统计 初步 中统 计 的 第 二 种 方 法 是绘 这 方 面 能 力 的 标 志 。 些 题 目在 已 知 条 件 有 制 统计 图 表 , 用这 些 图 表 的 反 映 数 据 的分 下 , 图形 运 动 变 化 过 程 中 , 过 分析 和 判 在 经
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈初中数学教学中思想和方法横山三中韩强思想方法就是客观存在反映在人的意识中经过思维活动而产生的结果,它是从大量的思维活动中获得的产物,经过反复提炼和实践,一再被证明为正确、可以反复被应用到新的思维活动中,并产生出新的结果。
数学思想方法,就是指现实世界的空间形式和数量关系反映到人的意识中,经过思维活动而产生的结果,它是对数学事实与数学理论(概念、定理、公式、法则等)的本质认识。
是数学知识在更高层次上的抽象和概括,蕴涵在数学知识发生、发展和应用的过程中,能够迁移并广泛用于相关学科和社会生活中。
九年义务教育<数学课程标准>对初中数学中的基础知识作如此描述:“初中数学中的基础知识包括初中代数、几何中的概念、法则、性质、公式、公理、定理等,以及由其内容所反映出的数学思想和方法。
”把数学思想和方法作为初中的基础知识在标准中明确提出来,在素质教育中的重要性和必性由此可见一斑。
数学教学中必须重视思想方法的教学,其理是显而易见的。
首先,重视思想方法的教学是数学教育教学本身的需要。
数学思想方法是以数学为工具进行科学研究的方法。
纵观数学的发展史我们看到数学总是伴随着数学思想方法的发展而发展的。
如坐标法思想的具体应用产生了解析几何;无限细分求和思想方法导致了微积分学的诞生……,数学思想方法产生数学知识,而数学知识又蕴载着数学思想,二者相辅相成,密不可分。
正是数学知识与数学思想方法的这种辩证统一性,决定了我们在传授数学知识的同时必须重视数学思想方法的教学。
其次,重视思想方法的教学是以人为本的教育理念下培养学生素养为目标的需要。
著名日本数学家和数学教育家米山国藏在从事多年数学教育研究之后,说过这样一段耐人寻味的话:“学生们在初中或高中所学到的数学知识,在进入社会后,几乎没有什么机会应用,因而这种作为知识的教学,通常在出校门后不到一两年就忘掉了,然而不管他们从事什么业务工作,那种铭刻于头脑中的数学精神和数学思想方法,却长期地在他们的生活和工作中发挥着作用。
”倘若我们留意各行各业的某些专家或一般工作者,当感到他们思维敏锐,逻辑严谨,说理透彻的时候,往往可以追溯到他们在中小学所受的数学教育,尤其是数学思想方法的熏陶。
理论研究和人才成长的轨迹也都表明,数学思想方法在人的能力培养和素质提高方面起着重要作用。
再次,从现实的角度看,重视思想方法的教学是提高学生解题能力的需要。
如2002年绍兴市中考题:某斜拉桥的一组钢索a、b、c、d、e,共5条,它们相互平行,钢索与桥面的固定点p1、p2、p3、p4、p5中,每相邻两点等距离。
(1)问至少需要知道几条钢索的长,才能计算出其余钢索的长?(2)请你对(1)中需知道的钢索给出具体的数值,并且由此计算出其余钢索的长。
这是道斜拉桥背景的情景题,需要学生将其抽象出几何模型,转化为数学问题求解。
该市教研员著文称,此题体现了命题者先进的数学思想及现代数学的意识,像这种好题今后还会继续出现在我市的中考数学试卷上。
由于初中学生数学知识比较贫乏,抽象思想能力也较为薄弱,把数学思想、方法作为一门独立的课程还缺乏应有的基础。
因而只能将数学知识作为载体,把数学思想和方法的教学渗透到数学知识的教学中。
教师要把握好渗透的契机,重视数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解决问题和规律的概括过程,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题。
数学中的许多公式、概念、定理本身就隐含丰富的数学方法内容。
如分类思想方法、数学模型思想。
在教学过程中它将逐步渗透这些思想。
但在某些思想方法的教学过程中,要向学生作重点讲解、强调,让学生理解它的意义。
比如在一元一次方程的教学过程中,学生不习惯于列方程,有的学生在解题时仍套用小学学过的方法。
这需要教师强调列主程建立数学模型的重要性,通过这一方法的运用,建立起一种已知未知转化、数学模型思想概念。
在数轴表示数的教学中,强调数形结合的重要性,加强训练,初步建立数形结合概念。
在进行初中数学思想和方法教学的过程中首先应该把握一下几个原则1.提高渗透的自觉性数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的,而数学思想方法却隐含在数学知识体系里,是无“形”的,并且不成体系地散见于教材各章节中。
教师讲不讲,讲多少,随意性较大,常常因教学时间紧而将它作为一个“软任务”挤掉。
对于学生的要求是能领会多少算多少。
因此,作为教师首先要更新观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目的,把数学思想方法教学的要求融入备课环节。
其次要深入钻研教材,努力挖掘教材中可以进行数学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。
2.把握渗透的可行性数学思想方法的教学必须通过具体的教学过程加以实现。
因此,必须把握好教学过程中进行数学思想方法教学的契机——概念形成的过程,结论推导的过程,方法思考的过程,思路探索的过程,规律揭示的过程等。
同时,进行数学思想方法的教学要注意有机结合、自然渗透,要有意识地潜移默化地启发学生领悟蕴含于数学知识之中的种种数学思想方法,切忌生搬硬套、和盘托出、脱离实际等适得其反的做法。
3.注重渗透的渐进性和反复性数学思想方法是在启发学生思维过程中逐步积累和形成的。
为此,在教学中,首先要特别强调解决问题以后的“反思”。
因为在这个过程中提炼出来的数学思想方法,对学生来说才是易于体会、易于接受的。
其次要注意渗透的长期性。
应该看到,对学生数学思想方法的渗透不是一朝一夕就能见到学生数学能力提高的,而是有一个过程。
数学思想方法必须经过循序渐进和反复训练,才能使学生真正地有所领悟那么,数学教学中如何进行数学思想方法的教学?笔者以为可着重从以下几个方面入手:1、在概念教学中渗透数学思想方法数学概念是现实世界中空间形式和数量关系及其本质属性在思维中的反映,人们先通过感觉、知觉对客观事物形成感性认识,再经过分析比较,抽象概括等一系列思维活动而抽取事物的本质属性才形成概念。
因此,概念教学不应只是简单的给出定义,而要引导学生感受及领悟隐含于概念形成之中的数学思想。
比如绝对值概念的教学,初一代数是直接给出绝对值的描述性定义(正数的绝对值取它的本身,负数的绝对值取它的相反数,零的绝对值还是零)学生往往无法透彻理解这一概念只能生搬硬套,如何用我们刚刚所学过的数轴这一直观形象来揭示“绝对值”这个概念的内涵,从而能使学生更透彻、更全面地理解这一概念,我们在教学中可按如下方式提出问题引导学生思考:(1)请同学们将下列各数0、3、?3、5、?5在数轴上表示出来;(2)3与?3;5与?5有什么关系?(3)3到原点的距离与?3到原点的距离有什么关系?5到原点的距离与?5到原点的距离有什么关系?这样引出绝对值的概念后,再让学生自己归纳出绝对值的描述性定义。
(4)绝对值等于7的数有几个?你能从数轴上说明吗?通过上述教学方法,学生既学习了绝对值的概念,又渗透了数形结合的数学思想方法,这对后续课程中进一步解决有关绝对值的方程和不等式问题,无疑是有益的。
2、在定理和公式的探求中挖掘数学思想方法著名数学家华罗庚说过:“学习数学最好到数学家的纸篓里找材料,不要只看书上的结论。
”这就是说,对探索结论过程的数学思想方法学习,其重要性决不亚于结论本身。
数学定理、公式、法则等结论,都是具体的判断,其形成大致分成两种情况:一是经过观察,分析用不完全归纳法或类比等方法得出猜想,尔后再寻求逻辑证明;二是从理论推导出发得出结论。
总之这些结论的取得都是数学思想方法运用的成功范例。
因此,在定理公式的教学中不要过早给出结论,而应引导学生参与结论的探索、发现、推导过程。
搞清其中的因果关系,领悟它与其它知识的关系,让学生亲身体验创造性思维活动中所经历和应用到的数学思想和方法。
例如,在圆周角定理从度数关系的发现到证明体现了特殊到一般、分类讨论、化归以及枚举归纳的数学思想方法。
在教学中我们可依次提出如下富有挑战性的问题让学生思考:(1)我们已经知道圆心角的度数定理,我们不禁要问:圆周角的度数是否与圆心角的度数存在某种关系?圆心角的顶点就是圆心!就圆心而言它与圆周角的边的位置关系有几种可能?(2)让我们先考察特殊的情况下二者之间有何度量关系?(3)其它两种情况有必要另起炉灶另外重新证明吗?如何转化为前述的特殊情况给与证明?(4)上述的证明是否完整?为什么?易见,由于以上引导展示了探索问题的整个思维过程所应用的数学思想方法,因而较好地发挥了定理探讨课型在数学思想方法应用上的教育和示范功能。
3、在问题解决过程中强化数学思想方法许多教师往产生这样的困惑:题目讲得不少,但学生总是停留在模仿型解题的水平上,只要条件稍稍一变则不知所措,学生一直不能形成较强解决问题的能力。
更谈不上创新能力的形成。
究其原因就在于教师在教学中仅仅是就题论题,殊不知授之以“渔”比授之以“鱼”更为重要。
因此,在数学问题的探索的教学中重要的是让学生真正领悟隐含于数学问题探索中的数学思想方法。
使学生从中掌握关于数学思想方法方面的知识,并使这种“知识”消化吸收成具有“个性”的数学思想。
逐步形成用数学思想方法指导思维活动,这样在遇到同类问题时才能胸有成竹,从容对待。
如:直线y=2x―1与y=m―x的交点在第三象限,求m的取值范围。
方法1:用m表示交点坐标,然后用不等式求解;方法2:利用数形结合的思想在坐标系中画出图象,根据图象作答。
显然上述的问题解决过程中,学生通过比较不同的方法,体会到了数学思想在解题中的重要作用,激发学生的求知兴趣,从而加强了对数学思想的认识。
4、及时总结以逐步内化数学思想方法数学思想方法贯穿在整个中学数学教材的知识点中,以内隐的方式溶于数学知识体系。
要使学生把这种思想内化成自己的观点,应用它去解决问题,就要把各种知识所表现出来的数学思想适时作出归纳概括。
概括数学思想方法要纳入教学计划,要有目的、有步骤地引导参与数学思想的提炼概括过程,特别是章节复习时在对知识复习的同时,将统领知识的数学思想方法概括出来,增强学生对数学思想的应用意识,从而有利于学生更透彻地理解所学的知识,提高独立分析、解决问题的能力。
初中数学中蕴含的数学思想方法许多,最基本的数学思想方法是数形结合的思想,分类讨论思想、转化思想、函数的思想、整体思想、化归思想、变换思想、统计思想等,突出这些基本思想方法,就相当于抓住了中学数学知识的精髓。
1、数形结合的思想“数”和“形”是数学教学中既有区别又有联系的两个对象。
在数学教学中,突出数形结合思想,有利于学生从不同的侧面加深对问题的认识和理解,提供解决问题的方法,也有利于培养学生将实际问题转化为数学问题的能力。