2011级数值分析(A)试卷
太原理工大学11级硕士研究生数值分析期末考试题

11级(12/07/03)
一、基础题(40分)
(一)、单项选择(2×5=10分)
1、求解常微分方程的预估—校正法的局部截断误差为( )。
2、过
3
4
5、
(二)
1、是一日插值基函数在节点上的取值是______________。
2、设分段多项式,
,
是以0,2,3为节点的三次样条
函数。
则a =____________,b =____________, c =____________。
3、设,则关于节点,,的二阶向前差分为_________。
4、5个节点的牛顿—科特斯求积公式的代数精度为________,5个节点的求积公式最高代数精度为________。
5、设,则a的取值范围为________A可分解为A = LL T,且当L满足________,分解是唯一的。
6、设是切比雪夫正交多项式系,则的正交区间为________,它的权
7迭8。
1
2
(1)
(2)
3、用二步法求解一阶常微分方程初值问题
,
,问:如何选择、的值,才能使该方法的阶数尽可能高?写出此时的局部截断误差主项。
三、计算题(15×2=30分)
1、(1)设,,是区间[-1,1]上权函数为的最高项系数为1的正交多项式组,其中,,求。
(2)利用,,求函数在[-1,1]上的二次最佳平方逼近多项式。
2、已知求解方程组Ax = b的分量迭代格式:,
,,,;,,,
(1)试求出矩阵格式及迭代矩阵。
(2)证明当A为严格对角占优矩阵,时,该迭代格式收敛。
福州大学2010-2011年数值分析考题及答案1

1、若向量 x (4, 2,3) ,则
T
x 2 =___ 29 _________
=____ 6 ____,A 的
2、
1 1 A , 则 A 的谱半径 -5 1
=____6____
3、 确定求积公式 尽量高,则 A0=_
1
1
f ( x)dx A0 f (1) A1 f (0) A2 f '(1) 中的待定参数,使其代数精度
0 2 0 5、设 B 2 1 2 ,试用平面旋转矩阵对矩阵 A 进行 QR 分解,其中 Q 为正交 0 2 1
矩阵,R 为上三角阵(8 分)
4
记A1 A, 先将A的第一列变得与e1平行 cos = 0 2 0,sin = 1 04 04 0 1 0 0 1 0 0 P A 2 P A1 1 12 12 0 0 0 1
3、
h 用二步法 yn1 yn [ f ( xn , yn ) f ( xn1 , yn1 )] 求解一阶常微分方程初值问题 2
y f ( x, y ) 问:如何选择参数 , 的值,才使该方法的阶数尽可能地高?写出 y ( x0 ) y0
此时的局部截断误差主项,并说明该方法是几阶的。 证明:局部截断误差为:
( x x )l ( x) 等于
i 0 i i
4
( a ) 1 (c) 2 (d) 4
(a)
0
(b)
3、设 f ( x) 3x5 4 x 4 x 2 1 和节点 xk k / 2, k 0,1 则差商 f [ x0 , x1 x5 ] (a) 4 (b) 2 (c) 3 (d) 1 ( ( c ) c )
数值分析试卷及答案

数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。
答:牛顿-科特斯公式2. 数值微分的基本公式是_________。
答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。
答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。
答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。
武汉大学2011工程硕士数值分析考试复习题

武汉大学2011工程硕士数值分析考试复习题预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制1、设()0f x =有根,且'0(),m f x M x <≤≤-∞<<+∞,试证明由1()k k k x x f x λ+=-产生的序列{}k x 对任意的0x 和02M λ<<均收敛。
2、对3*(),0()x x x x x φφ=+=为的一个不动点,验证10()0k k x x x φ+=≠对不收敛,但改用steffen 方法却收敛。
3、设*x 是()0f x =的根,且()()'''*0,f x f x x ≠在领域上连续,试证明:Newton 迭代序列{}n x 满足''*12'*12()lim ()2()k k k k k x x f x x x f x -→∞---=-4、给定方程组的雅可比迭代矩阵为022101220J B =----??,试证明雅可比迭代收敛而高斯迭代不收敛。
5、设二阶方程组为12630321x x = ? ? ?-????,取(0)00x ??= (1)用最快速下降法迭代两次求近似解(2)x ;(2)用共轭梯度法迭代两次求近似解(2)x ;(3)与精确解进行比较分析。
6、设方程组AX=B 系数矩阵A 非奇异,条件数cond (A ),设A 有扰动A δ,且11A A δ-<,分析解的扰动X δ的相对变化XX δ。
7、设2()[,],()()0f x c a b f a f b ?==且,试证明:2''()max ()max ()8a xb a x b b a f x f x ≤≤≤≤-≤8、试证明两点三次Hermite 插值余项(4)2231()()()()4!k k f R x x x x x ξ+=--,并求此分段三次Hermite 插值的误差限。
中国石油大学《数值分析》2011年考试试题A卷及答案

f (4)(x)
1 2880
1 n
4
6
1 2
104
,
仅要 n 4 1 101 2.54 ,取 n 3 即对将[1,2] 作 6 等分,则有 240
(8 分)
2
1 ln xdx
1 [0 4(ln 7 ln 3 ln 11) 2(ln 4 ln 5) ln 2] 0.38628716327880 .
0.000040074
( 4 分)
七、(10 分)(1)牛顿迭代格式
x(k 1)
x(k)
f f
(x(k ) ) '(x(k) )
x(k)
x(k) 1 (2
(x(k) )2 )(x(k) )1
1
(1 (2
)(
x( )(
)k ) 2 x(k ) )1
(2)
x(k 1)
lim
k
x(k)
1 1
fgdx
,取( x) ax bx3 , f ( x) sin x ,则法方程为
(0 ,0 )
(1
,
0
)
(0 ,1) (1 , 1 )
a b
( (
f f
,0 ,1
) )
( 4 分)
其中 0,0
1
x xdx
1
2, 3
0 ,1
(1 )(x(k) )2
lim
k
1
(2
)(x(k ) )1
c0
2
c 1
(5 分) (5 分)
1
x(k) 2
x(k) 3
1
x(k) 1
x(k) 3
/2
x3( k
1)
上海大学2011-2012第二学期数值方法试卷(A含答案)

六、名词解释(共 9 分) (答案仅供参考,允许表述形式不一致) 1. (3 分)迭代法:
答:一般采用迭代法求解方程组,因为迭代法则能保持矩阵的稀疏性,具有计算简单, 编制程序容易的优点,并在许多情况下收敛较快。故能有效地解一些高阶方程组
是一种逐次逼近法,从一个假设解开始,通过一系列的迭代求解,最后产生满足精度要 求的近似解 的方法。如 Jacobi 迭代法,GaussSeidel 迭代法 4. (5 分)写出雅可比迭代法和高斯-赛德尔迭代法的迭代公式,并比较它们的优缺点。(10 2. (3 分)绝对误差 分) 一个准确值与其在运算中的近似值的差,称为绝对误差。 雅可比迭代法: (4 分) n 1 x ( k 1) D 1 (b ( L U ) x ( k ) ) ; 3. (3 分)绝对误差限 xi( k 1) (bi aij x (jk ) ) , 或 aii j 1 绝对误差的绝对值小于等于某个常数 ,该常数称为绝对误差限 j i 高斯-赛德尔迭代法: (4 分)
计算得
命題紙使用說明:1、字迹必須端正,以黑色碳素墨水書寫在框線內,文字與圖均不得剪貼,以保證“掃描”質量; 2、命題紙只作考試(測驗)命題所用,不得移作他用。
第 3 页 (共 3 页)
sin(0.34) L2 (0.34) 0.333336
(注至少保留到小数点四位) 3. (5 分)对于线性方程组 Ax b , 已知 A 是高维稀疏矩阵, 则一般采用什么方法求解?为什 么?
n n 1 (bi aij x (jk 1) aij x (jk ) ) aii j i j i , 或
xi( k 1)
七、简答题(共 23 分): 1. (8 分)试写出数值积分中的梯形公式、辛普森公式、辛普森 3/8 公式和布尔公式,且给出 它们各自的精度值。 设 xk=x0+kh 为等距节点,且 fk=f(xk), 则四个数值积分公式分别为: x1 h 梯形公式精度为 1, 具体公式为: f ( x)dx ( f 0 f1 ) x0 2 x2 h 辛普森公式精度为 3,具体公式为: f ( x)dx ( f 0 4 f1 f 2 ) x0 3 辛普森 3/8 公式精度为 3,具体公式为: f ( x)dx
数值计算(数值分析)试题及答案

武汉理工大学研究生课程考试标准答案用纸课程名称:数值计算(A ) 任课教师 :一. 简答题,请简要写出答题过程(每小题5分,共30分) 1.将227和355113作为 3.14159265358979π=L 的近似值,它们各有几位有效数字, 绝对误差和相对误差分别是多少3分)2分)2.已知()8532f x x x =+-,求0183,3,,3f ⎡⎤⎣⎦L ,0193,3,,3f ⎡⎤⎣⎦L .(5分)3.确定求积公式10120()(0)(1)(0)f x dx A f A f A f '≈++⎰中的待定系数,使其代数精度尽量高,并指明该求积公式所具有的代数精度。
解:要使其代数精度尽可能的高,只需令()1,,,m f x x x =L L 使积分公式对尽可能大的正整数m 准确成立。
由于有三个待定系数,可以满足三个方程,即2m =。
由()1f x =数值积分准确成立得:011A A += 由()f x x =数值积分准确成立得:121/2A A += 由2()f x x =数值积分准确成立得:11/3A =解得1201/3,1/6,2/3.A A A === (3分)此时,取3()f x x =积分准确值为1/4,而数值积分为11/31/4,A =≠所以该求积公式的最高代数精度为2次。
(2分)4.求矩阵101010202A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦的谱半径。
解 ()()101011322I A λλλλλλλ--=-=---矩阵A 的特征值为1230,1,3λλλ=== 所以谱半径(){}max 0,1,33A ρ== (5分)5. 设10099,9998A ⎛⎫= ⎪⎝⎭计算A 的条件数()(),2,p cond A P =∞.解:**19899-98999910099-100A A A A --⎛⎫⎛⎫=⇒== ⎪ ⎪-⎝⎭⎝⎭矩阵A 的较大特征值为,较小的特征值为,则1222()198.00505035/0.0050503539206cond A A A -=⨯==(2分)1()199********cond A A A -∞∞∞=⨯=⨯= (3分)22001130101011010220100110110()(12)()(12)()()()()()x x x x x x x x H x y y x x x x x x x x x x x x x x y x x y x x x x ----=-+-------''+-+---(5分)并依条件1(0)1,(0),(1)2,(1) 2.2H H H H ''====,得2222331()(12)(1)2(32)(1)2(1)211122H x x x x x x x x x x x =+-+-+-+-=++ (5分)2.已知()()()12,11,21f f f -===,求()f x 的Lagrange 插值多项式。
(完整)数值分析学期期末考试试题与答案(A),推荐文档

期末考试试卷(A 卷)2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟学号 姓名 年级专业一、判断题(每小题2分,共10分)1. 用计算机求1000100011n n=∑时,应按照n 从小到大的顺序相加。
( )2. 为了减少误差,进行计算。
( )3. 用数值微分公式中求导数值时,步长越小计算就越精确。
( )4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。
( )5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有关,与常数项无关。
( )二、填空题(每空2分,共36分)1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________.2. 设1010021,5,1301A x -⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦则1A =_____,2x =______,Ax ∞=_____.3. 已知53()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= .4. 为使求积公式11231()((0)f x dx A f A f A f -≈++⎰的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。
5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 .6. 用迭代法解线性方程组AX B =时,使迭代公式(1)()(0,1,2,)k k XMX N k +=+=K 产生的向量序列{}()k X收敛的充分必要条件是 .7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩阵U 的乘积,即.A LU = 若采用高斯消元法解AX B =,其中4221A -⎡⎤=⎢⎥⎣⎦,则L =_______________,U =______________;若使用克劳特消元法解AX B =,则11u =____;若使用平方根方法解AX B =,则11l 与11u 的大小关系为_____(选填:>,<,=,不一定)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南工业大学硕士研究生课程考试试卷
考试科目: 数值分析 (A 卷) 课程编码:
考试形式: 开卷 (开/闭卷)考试时间: 120 分钟
适用年级: 2011年级 学年学期: 2011-2012第二学期 考生学号: 考生姓名: 考生专业:
考生注意事项:1、本试卷共 2 页,试卷如有缺页或破损,请立即举手报告以便更换。
2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。
一、(10分)证明x 的相对误差约等于x 的相对误差的2
1。
二、(10分)若n n n n x a x a x a a x f ++++=--1110)( 有n 个不同实根n x x x ,,,21 ,证明:∑=-⎩⎨⎧-=-≤≤=n j n j k j
n k a n k x f x 11'.1,.20,0)( 三、(10分)讨论:当)(x f 为连续函数,节点),,1,0(n i x i =为等距节点,构
造拉格朗日插值多项式)(x L n ,则n 越大)(x L n 与)(x f 的接近程度。
(需举
例从误差角度讨论)
四、(10分)利用Gram-Schmidt 正交化方法,求]1,0[上带权x 的三次正交多
项式系。
五、(10分)求参数1010,,,x x A A ,使求积公式 )()()(1110010x f A x f A dx x f x +≈⎰。
有最高的代数精度。
六、(10分)用三点公式求2)1(1)(+=x x f 在2.1,1.1,0.1=x 处的导数值,并估计误差。
)(x f 的值由下表给出:
七、(10分)写出线性方程组⎪⎩
⎪⎨⎧=+=-+-=-61071021214153232121x x x x x x x 的Gauss-Seidel 迭代格式,并写出其迭代矩阵,并判断它的收敛性。
八、(10分)证明方程0126)(3=--=x x x f 在区间]5,2[内有唯一根p,并对任
意初始值]5,2[0∈x ,Newton 序列都收敛于p
九、(10分)写出下面非线性方程组的Newton 迭代格式⎩⎨⎧=--=-0
130331221222
1x x x x x 十、(10分)试证明,用Euler 法解初值问题0)0(,'=+=y b at y 得到的解为
,2
1212n n n n aht bt at y -+=,其中nh t n =,并证明方法是收敛的。