Titanium China Industry

合集下载

钛合金及其油井管耐蚀性能研究进展

钛合金及其油井管耐蚀性能研究进展

第38卷第2期2021年4月Vol.38No.2April2021Ti穀臧钛合金及其油井管耐蚀性能研究进展董盼1,朱世东S李金灵1,刘强2,陈永楠3(1.西安石油大学材料科学与工程学院,陕西西安710065)(2.中国石油天然气集团公司管材研究所石油管材及装备材料服役行为与结构安全国家重点实验室,陕西西安710077)(3.安大学材料学与工学院,西&西安&710064)摘要:综述了油井管现状、钛合金组织与力学性能,重点探讨了钛合金作为油井管的耐蚀性能、影响因素与耐蚀机理,并对第一性原理计算在钛合金管材成分设计与界面的应用进行了概述。

研究,钛合金管材具有较强的抗硫化物应力开裂(SSC)性能,在高温高压(HTHP)油气田的工况条件下具有极低的腐蚀速率,对孔蚀、缝隙腐蚀、接触腐蚀以及氢脆等也具有高的抵抗力;Ti-6A17V(TC4)合金表面的钝化膜在含H?S腐蚀环境中更易遭到破坏,其稳定因温度变化与其他元入生变化,能生改变。

关键词:钛合金;油井管;;数值模拟;界面中图分类号:TE931'.2;TG146.23文献标识码:A文章编号:10097964(2021)0274277 Research Progress on Corrosion Resistance of Titanium Alloy and Its Oil Country Tubular Goods Dong Pan1,Zhu Shidony1,Li Jinliny1,Liu Qiany2,Chen Yonynan3(1.School of Materials Science and Engineering,Xi'an Shiyou University,Xi'an710065,China)(2.State Key Laboratora for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials,CNPCTubuoa.GoodsReseach Instotute,Xo'an710077,Chona)(3.SchooootMateeiaoScienceand Engineeeing,Chang'an Unieeesity,Xi'an710064,China)AbstracS:The present situation of oil countre tubular goods(OCTG),titanium llgy microstructure and mechanicot propeeies were reviewd,corrosion resisting propeOy of titanium Hoy as OCTG,influence factors and corrosion resistant mechanAm were focused on,and the first-prAciples dlculation in the composition design of the titanium lloy OCTG and the application of the interfyco corrosion characteesticr were introduced.It is found that titanium Hoy OCTG has steongeesostancetosuotodesteesceackong(SSC),the ee eUoow co eos oon eateundeethewoekongcondotoonsothogh temperature and high pressure(HTHP)oil and gas fielg,and the strong resistance to pitting corrosion,crevice corrosion,contact corrosion and hydrogen embettlement.The pasivation film on T1-6A1-4V(TC4)titanium dlloy is more likely to be damaged in H?S corrosion environment,the stability of titanium pasivation film will change due to temperature changeand otheeeoementsonteeientoon,and then coeosoon eesostancewoobedoteeentaccoedongoy.Key words:titanium Hoy;oil countre tubular goods;corrosion;numevcal modding;interfacial corrosion中国社会经济发展已进入快车道,对石油天然收稿日期:2020-07-24基金项目:学金(51974245,21808182);笑西省重(2020GY234);陕西省:科学究计划(2019JM472,2019JM506);西安市科技计划(2020KJRC0097,2020KJRC0098);究生创新与实践能计划立项项目(YCS20113058)通信作者:东(1980—),男,博士,副教授。

铁矿石中英文对照

铁矿石中英文对照

铁矿石的分类Iron ore classification按照矿物组分、结构、构造和采、选、冶及工艺流程等特点,可将铁矿石分为自然类型和工业类型两大类。

According to mineral composition, structure, construction and mining, metallurgical and technological process and other features, can be divided into natural types of iron ore and industrial types of two categories.1.自然类型1natural types1)根据含铁矿物种类可分为:磁铁矿石、赤铁矿石、假象或半假象赤铁矿石、钒钛磁铁矿石、褐铁矿石、菱铁矿石以及由其中两种或两种以上含铁矿物组成的混合矿石。

1)according to the iron ore types can be divided into: magnetite, hematite, false or half pseudomorph, vanadium-titanium magnetite ore, hematite, siderite and limonite ore from which two or more than two kinds of minerals containing composition of mixed ore.2)按有害杂质(S、P、Cu、Pb、Zn、V、Ti、Co、Ni、Sn、F、As) 含量的高低,可分为高硫铁矿石、低硫铁矿石、高磷铁矿石、低磷铁矿石等。

2)according to the harmful impurities ( S, P, Cu, Pb, Zn, V, Ti, Co, Ni, Sn, F, As ) content, can be classified as high sulfurous iron ore, sulphur iron ore, high phosphorus iron ore, low phosphorus iron ore.3)按结构、构造可分为浸染状矿石、网脉浸染状矿石、条纹状矿石、条带状矿石、致密块状矿石、角砾状矿石,以及鲕状、豆状、肾状、蜂窝状、粉状、土状矿石3)according to the structure, structure can be classified as disseminated ore, reticulate veins disseminated ore, ore, stripe banded ore, lump ore dense, brecciated ore, as well as oolitic, lenticular, reniform, honeycomb, powdery, earthy rock.4)按脉石矿物可分为石英型、闪石型、辉石型、斜长石型、绢云母绿泥石型、夕卡岩型、阳起石型、蛇纹石型、铁白云石型和碧玉型铁矿石等。

热处理温度对TA15钛合金板材组织及性能的影响

热处理温度对TA15钛合金板材组织及性能的影响

22冶金冶炼M etallurgical smelting热处理温度对TA15钛合金板材组织及性能的影响马佳琨1,2,王勤波2,张 苗2,冯军宁1,2,马忠贤1,21.宝钛集团有限公司,陕西 宝鸡 721014;2.宝鸡钛业股份有限公司,陕西 宝鸡 721014摘 要:本研究对冷加工态TA15钛合金板材进行了750℃、800℃、850℃和900℃四种温度的热处理,并深入探讨了处理后的显微组织、室温拉伸性能、弯曲性能、洛氏硬度和高温性能。

结果显示,在750℃时,板材的横向为等轴组织,纵向含有少量拉长组织;而在800℃至900℃范围内,板材的横向和纵向均形成了均匀细小的等轴组织。

随着热处理温度从750℃升至850℃,板材的拉伸强度逐渐降低,而伸长率、弯曲角度则有所增加,洛氏硬度逐渐下降。

值得注意的是,800℃至850℃热处理的板材显示出优异的综合性能,特别是850℃热处理的板材已完全再结晶。

因此,建议TA15钛合金冷轧板材在这个温度范围内进行热处理,以获得最佳的显微结构和力学性能。

关键词:TA15钛合金;板材;热处理;显微组织;力学性能中图分类号:TG146.23 文献标识码:A 文章编号:1002-5065(2024)02-0022-3Effect of Heat Treatment on Microstructure and Mechanical Properties of TA15 Titanium Alloy SheetsMA Jia-kun 1,2, WANG Qin-bo 1,2, ZHANG Miao 2, FENG Jun-ning 1,2, MA Zhong-xian 1,21.Baoti Group Co., Ltd., Baoji 721014, China;2.Baoji Titanium Industry Co., Ltd., Baoji 721014,ChinaAbstract: In this study, cold-worked TA15 titanium alloy sheets were heat-treated at four temperatures: 750℃, 800℃, 850℃, and 900℃, and the microstructure, room temperature tensile properties, bending properties, Rockwell hardness, and high-temperature performance after treatment were explored in depth. The results showed that at 750℃, the cross-section of the sheet exhibited an equiaxial structure, while the longitudinal section contained a small amount of elongated structure; however, within the temperature range of 800℃ to 900℃, both the cross-section and longitudinal section of the sheet formed a uniform and fine equiaxial structure. As the heat treatment temperature increased from 750℃ to 850℃, the tensile strength of the sheet gradually decreased, while the elongation and bending angle increased, and the Rockwell hardness gradually decreased. It's worth noting that the sheets heat-treated at 800℃ to 850℃ exhibited excellent overall performance, especially those heat-treated at 850℃ which had completely recrystallized. Therefore, it is recommended that TA15 titanium alloy cold-rolled sheets be heat-treated within this temperature range to achieve the best microstructure and mechanical properties.Keywords: TA15 titanium alloy; sheet; heat treatment; microstructure; mechanical properties收稿日期:2023-12作者简介:马佳琨,男,生于1990年2月,陕西西安人,本科,学士学位,工程师,研究方向:钛及钛合金压力加工及标准化。

航空材料钛及钛合金的特性及发展趋势

航空材料钛及钛合金的特性及发展趋势

1所示。

图1不同元素对相变温度的影响[3]钛密度为4.5g/cm3,属于轻金属,熔点为1669℃,化学活性大,容易与空气中的氧发生反应生成致密的氧化膜,阻止进一步氧化,高温时,反应剧烈,氧化膜脱落会加速反应速度,所以,在钛合金的制备过程中,真空或气体保护是非常必要的。

钛合金作为应用广泛的结构材料,比铝、钢强度高,而且在海水中有较好的抗腐蚀和耐低温的性能。

目前,飞图2α-Ti和β-Ti晶胞结构(a)α-Ti(b)β-Ti钛合金组织有α型、α+β型、β型三种结构,对应的符号为TA、TC、TB。

2.1α型钛合金α钛合金是单相合金,其组织是α相固溶体,符号用表示。

合金的主要元素为中性元素或α稳定元素,Al、Sn、Zr等,基本不含β稳定元素。

工业纯钛,组织均α相,属于典型的α型钛合金。

α型钛合金的抗氧化能力和切削加工性能良好,其强度和蠕变抗力在500~600℃范围内仍可维持,缺点是无法实行热处理工艺进行强化,室温的强度相对较低,退火后的强度变化量很小或基本无变化。

———————————————————————作者简介:黄文君(1990-),女,河南许昌人,助教,硕士,研究方向为机械工程材料。

抗缺口敏感性,缺点是断裂韧性,蠕变性能相对较差。

图3钛合金典型的显微组织[9](b )双态组织(d )等轴组织(a )魏氏组织(b )网篮组织4展望随着科技的进步和现代工业的发展,钛合金在军工和民用领域的应用也越来越广泛,在汽车行业,钛合金的应用不仅能减重,更能满足环保的要求,未来航空航天和推力系统需要钛合金材料具有更小的密度,更高的强度、工作温度和弹性模量,对材料性能的要求也逐渐提高,高强度、高硬度、高耐热性的材料越来越受各领域的青睐,优质轻型金属材料的钛合金必将代替部分传统的材料,既减轻质量,又降低成本,达到降低能源消耗的目的,因此高性能钛合金的研究已成为重要的发展方向,相信随着发展的需要,钛合金在我国的市场前景会越来越好。

全球钛工业领域的技术进步--第31届国际钛协会年会报告综述(Ⅱ)

全球钛工业领域的技术进步--第31届国际钛协会年会报告综述(Ⅱ)

全球钛工业领域的技术进步--第31届国际钛协会年会报告综述(Ⅱ)郭薇;黄淑梅;何蕾;王运锋;王源【摘要】The reports about extraction of titanium , manufacturing of titanium materials and parts , and surface treatment from 31 st annual conference of International Titanium Association were reviewed .The new techniques of titanium extraction and titanium powder production were introduced .Some proposals were put forward according to the type of titanium resources and current situation of the titanium industry inChina .New technology of titanium extraction from vanadium titanium magnetite ore and the preparation of titanium and titanium alloy powder should be studied .The process of titanium production should be improved , the investment to upgrade the equipments should be increased , in order to enhance the domestic titanium processing accuracy and develop new titanium alloy which can meet requirements for new applicaions .The titanium machining database should be established , and new tools and coolant should be developed , in order to enhance the level of titanium alloy machining .%综述了第31届国际钛协会年会有关钛的提取、钛材及零部件制造、表面处理等报告。

Titanium Alloys 产品说明书

Titanium Alloys 产品说明书

IntroductionTitanium (Ti) alloys are well-known superalloys due to their high strength-to-weight ratio, excellent mechanical properties, corrosion and hightemperature resistance and biocompatibility. They are widely applied in various industries and application areas, such as biomedical, aerospace, marine and automotive industries, and in 3D-printing for implant manufacturing, with Ti-6Al-4V (also called TC4 or Ti64) being one of the most important titanium alloys. It is known that the chemical composition of alloys can influence their properties and grades. The concentrations of both the additive and impurityelements in the alloy need to be strictly controlled to ensure the material’s quality. For example, Al, V, Fe, Sn, and Cu in a Ti alloy can enhance high-temperature creep resistance, while Y and Pd can improve corrosion resistance and thermal stability.1-2 Therefore, accurate elemental analysis of Ti alloys is important in terms of metallurgy and product quality.In current national standards (e.g., ASTM E2371-13, China National Standard GB/T 4698 and industry standard HB 7716.13), inductively coupled plasma optical emission spectroscopy (ICP-OES) is the specified technique for the determination of elements in the concentration range from percent to ppm in alloys due to its advantages of high matrix tolerance, wide linear range and multi-element analysis capabilities.3-5Determination of Major and Trace Elements in Titanium Alloys Using the Avio Max 550 ICP-OESA P P L I C A T I O N N O T EAUTHOR Shuli ChengPerkinElmer Shanghai, ChinaICP-Optical Emission SpectroscopyAccording to the test standard method ASTM E2371, most types of Ti alloys can be dissolved in two acid mixtures: HF-HNO 3 or HCl-HF-HNO 3, where HCl is needed especially for alloys containing Mo, Pd and Ru. To compare the effectiveness of the digestion, the samples were digested with two acid mixtures: HF+HNO 3 (5:1) and HCl+HF+HNO 3 (2:3:1).Approximately 0.5 g of Ti64 alloy samples were weighed and placed into DigiTUBE ® digestion tubes, followed by deionized (DI) water and acids, as shown in Table 2. Due to the strong reactivity, all acids should be added dropwise. The DigiTUBEs were then gently heated in the Sample Preparation Block (PerkinElmer, Shelton, Connecticut, USA), until the samples were completely dissolved, according to the program in Table 3. The samplesolutions were cooled to room temperature and diluted to 100 mL with deionized water in a polypropylene volumetric flask. In addition, 1 g of pure Ti metal was digested with HF and HNO 3 and diluted to 50 mL. This solution contains 2.0 g/L of Ti for preparing matrix-matched standard solution.However, one of the challenges of analyzing Ti alloys with ICP-OES is spectral interference caused by matrix elements: Ti, Al, V and Fe. In this application, the major and trace elements in Ti64 alloy samples were analyzed with the PerkinElmer Avio ® 550 Max fully simultaneous ICP-OES, demonstrating its excellent capability of accurate measurement of complex matrix samples.ExperimentalSample PreparationSamples consisted for NIST 173c Titanium Alloy UNS R56400 (National Institute of Standards and Technology, Bethesda, Maryland, USA) and an unknown Ti64 powder. NIST 173c was used for method development and accuracy validation; thecertified values are listed in Table 1.Calibration Standards PreparationAll the calibration standard solutions were prepared PerkinElmer single- and multi-element standard solutions, as well as theprepared 2.0 g/L Ti stock. The calibration standards were matrix-matched to the approximate levels of the major elements and contained 4500 ppm Ti, along with the analyte concentrations in Table 4, which were selected to match the expected concentrations in the Ti alloys.InstrumentationAll analyses were performed with the Avio 550 Max fullysimultaneous ICP-OES (PerkinElmer), which features a unique echelle optic and segmented-array charge coupled devicedetector (SCD)6, providing high-speed analysis and simultaneous measurements of all elements. The instrument’s proprietary Universal Data Acquisition (UDA)7 technology allows collection of all the spectral data for every sample in a single run, which provides flexibility of wavelength selection of all elements and simplifies method development. Plus, the combination of Flat Plate™ plasma technology 8 with vertical torch design enables the Avio to handle high matrix samples without large dilutions. And last, but certainly not least, the instrument’s dual plasma view 9 capability allows the measurement of major and minor elements in one method by setting the radial view for the determination of major elements, while axial view is used for minor elements due to its higher sensitivity.An HF-resistant nebulizer and spray chamber were used. Theinstrument's operating parameters, the wavelengths, plasma view, and background correction are listed in Tables 5 and 6. All data processing was done with Syngistix™ for ICP software.Results and DiscussionWhen analyzing metal samples, higher dilution is generally used to decrease matrix effects and spectral interferences. However, dilution also decreases the analyte concentration, which may make measurements of low-level analytes more difficult. In this work, the Ti alloy samples were diluted 200 times for analysis of all elements, from ppm to percent levels.200ppm V4500ppm Ti10ppm F e1ppm P d1ppm R u(a)(b)Figure 1. Spectra showing interferences of (a) 200 ppm V and 4500 ppm Ti on 1 ppm Pd 340.450 and (b) 10 ppm Fe on 1 ppm Ru 240.272.No MSFNo MSFMSF MSF(a)(b)Figure 2. Spectra of (a) Pd and (b) Ru spiked at 0.1 ppm in NIST CRM 173C, with (pink) and without (blue) MSF applied.To deal with spectral interferences caused by major elements, the Multicomponent Spectral Fitting (MSF) capability (includedin Syngistix software 10) was applied to Ru and Pd. Figure 1 shows the overlayed spectra of 1 ppm of Pd and Ru and the matrix elements: 4500 ppm Ti, 200 ppm V and 10 ppm Fe. By applying MSF, as shown in Figure 2, the spectral interferences were effectively removed, yielding an interference-free spectrum (pink), allowing accurate determination of Pd and Ru at very low concentration levels (0.1 mg/L).Excellent calibrations were obtained, with regression coefficients greater than 0.999 for all elements. The method detection limits (MDLs) were determined by analyzing 10 replicates of the 4500 mg/L Ti matrix blank solution. Figure 3 shows the reporting limits (LOR) in sample calculated as 3*MDL. The LORs are far below the lower limits specified on ASTM E2371-13, demonstrating the excellent sensitivity of theAccuracyTo verify the accuracy of the results, NIST CRM 173C wasprepared with both acid mixtures and analyzed. The results from the two digestion acid mixtures are compared in Figure 4 and show that all the elements were within ± 10% of the certified values, demonstrating that both acid mixtures are suited for the that the Avio 550 Max system is capable of measuring elements at low levels by using MSF to correct for spectral interferences.Figure 4. Recoveries for the certified elements in CRM 173c sample digested with Figure 5. Recoveries for the spiked elements in NIST 173c sample.ConclusionThe results presented here demonstrate the ability of Avio 550 Max fully simultaneous ICP-OES to analyze challenging Ti alloy samples. The Flat Plate plasma technology, vertical torch design and dual view enable the Avio 550 Max to perform this analysis and obtain excellent recoveries from a wide concentration range. Multicomponent Spectral Fitting (MSF) was successfully applied for spectral interference correction, ensuring accurate results for all elements with excellent recoveries.Figure 3. LOR of analytes in Ti alloy measured (blue) and specified in LOR measured LOR specified in ASTM 2371References1. Matthew J. Donachie, Jr., Titanium, a Technical Guide, 2000.2. https:///3. A STM E2371-13, Standard Test Method for Analysis of Titanium and Titanium Alloys by Direct Current Plasma and Inductively Coupled Plasma Atomic Emission Spectrometry.4. G B/T 4698-2019, Methods for chemical analysis of titanium sponge, titanium and titanium alloys.5. H B 7716 -2002, Spectrometric analysis of titanium alloys.6. “Avio 550/560 Max ICP-OES Optical System and SCD Detector”, Technical Note, PerkinElmer, 2020.7. “Universal Data Acquisition in Syngistix Software for Avio 550/560 Max ICP-OES”, Technical Note, PerkinElmer, 2020.8. “Flat Plate Plasma Technology on the Avio Max Series ICP-OES”, Technical Note, PerkinElmer, 2020.9. “Vertical Dual View on the Avio Max Series ICP-OES”, Technical Note, PerkinElmer, 2020.10. “Multicomponent Spectral Fitting”, Technical Note,PerkinElmer, 2017.Consumables UsedFor a complete listing of our global offices, visit /ContactUsCopyright ©2023, PerkinElmer U.S. LLC. All rights reserved. PerkinElmer ® is a registered trademark of PerkinElmer U.S. LLC. All other trademarks are the property of their respective owners.PerkinElmer U.S. LLC 710 Bridgeport Ave.Shelton, CT 06484-4794 USA (+1) 855-726-9377。

钛合金检验标准

钛合金检验标准

钛合金检验标准钛合金是一种重要的金属材料,广泛应用于航空、航天、医疗、化工等领域。

以下是一些与钛合金检验相关的常见标准,这些标准通常由国际或国家标准化组织制定:1. ASTM标准:- ASTM B265 - 20a《无缝和焊接的钛和钛合金薄板、薄片和箔》(Standard Specification for Titanium and Titanium Alloy Strip, Sheet, and Plate)- ASTM B348 - 20《锻制和热处理的钛和钛合金条、棒、线》(Standard Specification for Titanium and Titanium Alloy Bars and Billets)- ASTM E165 - 12(2017)《固溶热处理的金属光谱分析》(Standard Practice for Liquid Penetrant Examination for General Industry)2. ISO标准:- ISO 5832-2:2016《外科植入物. 钛及钛合金》(Implants for surgery -- Metallic materials -- Part 2: Unalloyed titanium)- ISO 6892-1:2019《金属材料的拉伸试验. 第1部分:试验方法》(Metallic materials -- Tensile testing -- Part 1: Method of test at room temperature)3. ASME标准:- ASME SB-265《无缝和焊接的钛和钛合金薄板、薄片和箔》(Specification for Seamless and Welded Titanium and Titanium Alloy Condenser and Heat Exchanger Tubes With Integral Fins)4. 中国标准(GB):- GB/T 3620.1-2007《钛和钛合金化学分析方法第1部分:钛量测定》(Chemical analysis methods of titanium and titanium alloys - Part 1: Determination of titanium content)- GB/T 3620.2-2007《钛和钛合金化学分析方法第2部分:钛铁、铝、钒、铬、锰、硅、锆含量的测定》(Chemical analysis methods of titanium and titanium alloys - Part 2: Determination of iron, aluminium, vanadium, chromium, manganese, silicon and zirconium content)这些标准覆盖了钛合金的不同方面,包括化学成分、机械性能、热处理、金相组织、检验方法等。

镁、钛工业污染物排放标准

镁、钛工业污染物排放标准

中华人民共和国国家标准GB 25468—2010镁、钛工业污染物排放标准Emission standard of pollutants for magnesium and titanium industry2010-09-27发布 2010-10-01实施环境保护部G B 25468—2010中华人民共和国国家标准 镁、钛工业污染物排放标准GB 25468—2010*中国环境科学出版社出版发行(100062 北京东城区广渠门内大街16号)网址:电话:010-******** 北京市联华印刷厂印刷 版权所有 违者必究*2010年11月第 1 版 开本 880×1230 1/16 2010年11月第1次印刷 印张 1字数 40千字统一书号:135111·104定价:15.00元中华人民共和国环境保护部公告2010年第71号为贯彻《中华人民共和国环境保护法》、《中华人民共和国水污染防治法》和《中华人民共和国大气污染防治法》,防治污染,保护和改善生态环境,保障人体健康,现批准《淀粉工业水污染物排放标准》等8项标准为国家污染物排放标准,并由我部与国家质量监督检验检疫总局联合发布。

标准名称、编号如下:一、淀粉工业水污染物排放标准(GB 25461—2010)二、酵母工业水污染物排放标准(GB 25462—2010)三、油墨工业水污染物排放标准(GB 25463—2010)四、陶瓷工业污染物排放标准(GB 25464—2010)五、铝工业污染物排放标准(GB 25465—2010)六、铅、锌工业污染物排放标准(GB 25466—2010)七、铜、镍、钴工业污染物排放标准(GB 25467—2010)八、镁、钛工业污染物排放标准(GB 25468—2010)按有关法律规定,以上标准具有强制执行的效力。

以上标准自2010年10月1日起实施。

以上标准由中国环境科学出版社出版,标准内容可在环境保护部网站()查询。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Titanium China Industry, before 2005, "less titanium." Since 2010, "Titanium left."
Titanium China Industry, 2015, "Titanium difficult", but in the "Titanium difficult" to gradually move toward high-end "Titanium good", if "13th Five-Year" to further enhance the "titanium excellent", this is " Strength.In any case, the great development of China's titanium industry in the past 10 years has been written in the calendar of the 12th Five-Year Plan. The entry into the 13th Five-Year Plan for the development of China's titanium industry is good but it also faces difficulties and challenges. We must correctly analyze the causes of overcapacity, such as the reasons for the overcapacity being structural, institutional and supply-side.
Titanium industry should bravely face the difficulties, resolve excess capacity, and strive to restructuring and upgrading, improve quality and efficiency, solidly onto the healthy, scientific and sustainable development of a new level.
Titanium China has now been vigorously developed and applied, and has also been popularized. Titanium and its titanium compounds are widely used in the fields of aircraft, rockets, missiles, satellites, spacecraft, naval vessels, military, medical and petrochemical industries .
We Hagrien Industrial Co.Ltd to customers custom production of titanium products, titanium parts processing also has many years of experience, so we can rest assured that the Chinese titanium enterprises preferred us Hagrien.
Titanium parts processing
1. Provide drawings: size specifications, material requirements, precision requirements, the number of processing, processing time.
2. Sample processing: reference size, reference material, design drawings, precision requirements, the number of processing, processing time.。

相关文档
最新文档