指数与指数函数题型归纳(非常全)

合集下载

指数与指数函数知识点与题型归纳

指数与指数函数知识点与题型归纳

指数与指数函数知识点与题型归纳1.根式(1)根式的概念:若x n =a ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.式子na 叫做根式,这里n 叫做根指数,a 叫做被开方数.(2)a 的n 次方根的表示;x n=a ⇒⎩⎨⎧x = n a (当n 为奇数且n >1时),x =±n a (当n 为偶数且n >1时).2.有理数指数幂3a 变化对图象的影响 在第一象限内,从逆时针方向看图象,a 逐渐增大;在第二象限内,从逆时针方向看图象,a 逐渐减小.(1)画指数函数图象的三个关键点画指数函数y =a x (a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎪⎭⎫ ⎝⎛-a 1,1. (2)指数函数的图象与底数大小的比较如图是指数函数(1)y =a x ,(2)y =b x ,(3)y =c x ,(4)y =d x 的图象, 底数a ,b ,c ,d 与1之间的大小关系为c >d >1>a >b .由此我们可得到以下规律:在y 轴右(左)侧图象越高(低),其底数越大.(3)指数函数y =a x (a >0,a ≠1)的图像和性质跟a 的取值有关,要特别注意应分a >1与0<a <1来研究.题型一 指数幂的化简与求值1.化简3a a 的结果是________.2.若(2a -1)2=3(1-2a )3,则实数a 的取值范围为________. 3.=+3-2-233___________4.已知24714===cba,则cb a 111+-=________. 5. 已知14x x-+=,求1122x x -+及1x x --的值.题型二 指数函数的图象及应用类型一 与指数函数有关的图象辨析 6.函数|1|--=x ey |的大致图象是( )7.函数||1)(x e x f -=的图象大致是( )8.函数12+=x y 的图象是________(填序号).类型二 指数函数图象的应用9.函数b a y x-=(a >0且a ≠1)的图象经过第二、三、四象限,则a b 的取值范围为( )A .(1,+∞)B .(0,+∞)C .(0,1)D .无法确定 10.函数33+=-x ay (a >0,且a ≠1)的图象过定点________.11. 若曲线13-=x y 与直线y =m 有两个不同交点,则实数m 的取值范围是________. 12.若条件变为:方程m x =-13||有两个不同实根,则实数m 的取值范围是________.13.若条件变为:函数m 13+-=x y 的图像不经过第二象限,则实数m 的取值范围是________. 14.函数xa y =(a >0且a ≠1)与函数y =(a -1)x 2-2x -1在同一个坐标系内的图象可能是( )15.已知函数xa y ⎪⎭⎫ ⎝⎛-=421的图象与指数函数xa y =的图象关于y 轴对称,则实数a 的值是___16.设函数⎩⎨⎧>≤+=0,20,1)(x x x x f x,则满足1)1()(>-+x f x f 的x 的取值范围是________. 17.已知实数a ,b 满足等式ba20202019=,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中不可能成立的关系式有________(填序号). 18.设2m =3n ,则m ,n 的大小关系一定是( )A .m >nB .m <nC .m ≥nD .以上答案都不对题型三 指数函数的性质及应用类型一 比较指数式大小19.已知2.12=a ,2.021-⎪⎭⎫⎝⎛=b ,2log 25=c ,则a ,b ,c 的大小关系为( )A .b <a <cB .c <a <bC .c <b <aD .b <c <a 20.已知xxx f --=22)(,4197-⎪⎭⎫ ⎝⎛=a ,5179⎪⎭⎫⎝⎛=b ,97log 2=c ,则f (a ),f (b ),f (c )的大小关系为( )A .f (b )<f (a )<f (c )B .f (c )<f (b )<f (a )C .f (c )<f (a )<f (b )D .f (b )<f (c )<f (a ) 21.设函数axx f -=2)(与xa x g =)((a >1且a ≠2)在区间(0,+∞)上具有不同的单调性,则M =(a -1)0.2与1.01⎪⎭⎫⎝⎛=a N 的大小关系是( )A .M =NB .M ≤NC .M <ND .M >N 类型二 解不等式与方程 22.不等式1472-->x x a a(0<a <1)的解集为____________.23.设函数⎪⎩⎪⎨⎧≥<-⎪⎭⎫ ⎝⎛=0,0,721)(x x x x f x,若1)(<a f ,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)24.当x ∈(-∞,-1]时,不等式024)(2<-⋅-xxm m 恒成立,则实数m 的取值范围是( )A .(-2,1)B .(-4,3)C .(-3,4)D .(-1,2) 25.方程11214=-+xx 的解为________.26. 若不等式0421>⋅++a xx在x ∈(-∞,1]时恒成立,则实数a 的取值范围是________.类型三 与指数函数有关的函数最值问题 27.函数y =3x 2-2x的值域为________.28.函数12221)(++-⎪⎭⎫ ⎝⎛=x x x f 的递减区间是________,值域是________.29.函数12141+⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=xxy 在区间[-3,2]上的值域是________.类型四 与指数函数有关的函数单调性问题 30. 函数124)(+-=x xx f 的单调增区间是________.31. 已知函数|2|2)(m x x f -=(m 为常数),若f (x )在区间[2,+∞)上单调递增,则m 的取值范围是________. 32.函数221)(x x x f -⎪⎭⎫⎝⎛=的单调递增区间是( )A.⎥⎦⎤ ⎝⎛∞-21, B.⎥⎦⎤⎢⎣⎡21,0 C.⎪⎭⎫⎢⎣⎡+∞,21D.⎥⎦⎤⎢⎣⎡1,2133.若函数f (x )=a |2x -4|(a >0,且a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]34.设xe xf =)(,0<a <b ,若()ab fp =,⎪⎭⎫⎝⎛+=2b a f q ,)()(b f a f r =,则下列关系式中正确的是( )A .q =r <pB .p =r <qC .q =r >pD .p =r >q35.若函数f (x )=a x (a x -3a 2-1)(a >0,且a ≠1)在区间[0,+∞)上是增函数,则实数a 的取值范围是( )A.⎥⎦⎤⎝⎛32,0 B.⎪⎪⎭⎫⎢⎣⎡1,33 C .(]3,1 D.⎪⎭⎫⎢⎣⎡+∞,23 36.已知定义域为R 的函数abx f x x ++-=+122)(是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式0)2()2(22<-+-k t f t t f 恒成立,求k 的取值范围.37.已知函数3241)(1+-=-x x x f λ(-1≤x ≤2). (1)若23=λ,求函数)(x f 的值域; (2)若函数)(x f 的最小值是1,求实数λ的值.38.函数()4426xx f x +=--,其中[]0,3x ∈(1)求()f x 的最大值与最小值;(2)若存在[]00,3x ∈使()00f x a -≤成立,求实数a 的范围.39.设指数函数xm x f )2()(+=,幂函数32)1()(x m m x g ++=. (1)求m ;(2)设a <0,如果存在x 1,x 2∈[﹣2,2],使得)()(21x g x af >,求a 的取值范围.2.解析:2a -12=|2a -1|,31-2a3=1-2a .因为|2a -1|=1-2a .故2a -1≤0,所以a ≤12.3.解析:原式22(33)2(33)2(33)3324232(31)+++===-----22(33)2(1263)2266(33)(33)+===-+4.解析:由题设可得21a =14,21b=7,21c =4,则2-11a b=147=2,∴2-+111a b c =2×4=23,∴1a -1b +1c =3.5.解析:因为14x x-+=,所以 x >0,则112122()2426x x x x --+=++=+=,则11226x x-+=因为 1222()216x x x x --+=++=,则2214x x -+=,所以 1222()214212x x x x ---=+-=-=,所以11223x x--==±6.解析:因为-|x -1|≤0,所以0<e -|x -1|≤e 0,即0<y =e-|x -1|≤1,故选B.7.解析:选A 由f (x )=1-e |x |是偶函数,其图象关于y 轴对称,排除B 、D.又e |x |≥1,所以f (x )的值域为 (-∞,0],排除C.8.解析:由y =2x 的图象向左平移1个单位可得y =2x+1的图象.答案:①9.解析:因为函数y =a x -b 的图象经过第二、三、四象限,所以函数y =a x -b 单调递减且其图象与y 轴的交点在y 轴的负半轴上.令x =0,则y =a 0-b =1-b ,由题意得⎩⎪⎨⎪⎧ 0<a <1,1-b <0,解得⎩⎪⎨⎪⎧0<a <1,b >1,故a b ∴(0,1),故选C.10.解析:因为指数函数y =a x (a >0,且a ≠1)的图象过定点(0,1),所以在函数y =a x -3+3中, 令x -3=0,得x =3,此时y =1+3=4,即函数y =a x -3+3的图象过定点(3,4).11.解析:曲线y =|3x -1|的图像是由函数y =3x 的图像向下平移一个单位长度后,再把位于x 轴下方的图像沿x 轴翻折到x 轴上方得到的,而直线y =m 的图像是平行于x 轴的一条直线,它的图像如图所示,由图像可得,如果曲线y =|3x -1|与直线y =m 有两个公共点,则m 的取值范围是(0,1).12.解析:作出函数y =3|x |-1与y =m 的图像如图所示,数形结合可得m 的取值范围是(0,+∞).]13.解析:作出函数y =|3x -1|+m 的图像如图所示.由图像知m ≤-1,即m ∴(-∞,-1].14.解析:选C ;两个函数分别为指数函数和二次函数,其中二次函数过点(0,-1),故排除A 、D ;二次函数的对称轴为直线x =1a -1,当0<a <1时,指数函数递减,1a -1<0,C 符合题意;当a >1时,指数函数递增,1a -1>0,B 不符合题意,选C. 15.解析:由两函数的图象关于y 轴对称,可知12a -4与a 互为倒数,即a2a -4=1,解得a =4.16.解析:画出函数f (x )的大致图象如图所示,易知函数f (x )在(-∞,+∞)上单调递增.又x >x -1,且x -(x -1)=1,f (0)=1,所以要使f (x )+f (x -1)>1成立,结合函数f (x )的图象知只需x -1>-1,解得x >0.故所求x 的取值范围是(0,+∞).17.解析:作出y =2 019x 及y =2 020x 的图像如图所示,由图可知a >b >0,a =b =0或a <b <0时,有2 019a =2 020b ,故③④不可能成立.18.解:当m >n 时,因为函数y =2x 在R 上单调递增,所以2m =3n >2n ,所以()n >1,所以m >n >0, 当m =n 时,()n =1,所以m =n =0,当m <n 时,因为函数y =2x 在R 上单调递增,所以2m =3n <2n , 所以()n <1,所以n <0,则m <n <0,故选:D .19.解析:因为2.021-⎪⎭⎫⎝⎛=b =20.2<21.2=a ,所以a>b>1.又因为c =2log 52=log 54<1,所以c<b<a.选C20.解析:易知f(x)=2x -2-x 在R 上为增函数,又0797997514141>=⎪⎭⎫⎝⎛>⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=-b a ,c =log 279<0, 则a>b>c ,所以f(c)<f(b)<f(a). 21.因为f (x )=x 2-a与g (x )=a x (a >1且a ≠2)在区间(0,+∞)上具有不同的单调性,所以a >2,所以M =(a -1)0.2>1,111.0<⎪⎭⎫⎝⎛=a N ,所以M >N .故选D.22.解析:因为y =a x (0<a <1)为减函数,所以2x -7<4x -1,解得x >-3;答案为(-3,+∞)点评:(1)a f(x)=a g(x)⇔f(x)=g(x).(2)a f(x)>a g(x),当a >1时,等价于f(x)>g(x);当0<a <1时,等价于f(x)<g(x).23.解析:当a <0时,不等式f (a )<1可化为1721<-⎪⎭⎫ ⎝⎛a ,即821<⎪⎭⎫ ⎝⎛a ,即32121-⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛a ,因为0<12<1,所以a>-3,此时-3<a<0;当a≥0时,不等式f(a)<1可化为a<1,所以0≤a<1. 故a 的取值范围是(-3,1).24.解析:因为(m 2-m )·4x -2x <0在(-∞,-1]上恒成立.所以(m 2-m )<12x 在x ∴(-∞,-1]上恒成立.因为y =12x 在(-∞,-1]上单调递减,所以当x ∴(-∞,-1]时,y =12x ≥2,所以m 2-m <2,所以-1<m <2.选D25.解析:当x ≥0时,原方程化为4x +2x -12=0,即(2x )2+2x -12=0.∴(2x -3)(2x +4)=0,所以2x =3,即x =log 23.当x <0时,原方程化为4x -2x -10=0.令t =2x ,则t 2-t -10=0(0<t <1).由求根公式得t =1±1+402均不符合题意,故x <0时,方程无解.26.解析:从已知不等式中分离出实数a ,得⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛->x x a 2141.因为函数x y ⎪⎭⎫ ⎝⎛=41和xy ⎪⎭⎫⎝⎛=21在R 上都是减函数,所以当x ∴(-∞,1]时,4141≥⎪⎭⎫ ⎝⎛x,2121≥⎪⎭⎫ ⎝⎛x,所以4321412141=+≥⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛xx,从而得432141-≤⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-x x .故实数a 的取值范围为a >-34.即⎪⎭⎫⎝⎛+∞-,4327.解析:设u =x 2-2x ,则y =3u ,u =x 2-2x =(x -1)2-1≥-1,所以y =3u ≥3-1=13,所以函数y =3x 2-2x 的值域是⎪⎭⎫⎢⎣⎡+∞,31.28.解析:令u =-x 2+2x +1,则u =-(x -1)2+2.又uy ⎪⎭⎫ ⎝⎛=21在R 上是减函数,则函数12221)(+=-⎪⎭⎫ ⎝⎛=x x x f 的递减区间为函数u =-x 2+2x +1的增区间.由此函数f (x )的递减区间为(-∞,1].因为u ≤2,则4121)(2=⎪⎭⎫⎝⎛≥x f ,即函数f (x )的值域为⎪⎭⎫⎢⎣⎡+∞,41。

专题09 指数与指数函数(学生版)高中数学53个题型归纳与方法技巧总结篇

专题09 指数与指数函数(学生版)高中数学53个题型归纳与方法技巧总结篇

【考点预测】1.指数及指数运算(1)高中数学53个题型归纳与方法技巧总结篇专题09指数与指数函数根式的定义:一般地,如果n x a =,那么x 叫做a 的n 次方根,其中(1n >,)n N *∈,n 称为根指数,a 称为根底数.(2)根式的性质:当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.当n 为偶数时,正数的n 次方根有两个,它们互为相反数.(3)指数的概念:指数是幂运算(0)n a a ≠中的一个参数,a 为底数,n 为指数,指数位于底数的右上角,幂运算表示指数个底数相乘.(4)有理数指数幂的分类①正整数指数幂()n n a a a a a n N *=⋅⋅⋅⋅∈个;②零指数幂01(0)a a =≠;③负整数指数幂1(0nn aa a-=≠,)n N *∈;④0的正分数指数幂等于0,0的负分数指数幂没有意义.(5)有理数指数幂的性质①+(0m n m n a a a a >=,m ,)n Q ∈;②()(0m n m n a a a >=,m ,)n Q ∈;③()(0mm mab a a b >=,0b >,)m Q ∈(0mn a a >=,m ,)n Q ∈.2.指数函数⑥既不是奇函数,也不是偶函数【方法技巧与总结】1.指数函数常用技巧(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论.(2)当01a <<时,x →+∞,0y →;a 的值越小,图象越靠近y 轴,递减的速度越快.当1a >时x →+∞,0y →;a 的值越大,图象越靠近y 轴,递增速度越快.(3)指数函数x y a =与1()xy a=的图象关于y 轴对称.【题型归纳目录】题型一:指数运算及指数方程、指数不等式题型二:指数函数的图像及性质题型三:指数函数中的恒成立问题题型四:指数函数的综合问题【典例例题】题型一:指数运算及指数方程、指数不等式例1.(2022·四川凉山·三模(文))计算:)2ln31e 1lg 4lg 0.254-⎛⎫+-++= ⎪⎝⎭______.例2.(2022·河北邯郸·一模)不等式10631x x x --≥的解集为___________.例3.(2022·陕西·榆林市教育科学研究所模拟预测(理))甲、乙两人解关于x 的方程220x x b c -+⋅+=,甲写错了常数b ,得到的根为2x =-或x =217log 4,乙写错了常数c ,得到的根为0x =或1x =,则原方程的根是()A .2x =-或2log 3x =B .1x =-或1x =C .0x =或2x =D .1x =-或2x =例4.(2022·全国·高三专题练习(文))已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()4322x x f x a =-⨯+.则关于x 的不等式()6f x ≤-的解集为()A .(,2]-∞-B .(,1]-∞-C .[)()2,00,2- D .[)()2,02,-⋃+∞例5.(2022·全国·高三专题练习)化简:(1)126016(2018)449-⎛⎫+--⨯ ⎪⎝⎭(2111332ab a b -⎫⎪⎭a >0,b >0).(3)312211122211111a a aa a a a a -+--++++-.【方法技巧与总结】利用指数的运算性质解题.对于形如()f x a b =,()f x a b >,()f x a b <的形式常用“化同底”转化,再利用指数函数单调性解决;或用“取对数”的方法求解.形如20xx a Ba C ++=或2)00(x x a Ba C ++ 的形式,可借助换元法转化二次方程或二次不等式求解.题型二:指数函数的图像及性质例6.(2022·浙江绍兴·模拟预测)函数2()()-+=-x xx m f x a a ,的图象如图所示,则()A .0,01<<<m aB .0,1<>m aC .0,01m a ><<D .0,1>>m a 例7.(2022·全国·高三专题练习)函数()21xf x m =--恰有一个零点,则m 的取值范围是()A .()1,+∞B .{}()01,∞⋃+C .{}[)01,∞⋃+D .[)1,+∞例8.(2022·四川省泸县第二中学模拟预测(文))函数()11e xf x -=+,下列关于函数()f x 的说法错误的是()A .函数()f x 的图象关于原点对称B .函数()f x 的值域为()0,1C .不等式()12f x >的解集是()0,∞+D .()f x 是增函数例9.(2022·河南·三模(文))已知()1f x -为定义在R 上的奇函数,()10f =,且()f x 在[)1,0-上单调递增,在[)0,∞+上单调递减,则不等式()250xf -<的解集为()A .()22,log 6B .()()2,12,log 6-∞⋃C .()2log 6,+∞D .()()21,2log 6,⋃+∞例10.(2022·新疆阿勒泰·三模(理))函数11x y a -=+图象过定点A ,点A 在直线()31,0mx ny m n +=>>上,则121m n+-最小值为___________.例11.(2022·北京·高三专题练习)已知()212221x x xf x a +=+-+(其中a R ∈且a 为常数)有两个零点,则实数a 的取值范围是___________.例12.(2022·全国·高三专题练习)已知函数()22x x f x k -=+⋅(k 为常数,k ∈R )是R 上的奇函数.(1)求实数k 的值;(2)若函数()y f x =在区间[]1,m 上的值域为15,4n ⎡⎤⎢⎥⎣⎦,求m n +的值.【方法技巧与总结】解决指数函数有关问题,思路是从它们的图像与性质考虑,按照数形结合的思路分析,从图像与性质找到解题的突破口,但要注意底数对问题的影响.题型三:指数函数中的恒成立问题例13.(2022·北京·高三专题练习)设()f x 是定义在R 上的偶函数,且当0x ≤时,()2xf x -=,若对任意的[],1x m m ∈+,不等式()()2f x f x m -≥恒成立,则正数m 的取值范围为()A .m 1≥B .1mC .01m <<D .01m <≤例14.(2022·北京·高三专题练习)已知函数()33x xf x -=-.(1)利用函数单调性的定义证明()f x 是单调递增函数;(2)若对任意[]1,1x ∈-,()()24f x mf x ⎡⎤+≥-⎣⎦恒成立,求实数m 的取值范围.例15.(2022·全国·高三专题练习(文))已知函数()3(21xf x a a =-+为实常数).(1)讨论函数()f x 的奇偶性,并说明理由;(2)当()f x 为奇函数时,对任意[]1,6x ∈,不等式()2xuf x ≥恒成立,求实数u 的最大值.例16.(2022·全国·高三专题练习(文))已知函数1()421x x f x a +=-+ .(1)若函数()f x 在[0x ∈,2]上有最大值8-,求实数a 的值;(2)若方程()0f x =在[1x ∈-,2]上有解,求实数a 的取值范围.例17.(2022·全国·高三专题练习)已知函数2()f x x =,1()2xg x m⎛⎫=- ⎪⎝⎭(1)当[1,3]x ∈-时,求()f x 的值域;(2)若对[]0,2x ∀∈,()1g x 成立,求实数m 的取值范围;(3)若对[]10,2x ∀∈,2[1,3]x ∃∈-,使得12()()g x f x 成立,求实数m 的取值范围.【方法技巧与总结】已知不等式能恒成立求参数值(取值范围)问题常用的方法:(1)函数法:讨论参数范围,借助函数单调性求解;(2)分离参数法:先将参数分离,转化成求函数的值域或最值问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.题型四:指数函数的综合问题例18.(2022·天津河西·二模)已知定义在R 上的函数()f x 满足:①()2()0f x f x -+=;②()()20f x f x ---=;③在[]1,1-上的解析式为()[](]πcos ,1,021,0,1x x f x x x ⎧∈-⎪=⎨⎪-∈⎩,则函数()f x 与函数1()2xg x ⎛⎫= ⎪⎝⎭的图象在区间[]3,3-上的交点个数为()A .3B .4C .5D .6例19.(2022·北京·二模)若函数()()223,02,0xx f x x x a⎧+≤⎪=⎨-<≤⎪⎩的定义域和值域的交集为空集,则正数a 的取值范围是()A .(]0,1B .()0,1C .()1,4D .()2,4例20.(2022·甘肃省武威第一中学模拟预测(文))已知函数()4sin 22x x f x =++,则124043202220222022f f f ⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭______.例21.(2022·全国·高三专题练习)已知函数()f x 的定义域为R ,满足()()121f x f x +=-,且当(]1,1x ∈-时,()12x f x -=,则()2020f =______.例22.(2022·辽宁·建平县实验中学模拟预测)已知函数()221010,231,2x x x f x x x --⎧-≤⎪=⎨-->⎪⎩,则不等式()()10f x f x +-<的解集为___________.例23.(2022·江西·二模(文))设函数()2,111,12x a x f x x x --⎧≤⎪=⎨-+>⎪⎩,若()1f 是函数()f x 的最大值,则实数a 的取值范围为_______.【过关测试】一、单选题1.(2022·北京通州·模拟预测)已知函数1()33xxf x ⎛⎫=- ⎪⎝⎭,则()f x ()A .是偶函数,且在R 是单调递增B .是奇函数,且在R 是单调递增C .是偶函数,且在R 是单调递减D .是奇函数,且在R 是单调递减2.(2022·安徽淮南·二模(理))1947年,生物学家Max Kleiber 发表了一篇题为《body size and metabolicrate 》的论文,在论文中提出了一个克莱伯定律:对于哺乳动物,其基础代谢率与体重的34次幂成正比,即340F c M =,其中F 为基础代谢率,M 为体重.若某哺乳动物经过一段时间生长,其体重为原来的10倍,则基础代谢率1.7783≈)()A .5.4倍B .5.5倍C .5.6倍D .5.7倍3.(2022·陕西·西安中学模拟预测(文))英国著名数学家布鲁克-泰勒以微积分学中将函数展开成无穷级数的定理著称于世.在数学中,泰勒级数用无限连加式来表示一个函数,泰勒提出了适用于所有函数的泰勒级数,并建立了如下指数函数公式:23e 126!nxx x x x n =+++++++ ,其中R,N x n ∈∈的近似值为(精确到0.01)()A .1.63B .1.64C .1.65D .1.664.(2022·河南洛阳·二模(文))已知函数()()1331,1log 52,1x x f x x x +⎧-≥⎪=⎨-+-<⎪⎩,且()2f m =-,则()6f m +=()A .26B .16C .-16D .-265.(2022·四川成都·三模(理))若函数()9x f x =0x ,则()0091xx -=().A .13B .1CD .26.(2022·河南·开封高中模拟预测(文))若关于x 的不等式()221xxa x ⋅>+∈R 有实数解,则实数a 的取值范围是()A .()1,+∞B .()2,+∞C .[)1,+∞D .[)2,+∞7.(2022·四川·内江市教育科学研究所三模(理))已知函数()f x 满足:对任意x ∈R ,1122f x f x ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭.当[1,0)x ∈-时,()31x f x =-,则()3log 90=f ()A .19B .19-C .1727D .1727-8.(2022·上海宝山·二模)关于函数131()(22xx f x x =-⋅和实数,m n 的下列结论中正确的是()A .若3m n -<<,则()()f m f n <B .若0m n <<,则()()f m f n <C .若()()f m f n <,则22m n <D .若()()f m f n <,则33m n <二、多选题9.(2022·湖南·模拟预测)在同一直角坐标系中,函数x y a =与()log 2a y x =-的图象可能是()A .B .C .D .10.(2022·全国·模拟预测)已知0a b >>,下列选项中正确的为()A 1=,则1a b -<B .若221a b -=,则1a b -<C .若22=1a b -,则1a b -<D .若22log log 1a b -=,则1a b -<11.(2022·广东肇庆·模拟预测)若a b >,则下列不等式中正确的有()A .0a b ->B .22a b>C .ac bc>D .22a b >12.(2022·全国·模拟预测)已知函数14sin ,01()2,1x x x f x x x -<≤⎧=⎨+>⎩,若存在三个实数,使得()()()123f x f x f x ==,则()A .123x x x ++的取值范围为()2,3B .()23x f x 的取值范围为5,23⎛⎫ ⎪⎝⎭C .123x x x 的取值范围为51,362⎛⎫⎪⎝⎭D .()13x f x 的取值范围为1,23⎛⎫⎪⎝⎭三、填空题13.(2022·安徽淮北·一模(理))2log142-⎛⎫++= ⎪⎝⎭___________.14.(2022·四川·模拟预测(理))已知两个条件:①,,()()()a b f a b f a f b ∈+=⋅R ;②()f x 在(0,)+∞上单调递减.请写出一个同时满足以上两个条件的函数____________.15.(2022·河南·模拟预测(文))函数()1423x x f x +=-+在1,2⎛⎤-∞ ⎥⎝⎦的值域为______.16.(2022·山西·二模(理))已知函数()322x xx f x -=-给出下列结论:①()f x 是偶函数;②()f x 在()0, +上是增函数;③若0t >,则点()(),t f t 与原点连线的斜率恒为正.其中正确结论的序号为______.四、解答题17.(2022·全国·高三专题练习)由于突发短时强降雨,某小区地下车库流入大量雨水.从雨水开始流入地下车库时进行监测,已知雨水流入过程中,地下车库积水量y (单位:3m )与时间t (单位:h )成正比,雨停后,消防部门立即使用抽水机进行排水,此时y 与t 的函数关系式为25ty k ⎛⎫=⨯ ⎪⎝⎭(k 为常数),如图所示.(1)求y 关于t 的函数关系式;(2)已知该地下车库的面积为25602m ,当积水深度小于等于0.05m 时,小区居民方可入内,那么从消防部门开始排水时算起,至少需要经过几个小时以后,小区居民才能进入地下车库?18.(2022·全国·高三专题练习)(1)计算:1294⎛⎫- ⎪⎝⎭(﹣9.6)0﹣22327283--⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭;(2)已知1122a a-+=3,求22112a a a a --++++的值.19.(2022·全国·高三专题练习)已知a >0,且a ≠1,若函数y =|ax -2|与y =3a 的图象有两个交点,求实数a 的取值范围.20.(2022·全国·高三专题练习)设函数()(0x x f x ka a a -=->且1)a ≠是定义域为R 的奇函数;(1)若()10f >,判断()f x 的单调性并求不等式(2)(4)0f x f x ++->的解集;(2)若()312f =,且22()4()x xg x a a f x -=+-,求()g x 在[1,)+∞上的最小值.21.(2022·北京·高三专题练习)定义在D 上的函数()f x ,如果满足:对任意,x D ∈存在常数0,M >都有()M f x M -≤≤成立,则称()f x 是D 上的有界函数,其中M 称为函数()f x 的上界.已知()422x x f x a =+⋅-.(1)当2a =-时,求函数()f x 在()0,∞+上的值域,并判断函数()f x 在()0,∞+上是否为有界函数﹐请说明理由﹔(2)若函数()f x 在(),0-∞上是以2为上界的有界函数,求实数a 的取值范围.22.(2022·全国·高三专题练习)已知函数()(0,0,1,1)x x f x a b a b a b =+>>≠≠.(1)设12,2a b ==,求方程()2f x =的根;(2)设12,2a b ==,若对任意x ∈R ,不等式()()26f x f x m ≥-恒成立,求实数m 的最大值;(3)若01,1a b <<>,函数()()2g x f x =-有且只有1个零点,求ab 的值.。

指数函数的性质及常考题型(含解析)

指数函数的性质及常考题型(含解析)
故选:A.
【变式 1-2】下列函数:① = 3 ;② = 6 ;③ = 6 ⋅ 2 ;④ = 8 + 1;⑤ = −6 .
其中一定为指数函数的有(
A.0 个

B.1 个
C.2 个
D.3 个
【解题思路】根据指数函数的定义判断即可;
【解答过程】解:形如 =
( > 0且 ≠ 1)为指数函数,其解析式需满足①底数为大于




如图是指数函数(1)y=ax,
(2)y=bx,
(3)y=cx,(4)y=dx 的图象,底数 a,b,c,
d 与 1 之间的大小关系为 c>d>1>a>b.
由此我们可得到以下规律:在 y 轴右(左)侧图象越高(低),其底数越大.
3.比较指数幂的大小的方法
比较指数幂的大小的方法(分三种情况)

(1)底数相同,指数不同:利用指数函数的单调性来判断;




【变式 5-2】已知函数() = ⋅ 的图像经过点(1,2),(2,4).

(1)求()的解析式;

(2)解不等式( + 3) > (4).







【变式 5-3】已知函数() = + (0 < < 1)的图象经过点(0, −1).
(1)求实数 b;
B.0 < < 1,0 < < 1

C.0 < < 1, > 1
D. > 1,0 < < 1


【变式 6-2】如图中,①②③④中不属于函数 = 3 , = 2 , =

指数运算与指数函数专题(含详细解析)

指数运算与指数函数专题(含详细解析)

1第五讲 指数运算与指数函数时间: 年 月 日 刘满江老师 学生签名:一、 兴趣导入二、 学前测试1. 已知0a >,函数2()f x ax bx c =++,若0x 满足关于x 的方程20ax b +=,则下列选项的命题中为假命题的是(A )0,()()x R f x f x ∃∈≤ (B )0,()()x R f x f x ∃∈≥ (C ) 0,()()x R f x f x ∀∈≤ (D )0,()()x R f x f x ∀∈≥ 解析:选C.函数()f x 的最小值是0()()2bf f x a-= 等价于0,()()x R f x f x ∀∈≥,所以命题C 错误.2. 如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t 时刻五角星露出水面部分的图形面积为()()()00S t S =,则导函数()'y S t =的图像大致为【答案】A【解析】本题考查函数图像、导数图、导数的实际意义等知识,重点考查的是对数学的探究能力和应用能力。

最初零时刻和最后终点时刻没有变化,导数取零,排除C ;总面积一直保持增加,没有负的改变量,排除B ;考察A 、D 的差异在于两肩位置的改变是否平滑,考虑到导数的意义,判断此时面积改变为突变,2产生中断,选择A 。

三、 方法培养1.根式的概念结论:当n 是奇数时,a a n n =,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a n n2.分数指数幂)1,,,0(*>∈>=n N n m a a an m nm )1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义 3.有理指数幂的运算性质 (1)r a ·s r sa a+=),,0(Q s r a ∈>; (2)rs s r a a =)(),,0(Q s r a ∈>;(3)()rrsab a a =),0,0(Q r b a ∈>>. 指数函数的概念一般地,函数)1a ,0a (a y x≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:○1 指数函数的定义是一个形式定义 ○2 注意指数函数的底数的取值范围,底数为什么不能是负数、零和1.(三)指数函数的图象和性质注意内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性. 指数函数的图象如右图: 图象特征函数性质1a > 1a 0<< 1a > 1a 0<<向x 、y 轴正负方向无限延伸 函数的定义域为R 图象关于原点和y 轴不对称 非奇非偶函数 函数图象都在x 轴上方 函数的值域为R +函数图象都过定点(0,1)1a 0=自左向右看, 图象逐渐上升 自左向右看, 图象逐渐下降 增函数减函数在第一象限内的图象纵坐标都大于1 在第一象限内的图象纵坐标都小于11a ,0x x >> 1a ,0x x <> 在第二象限内的图象纵坐标都小于1 在第二象限内的图象纵坐标都大于11a ,0x x <<1a ,0x x ><图象上升趋势是越来越陡图象上升趋势是越来越缓函数值开始增长较慢,到了某一值后增长速度极快;函数值开始减小极快,到了某一值后减小速度较慢;3利用函数的单调性,结合图象还可以看出:(1)在[a ,b]上,)1a 0a (a )x (f x≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [; (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x≠>=且,总有a )1(f =; (4)当1a >时,若21x x <,则)x (f )x (f 21<;[例1] 化简1111132168421212121212-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,结果是( )A 、11321122--⎛⎫- ⎪⎝⎭B 、113212--⎛⎫- ⎪⎝⎭ C 、13212-- D 、1321122-⎛⎫- ⎪⎝⎭2、44366399a a ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭等于( )A 、16aB 、8aC 、4aD 、2a变式练习11.若32x +9=10•3x ,那么x 2+1的值为( D ) A . 1 B . 2 C . 5 D . 1或5解:令3x =t ,(t >0),原方程转化为:t 2﹣10t+9=0, 所以t=1或t=9,即3x =1或3x =9 所以x=0或x=2,所以x 2+1=1或5 故选D2.若关于x 的方程=3﹣2a 有解,则a 的范围是( A ) A . ≤a <B .a ≥C .<a <D .a >解:∵1﹣≤1,函数y=2x 在R 上是增函数,∴0<≤21=2,故 0<3﹣2a ≤2,解得 ≤a <, 故选A .〖例2〗已知,0a b ab >≠,下列不等式(1)22a b >;(2)22a b>;(3)ba 11<;(4)1133a b >;4(5)1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭中恒成立的有( )A 、1个B 、2个C 、3个D 、4个变式练习21.设y 1=40.9,y 2=80.48,y 3=(12)-1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 2 解析:选D.y 1=40.9=21.8,y 2=80.48=21.44,y 3=(12)-1.5=21.5,∵y =2x 在定义域内为增函数, 且1.8>1.5>1.44, ∴y 1>y 3>y 2.2.若函数f (x )=⎩⎪⎨⎪⎧a x,x >1(4-a2)x +2,x ≤1是R 上的增函数,则实数a 的取值范围为( ) A .(1,+∞)B .(1,8)C .(4,8)D .[4,8)解析:选D.因为f (x )在R 上是增函数,故结合图象(图略)知⎩⎪⎨⎪⎧a >14-a 2>04-a 2+2≤a,解得4≤a <8.3.函数y =(12)1-x 的单调增区间为( )A .(-∞,+∞)B .(0,+∞)C .(1,+∞)D .(0,1)解析:选A.设t =1-x ,则y =⎝⎛⎭⎫12t,则函数t =1-x 的递减区间为(-∞,+∞),即为y =⎝⎛⎭⎫121-x 的递增区间.4.已知函数y =f (x )的定义域为(1,2),则函数y =f (2x )的定义域为________.解析:由函数的定义,得1<2x <2⇒0<x <1.所以应填(0,1). 答案:(0,1)〖例3〗已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,则()x f b 与()x f c 的大小关系是_____.分析:先求bc ,的值再比较大小,要注意x xb c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =.∴函数()f x 在(]1-,∞上递减,在[)1+,∞上递增. 若0x ≥,则321xx ≥≥,∴(3)(2)x x f f ≥;5若0x <,则321xx<<,∴(3)(2)x xf f >. 综上可得(3)(2)xxf f ≥,即()()xxf c f b ≥.评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论.变式练习:1已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________.分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2225(1)441a a a ++=++>≥,∴函数2(25)xy a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得14x >.∴x 的取值范围是14⎛⎫+ ⎪⎝⎭,∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论.〖例4〗求函数y =解:由题意可得2160x --≥,即261x -≤,∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-,∞. 令26x t -=,则y =又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤.∴011t -<≤,即01y <≤.∴函数的值域是[)01,. 评注:利用指数函数的单调性求值域时,要注意定义域对它的影响.变式练习:函数221(01)x x y a a a a =+->≠且在区间[11]-,上有最大值14,则a 的值是_______.分析:令xt a =可将问题转化成二次函数的最值问题,需注意换元后t 的取值范围.解:令xt a =,则0t >,函数221xx y aa =+-可化为2(1)2y t =+-,其对称轴为1t =-.∴当1a >时,∵[]11x ∈-,,∴1x a a a ≤≤,即1t a a≤≤. ∴当t a =时,2max (1)214y a =+-=. 解得3a =或5a =-(舍去);6当01a <<时,∵[]11x ∈-,,∴1x a a a ≤≤,即1a t a≤≤, ∴ 1t a =时,2max 11214y a ⎛⎫=+-= ⎪⎝⎭,解得13a =或15a =-(舍去),∴a 的值是3或13.四、强化练习1.下列命题中,真命题是(A)m R,f x x mx x R ∃∈+∈2使函数()=()是偶函数 (B)m R,f x x mx x R ∃∈+∈2使函数()=()是奇函数 (C)m R,f x x mx x R ∀∈+∈2使函数()=()都是偶函数 (D)m R,f x x mx x R ∀∈+∈2使函数()=()都是奇函数【答案】A【解析】本题主要考查奇偶数的基本概念,与存在量词、全称量词的含义,属于容易题。

指数函数常考题型归纳含详解

指数函数常考题型归纳含详解

A. a b 1 c b B. b a 1 d c C.1 a b c d D. a b 1 d c 3、已知函数 f (x) (x a)(x b) (其中 a b) 的图象如图所示,则函数 g(x) ax b 的图象是( )
A.
B.
C.
D.
4、画出下列函数的图像
D.
0,
1 2
A. ab aa
B. ba bb
C. ab bb
D. ab ba
2、设 a , b , c R ,且 a b ,则( )
A. a2 b2
B.
1 2
a
1 2
b
C. a3 b3
D. 1 1 ab
3、已知集合 A {x | x2 3x 2 0}, B {x |1 2 x 4} ,则 A B ( )
题型九:复合函数的单调性
C. f x x 1
x
1、函数
y
1 2
82 xx2
的单调递增区间为_________.
D. f x 3 x
2、求下列函数的定义域和值域,并写出其单调区间.
(1) f ( x) 1 3x2 ;
1
(2)
f
(x)
1 2x 3

(3) f ( x) 2x22x3 ;
A.{x |1 x 2} B.{x |1 x 2} C.{x |1 x 2} D.{x | 0 x 2}
4、已知 a 0.20.3 , b 0.30.3 , c 0.20.2 ,则( )
A. a b c
B. b a c
题型八:指数函数的单调性
C. b c a
D. a c b
A.函数 f x 在 R 上既是奇函数,也是增函数 B.函数 f x 在 R 上既是奇函数,也是减函数

高考数学复习指数与指数函数-重难点题型精讲(解析)

高考数学复习指数与指数函数-重难点题型精讲(解析)

专题2.11 指数与指数函数-重难点题型精讲1.分数指数幂 (1)m na =n,a m (a >0,m ,n ∈N *,且n 〉1);m na=1m na(a >0,m ,n ∈N *,且n 〉1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理数指数幂的运算性质:a r a s =a r +s ,(a r )s =a rs ,(ab )r =a r b r ,其中a 〉0,b >0,r ,s ∈Q . 2.指数函数的图象与性质(1)R 【思考】1。

如图所示是指数函数(1)y =a x ,(2)y =b x ,(3)y =c x ,(4)y =d x 的图象,则a ,b ,c ,d 与1之间的大小关系为________.提示 c 〉d >1〉a 〉b >02.结合指数函数y =a x (a >0,a ≠1)的图象和性质说明a x >1(a >0,a ≠1)的解集是否与a 的取值有关. 提示 当a >1时,a x >1的解集为{x |x >0};当0<a <1时,a x >1的解集为{x |x <0}.【题型1 指数幂的运算】【例1】(2020秋•荔湾区校级期中)化简下列各式.(1)(√23⋅√3)6﹣4•(1649)−12−√24•80.25﹣(2020)0;(2)√a 3b 2⋅√ab 23(a 14b 12)4⋅√a3(a >0,b >0).【解题思路】利用有理数指数幂的运算性质求解. 【解答过程】解:(1)原式=(213×312)6−4×(47)2×(−12)−214×814−1 =4×27﹣7−(2×8)14−1 =108﹣7﹣2﹣1 =98. (2)原式=a 32⋅b 22⋅a 16⋅b 26a⋅b2⋅a −13⋅b 13=a 53⋅b 43a 23⋅b 73=ab ﹣1.【变式1—1】(2020秋•济宁期中)(1)计算:(94)12−(﹣9.6)0﹣(278)−23+(23)−2;(2)已知a 12+a−12=3,求a 2+a −2+1a+a −1+2的值.【解题思路】(1)根据指数幂的运算法则即可求出;(2)根据完全平方公式即可求出. 【解答过程】解:(1)原式=32−1﹣(32)3×(−23)+94=32−1−49+94=8336, (2)∵a 12+a −12=3,∴a +a ﹣1=(a 12+a −12)2﹣2=7,∴a 2+a ﹣2=(a +a ﹣1)2﹣2=47,∴原式=47+17+2=489=163.【变式1-2】(2020秋•新泰市校级期中)化简求值:(请写出化简步骤过程)①0.064−13−(−59)0+[(−2)3]−43+16−0.75+0.0112;②1.5−13×(−76)0+814×√24+(√23×√3)6−√(−23)23.【解题思路】把根式化为分数指数幂,根据幂的运算法则计算即可. 【解答过程】解:①0.064−13−(−59)0+[(−2)3]−43+16−0.75+0.0112 =(0.43)−13−1+(−2)3×(−43)+(24)﹣0。

2024年新高考数学复习知识梳理与题型归纳第9讲指数与指数函数教师版

2024年新高考数学复习知识梳理与题型归纳第9讲指数与指数函数教师版

第9讲指数与指数函数思维导图知识梳理1.指数与指数运算(1)根式的性质①(n a )n =a (a 使n a 有意义).②当n 是奇数时,n a n =a ;当n 是偶数时,n a n =|a ,a ≥0,a ,a <0.(2)分数指数幂的意义①a m n =n a m (a >0,m ,n ∈N *,且n >1).②a -m n =1a m n =1n a m (a >0,m ,n ∈N *,且n >1).③0的正分数指数幂等于0,0的负分数指数幂没有意义.(3)有理数指数幂的运算性质①a r ·a s =a r +s (a >0,r ,s ∈Q );②a r as =a r -s (a >0,r ,s ∈Q );③(a r )s =a rs (a >0,r ,s ∈Q );④(ab )r =a r b r (a >0,b >0,r ∈Q ).2.指数函数的概念函数y =a x (a >0,且a ≠1)叫做指数函数,其中指数x 是自变量,函数的定义域是R ,a 是底数.3.指数函数y =a x (a >0,且a ≠1)的图象与性质底数a >10<a <1图象性质定义域为R ,值域为(0,+∞)图象过定点(0,1)当x >0时,恒有y >1;当x <0时,恒有0<y <1当x >0时,恒有0<y <1;当x <0时,恒有y >1在定义域R 上为增函数在定义域R 上为减函数注意指数函数y =a x (a >0,且a ≠1)的图象和性质与a 的取值有关,应分a >1与0<a <1来研究核心素养分析幂函数、指数函数与对数函数是最基本的、应用最广泛的函数,是进一步研究数学的基础。

本讲的学习,可以帮助学生学会用函数图象和代数运算的方法研究这些函数的性质;理解这些函数中所蕴含的运算规律;运用这些函数建立模型,解决简单的实际问题,体会这些函数在解决实际问题中的作用。

指数与指数函数题型归纳(非常全)

指数与指数函数题型归纳(非常全)

指数式及指数函数题型归纳(2019.10.25)一. 指数幂与根式的互化:题组一:根式化为分数指数幂(1) 化简√a 12√a 12√a =________. (2) 计算2√a⋅√a23=________.(3)若a <0,则√ax 3=________. (4)√a √a √a 的值为( )题组二:运用分数指数幂进行化简:(1)下列各式中错误的是( ) 1. A. 225×2 52=2B. (127)−13=3C. √226=√23D. (−18)23=2. 化简(a 23b 12)×(-3a 12b 13)÷(13a 16b 56)的结果( )A. 6aB. −aC. −9aD. 9a 23.(1)计算:1612+(181)−0.25−(−12)0 (2)化简:(2a 14b −13)(−3a −12b 23)÷(−14a −14b −23).(3)(√23×√3)6+(√2√2)43-4(1649)−12-√24×80.25-(-2009)0.题组三:指数式的条件求值问题:1.已知a 12+a −12=3,求下列各式的值(写出过程):(1)a 1+a −1 (2)a 2+a −2 (3)a 32+a −32=2.(1)已知x +x−1=3,求x 12+x−12x 2+x −2+3的值.(2)已知2x +2-x =3,则 4x +4-x = ______ .题组四:利用指数函数比较大小; 1.下列各式比较大小正确的是: 1.72.3______ 1.74 ; 0.6−1______ 0.62 ; 1.70.3______ 0.92.3 0.8−0.1______ 1.250.22.已知a =(13)−1.1,b =π0,c =30.9,则a ,b ,c 三者的大小关系是()A. c <b <aB. c <a <bC. b <a <cD. b <c <a3. 已知a =(35)25,b =(25)35,c =(25)25,则()A. a <b <cB. c <b <aC. c <a <bD. b <c <a题组五:指数函数过定点问题;1.函数f (x )=2-a x +1(a >0且a ≠1)的图象恒过定点( )A. (0,2)B. (1,2)C. (−1,1)D. (−1,2)2.函数y =a x -3+1(a >0且a ≠1)图象一定过点______ .3.函数y =a −x 2+2x+3(a >0,a ≠1)的图象经过定点为______4. 题组六:指数函数解方程(或不等式);1. 设集合A ={x |-1<x <2},{x |18<(12)x <1},则A ∩B =()A. (0,3)B. (1,3)C. (0,2)D. (1,+∞)2.(1)不等式3−x 2+2x>13x+4的解集为________.(2)不等式2x-2>22x+4的解集为______(3)求不等式a 2x -7>a 4x -1(a >0,且a ≠1)中x 的取值范围3.方程4x -6×2x +8=0的解是______ .题组七:指数函数有关图像问题;1.函数f(x)=a x +b −1(其中0<a <1且0<b <1)的图象一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 2. 若函数y =a x +b 的部分图象如图所示,则( )A. 0<a <1,−1<b <0B. 0<a <1,0<b <1C. a >1,−1<b <0D. a >1,0<b <13.函数f (x )=-3|x |+1的图象大致是( )A.B.C.D.4.函数y =xa x|x |(a >1)的图象的大致形状是( )A.B.C.D.5.如图①y =a x ,②y =b x ,③y =c x ,④y =d x ,根据图象可得a 、b 、c 、d 与1的大小关系为( )A. B. C.D.题组八:指数函数有关复合函数问题: 1.(1)函数y =(13)x 2−6x 的单调递增区间为______( 2 ) 函数y =2−x2−4x的单调递减区间为_____ 2.(1)函数y =(12)−x2+2x的值域是( )A. RB. [12,+∞)C. (2,+∞)D. (0,+∞)(2)函数f(x)=(13)x 2−6x+5的值域为_____ (3)函数y =2x 2−1的值域是______3.求函数y =3−x 2+2x+3的定义域、值域和单调区间.题组九:指数函数与其它函数交汇问题: 1.已知f (x )=a x 1+a x(a ≠0),则f (−2018)+f (−2017)+⋯+f (2017)+f (2018)=( )A. 2018B.40372C. 2019D.403922.已知函数f(x)={3x −1,x >0−2x 2−4x,x ⩽0,若方程f(x)=m 有3个不等的实根,则实数m 的取值范围是________.3.若直线y =2a 与函数y =|a x -1|(a >0且a ≠1)的图象有两个公共点,则a 的取值范围是______.4.已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =______.5.函数f (x )=4x −2x+1+3的定义域为x ∈[−12,12]. (Ⅰ)设t =2x ,求t 的取值范围; (Ⅱ)求函数f(x)的值域.6.已知函数f(x)=a−2x 1+2x(a ∈R),且x ∈R 时,总有f(−x)=−f(x)成立.(1)求a 的值;(2)判断并证明函数f(x)的单调性; (3)求f(x)在[0,2]上的值域.6.已知定义域为R 的函数,f(x)=−2x +b 2x+1+a是奇函数.(Ⅰ)求a ,b 的值;(Ⅱ)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.答案和解析1.【答案】C【解析】【分析】本题主要考查指数幂的计算,要求熟练掌握指数幂的运算法则,属基础题. 根据分数指数幂的运算法则进行求解即可.【解答】解:由条件知a≥0,则√a12√a12√a=√a12√a12+12=√a12⋅√a=√a12⋅a12=a12.故选C.2.【答案】A【解析】【分析】本题考查有理指数幂的运算法则的应用,考查计算能力,属于基础题.利用已知条件,通过开方运算,求解即可,利用a12+a−12=√(a12+a−12)2,即可得. 【解答】解:由a+1a=7,可得a>0,a12+a−12>0,∴a12+a−12=√(a12+a−12)2=√7+2=3,故选A.3.【答案】B【解析】【分析】本题考查指数运算及倒序相加法进行求和,属于中档题.由已知f(x)+f(−x)=a x1+a x+a−x1+a−x=1+a x1+a x=1,再利用倒序相加进行求和即可求解.【解答】解: 由已知有f(x)+f(−x)=a x1+a x+a−x1+a−x=1+a x1+a x=1,设T=f(−2018)+f(−2017)+⋯+f(2017)+f(2018),则T=f(2018)+f(2017)+⋯+f(−2017)+f(−2018),两式相加得2T=4037×1,故选B .4.【答案】C【解析】【分析】本题考查有理指数幂的化简求值,是基础的计算题.化根式为分数指数幂,再由有理指数幂的运算性质化简求值. 【解答】 解:2√a⋅√a 23=a 2⋅a −12⋅a −23=a 2−12−23=a 56. 故选C .5.【答案】A【解析】解:原式=a 32−12b 14−14=a ,故选:A根据指数幂的运算性质计算即可.本题考查了指数幂的运算性质,属于基础题. 6.【答案】A【解析】【分析】本题考查了指数函数解析式,由已知解析式得到5a +b =3,所求为5a •5b ,利用同底数幂的乘法运算转化即可,属于中档题. 【解答】解:因为f (x )=5x ,因为f (a +b )=3,所以5a +b =3, 则f (a )•f (b )=5a •5b =5a +b =3. 故选A .7.【答案】B【解析】【分析】本题主要考查函数值的计算,利用指数幂的运算性质是解决本题的关键,比较基础. 根据指数幂的运算性质,进行平方即可得到结论. 【解答】解:∵f (x )=3x +3-x , ∴f (a )=3a +3-a =4, 平方得32a +2+3-2a =16, 即32a +3-2a =14.即f (2a )=32a +3-2a =14. 故选B . 8.【答案】D【解析】解:∵a <0,ax 3≥0, ∴x ≤0,∴√ax 3=|x |√ax =-x √ax ,本题考查了根式的化简,属于基础题. 9.【答案】B【解析】【分析】本题考查了交、并、补集的混合运算,考查了不等式的解法,是基础题.求解一元二次不等式和指数不等式化简集合M ,N ,然后直接利用补集和交集的运算求解.【解答】解:由题意,集合M ={x |x 2+x -6<0}={x |-3<x <2}, N ={x |(12)x ≥4}={x |x ≤-2},全集为R , 所以∁R N ={x |x >-2},所以M ∩(∁R N )={x |-2<x <2}, 所以M ∩(∁R N )=(-2,2). 故选B .10.【答案】A【解析】解:A 、原式=225+52=22910; B 、原式=(3−3)−13=3;C 、原式=√226=(22)16=√23;D 、原式=(−2−3)23=(−2)−2=14.故选:A根式与分数指数幂的互化公式是√x m n =x mn ,分数指数幂公式是x -n=1x n (x ≠0),按公式运算即可.本题考查了根式与分数指数幂的互化以及负分数指数幂的运算问题,是基础题. 11.【答案】C【解析】【分析】根据指数幂的运算性质计算即可.本题考查了分数指数幂和根式的互化,以及指数幂的运算性质,属于基础题. 【解答】解:√a √a √a =(a ·(a ·a 12)12)12=a 78, 故选C .12.【答案】C【解析】解:(a 23b 12)(−3a 12b 13)÷(13a 16b 56)=(−3)÷13×a 23+12−16b 12+13−56=-9a故选:C .由指数幂的运算法则直接化简即可.13.【答案】D【解析】解:a =(13)−1.1=31.1,b =π0=1,c =30.9,∵指数函数y =3x 在R 上单调递增, ∴31.1>30.9>30=1, 即有a >c >b , 即b <c <a . 故选:D .运用指数函数的单调性,可得31.1>30.9>1,即可得到a ,b ,c 的大小关系. 本题考查指数函数的单调性的运用:比较大小,考查运算能力,属于基础题. 14.【答案】B【解析】【分析】本题考查函数的定义域与值域,以及函数图象的判断,属于基础题.先求出函数的定义域,再分别讨论x >0,x <0时函数的范围,由此判断函数的图象即可. 【解答】解:函数f (x )=e xx 的定义域为:(−∞,0)∪(0,+∞),排除选项A .当x >0时,函数f (x )=e xx>0,选项C 不满足题意.当x <0时,函数f (x )=e xx<0,选项D 不正确,故选B .15.【答案】C【解析】【分析】本题考查识图问题,利用特值或转化为比较熟悉的函数,利用图象变换或利用函数的性质是识图问题常用的方法.f (x )中含有|x |,故f (x )是分段函数,根据x 的正负写出分段函数的解析式,对照图象选择即可. 【解答】解:f (x )是分段函数,根据x 的正负写出分段函数的解析式,f (x )={a x (x >0)−a x (x <0),∴x >0时,图象与y =a x (a >1)在第一象限的图象一样,x <0时,图象与y =a x (a >1)的图象关于x 轴对称, 故选C .16.【答案】B【解析】解:函数y =(2a -1)x 在R 上为单调减函数, ∴0<2a -1<1 解得12<a <1故选:B .本题主要考查了指数函数的单调性,通过底数判断指数函数单调性的方法,属基础题 17.【答案】C【解析】【分析】本题考查指数函数的图象过定点问题,即a 0=1的应用,属于基础题.由x +1=0得x =-1代入解析式后,再利用a 0=1求出f (-1)的值,即可求出答案. 【解答】解:由x +1=0得x =-1,则f (-1)=2-a 0=1, ∴函数f (x )=2-a x +1的图象恒过定点(-1,1). 故选C .18.【答案】A【解析】【分析】本题考查的知识点是函数的图象,其中根据函数的解析式分析出函数的性质及与坐标轴交点位置,是解答的关键.根据已知可分析出函数的奇偶性,进而分析出函数图象的对称性,将x =0代入函数解析式,可判断函数图象与y 轴交点的位置,利用排除法可得函数的图象. 【解答】解:∵函数f (x )=-3|x |+1,∴f (-x )=-3|-x |+1=-3|x |+1=f (x ),即函数为偶函数,其图象关于y 轴对称,故排除B 、D , 当x =0时,f (0)=-30+1=0,即函数图象过原点,故排除C . 故选A .19.【答案】C【解析】【分析】本题主要考查了指数函数的图象的应用及函数图像的平移变换,属于基础题,由0<a <1可得函数y =a x 的图象单调递减,且过第一、二象限,再利用图象的平移,可得结论. 【解答】解:由0<a <1可得函数y =a x 的图象单调递减,且过第一、二象限, ∵0<b <1, ∴-1<b -1<0, ∴0<1-b <1,∵y =a x 的图象向下平移1-b 个单位即可得到y =a x +b -1的图象, ∴y =a x +b 的图象一定在第一、二、四象限,一定不经过第三象限. 故选C .20.【答案】A【解析】【分析】此题考查复合函数的单调性,属于基础题,利用二次函数及指数函数的单调性可得出函数的单调性. 【解答】 解:∵函数y =(13)x 2−9是由函数t =x 2−9与y =(13)t复合而成,又y =(13)t单调递减,所以函数y =(13)x 2−9的单调递增区间为(−∞,0).故选A .21.【答案】C【解析】【分析】本题考查指数型函数图象恒过定点问题,关键是掌握该类问题的求解方法,是基础题. 由指数式的指数等于0求解x 值,进一步求得y 值得答案. 【解答】解:由x -3=0,得x =3,此时y =a 0+1=2.∴函数y =a x -3+1(a >0且a ≠1)图象一定过点(3,2). 故选:C . 22.【答案】B【解析】【分析】本题考查了指数函数的单调性的应用,属于基础题. 根据指数函数的单调性判断数的大小即可. 【解答】解:y =1.7x 为增函数,2.5<3,∴1.72.5<1.73,故A 错误, y =0.6x 为减函数,-1<2,∴0.6-1>0.62,故B 正确, 由于1.70.3>1.70=1,0.93.1<0.90=1,故C 错误,由于0.8-0.1=1.250.1,对于指数函数y =1.25x 为增函数,0.1<0.2, ∴0.8-0.1<1.252,故D 错误, 故选B .23.【答案】B【解析】【分析】本题主要考查复合函数的单调性、指数函数的定义域和值域,属于基础题,令t =-x 2+2x ,则y =(12)t ,再根据t ≤1以及指数函数的单调性求得y 的值域. 【解答】解:令t =−x 2+2x =−(x −1)2+1≤1,则y =(12)t , 由于t ≤1,∴y ≥(12)1=12,所以函数y =(12)−x 2+2x的值域是[12,+∞).故选B .24.【答案】D【解析】【分析】本题考查了利用指数函数、幂函数的单调性判断数的大小,属于基础题.解:∵y =(25)x 为减函数,且35>25, ∴b <c ,又∵y =x 25在(0,+∞)为增函数, ∴a >c , ∴b <c <a , 故选D . 25.【答案】C【解析】【分析】本题考查描述法表示集合的定义及表示形式,指数式的运算,以及指数函数的单调性,交集的运算.可写出18=(12)3,1=(12)0,然后根据指数函数单调性即可求出集合B ={x |0<x <3},根据交集的定义运算即可得出A ∩B . 【解答】解:18=(12)3,1=(12)0; ∴由18<(12)x <1得,0<x <3; ∴B ={x |0<x <3},且A ={x |-1<x <2}; ∴A ∩B =(0,2). 故选C . 26.【答案】A【解析】解:由图象可以看出,函数为减函数,故0<a <1,因为函数y =a x 的图象过定点(0,1),函数y =a x +b 的图象过定点(0,b +1), ∴-1<b <0, 故选A .根据指数函数的图象和性质即可判断.本题主要考查函数图象的应用,利用函数过定点是解决本题的关键. 27.【答案】C【解析】【分析】本题主要考查指数函数的图象和性质,比较函数值的大小即可,比较基础. 根据指数函数的图象和性质即可得到结论. 【解答】解:很显然a ,b 均大于1;且y =b x 函数图象比y =a x 变化趋势小, 故b <a ,综上所述:a >b >1. 故选:C . 28.【答案】B【解析】【分析】本题考查对数函数的图象与性质,作出直线x =1,给出直线与四条曲线的交点坐标是正确解答本题的关键,本题的难点是意识到直线x =1与四条曲线交点的坐标的纵坐标恰好是四个函数的底数,此也是解本题的重点.可在图象中作出直线x =1,通过直线与四条曲线的交点的位置确定出a 、b 、c 、d 与1的大小关系,选出正确选项【解答】解:由图,直线x=1与四条曲线的交点坐标从下往上依次是(1,b),(1,a),(1,d),(1,c)故有b<a<1<d<c故选:B.29.【答案】C【解析】【分析】本题考查指数型函数的图象与性质,由函数的图象可以看出其变化趋势,由图象特征推测出参数的范围.观察到函数是一个指数型的函数,不妨作出其图象,从图象上看出其是一个减函数,并且是由某个指数函数向下平移而得到的,故可得出结论.【解答】解:如图所示,图象与y轴的交点在y轴的负半轴上(纵截距小于零),即a0+b-1<0,且0<a<1,∴0<a<1,且b<0.故选C.30.【答案】C【解析】【分析】令x-1=0,求出x的值,从而求出对应的y的值,从而求出定点的坐标.本题考查了指数函数的性质,是一道基础题.【解答】解:令x-1=0,解得:x=1,故x=1时,y=1,故函数过(1,1),故选C.31.【答案】D【解析】【分析】本题主要考查复合函数求单调区间的问题,复合函数求单调区间时,一般分离成两个简单函数根据同增异减的特性来判断.)z,z=x2-6x+5,根据同增异减性可得答案.将原函数分离成两个简单函数y=(13【解答】解:令z=x2-6x+5是开口向上的二次函数,x∈(-∞,3]上单调递减,x∈[3,+∞)上单调递增.则原函数可以写为:y =(13)t ,t =x 2-6x +5, 因为y =(13)t 单调递减,故原函数的单调递减区间为:[3,+∞). 故选D . 32.【答案】C【解析】【分析】本题考查了指数函数的定义,属于容易题. 函数y =(a 2−5a +5)a x 是指数函数,所以必须满足{a 2−5a +5=1a >0,且a ≠1,解出即可.【解答】解:∵函数y =(a 2−5a +5)a x 是指数函数,∴{a 2−5a +5=1a >0,且a ≠1,解得a =4.故选C .33.【答案】C【解析】【分析】本题考查指数函数的单调性的应用,考查计算能力.直接判断a ,b 的大小,然后求出结果. 【解答】解:由题意可知1>a =0.60.6>b =0.61.5,c =1.50.6>1, 可知:c >a >b . 故选C . 34.【答案】5【解析】【分析】本题考查对数式、指数式化简求值,属于基础题. 利用指数,对数的性质、运算法则求解. 【解答】 解:=1+3×23+lg100 =1+2+2 =5.故答案为5. 35.【答案】7【解析】解:∵2x +2-x =3,∴4x +4-x =(2x +2-x )2-2=32-2=7. 故答案为:7.直接把要求解的式子配方后代入已知条件得答案.本题考查了有理指数幂的化简求值,关键是完全平方式的应用,是基础题. 36.【答案】19【解析】【分析】本题考查有理指数幂的化简求值,考查计算能力,直接利用有理指数幂化简求值即可. 【解答】解:0.027−13-(-17)-2+25634-3-1+(√2-1)0 =103-49+64-13+1 =19.故答案为19. 37.【答案】-6b【解析】解:(−3a 13b 23)·(a 12b 12)÷(12a 56b 16)=−6a 13+12−56b 23+12−16 =−6a 0b 1=-6b故答案为-6b .本题考查了指数的运算法则,与单项式相乘除的法则相同,系数相乘除作系数,同底数幂相乘除,底不变,指数相加减,即可得出. 38.【答案】x =1或x =2【解析】【分析】求解关于2x 的一元二次方程,然后进一步求解指数方程得答案.本题考查有理指数幂的化简与求值,考查了一元二次方程的解法,是基础题. 【解答】解:由4x -6×2x +8=0,得 (2x -2)(2x -4)=0, 即2x =2或2x =4. ∴x =1或x =2.故答案为:x =1或x =2. 39.【答案】3【解析】【分析】本题主要考查了根式的化简,属于基础题. 根据根式的特点化简即可.【解答】解:由4<x <7,则式子√(x −4)44+√(x −7)44=|x -4|+|x -7|=x -4+7-x =3, 故答案为3.40.【答案】(−1,4)【解析】【分析】本题考查指数函数单调性的应用,一元二次不等式的解法等基础知识,考查运算求解能力与转化思想.先利用指数函数单调性,得−x 2+2x >−x −4,解不等式即可. 【解答】解:原不等式可化为3−x 2+2x >3−x−4, ∵函数y =3x 为R 上的增函数, ∴−x 2+2x >−x −4, 解得−1<x <4 故答案为(−1,4).41.【答案】(2,2)【解析】【分析】本题考查指数函数的图象过定点问题,属基础题,本题也可利用指数函数的图象变换求出.令x -2=0,则x =2,即为定点横坐标,代入函数式可得定点纵坐标. 【解答】解:令x =2,得y =a 0+1=2,所以函数y =1+a x−2的图象恒过定点坐标是(2,2). 故答案为(2,2). 42.【答案】(0,3]【解析】【分析】本题考查了指数函数的性质,复合函数的值域,利用换元法求函数的值域,属于基础题. 令t =x 2-1,将求函数y =(13)x2−1的值域的问题转化为求y =(13)t 在[-1,+∞)上的值域问题,再利用函数y =(13)t 的单调性求值域. 【解答】解:令t =x 2-1,t ∈[-1,+∞), 即y =(13)t ,t ∈[-1,+∞),函数y =(13)t 在区间[-1,+∞)上是减函数, 故y ≤(13)−1=3 , 故函数y =(13)x2−1的值域是(0,3].故答案为(0,3].43.【答案】(0,2)【解析】【分析】本题考查函数的零点个数,函数的图象的应用,属于中档题. 利用分段函数画出函数的图象,然后判断m 的范围即可. 【解答】解:画出函数f(x)={3x −1,x >0−2x 2−4x,x ⩽0的图象如下:由函数f(x)=m有3个不等实根,即函数f(x)与直线y=m有3个交点,结合图象得:0<m<2,即m∈(0,2).故答案为(0,2).44.【答案】0<a<12【解析】解:①当0<a<1时,作出函数y=|a x-1|图象:若直线y=2a与函数y=|a x-1|(a>0且a≠1)的图象有两个公共点由图象可知0<2a<1,∴0<a<1.2②当a>1时,作出函数y=|a x-1|图象:若直线y=2a与函数y=|a x-1|(a>0且a≠1)的图象有两个公共点由图象可知0<2a<1,此时无解..综上:a的取值范围是0<a<12故答案为:0<a<12先分:①0<a<1和a>1时两种情况,作出函数y=|a x-1|图象,再由直线y=2a与函数y=|a x-1|(a>0且a≠1)的图象有两个公共点,作出直线,移动直线,用数形结合求解.本题主要考查指数函数的图象和性质,主要涉及了函数的图象变换及函数的单调性,同时,还考查了数形结合的思想方法.45.【答案】[3,+∞)【解析】【分析】本题主要考查了函数的定义域问题,由根式内部的代数式大于等于0,然后求解指数不等式.【解答】解:由2x-8≥0,得2x≥8,则x≥3,∴函数y=y=√2x−8的定义域为[3,+∞).故答案为[3,+∞).46.【答案】(2,3)【解析】【分析】本题考查指数型函数的图象恒过定点问题,关键是掌握此类问题的求法,是基础题. 由指数式的指数等于0求得x 值,进一步求得y 值,则答案可求. 【解答】解:由x -2=0,得x =2,此时y =3.∴函数y =a x -2+2(a >0且a ≠1)一定过定点(2,3). 故答案为(2,3).47.【答案】−32【解析】【分析】本题考查指数函数的单调性的应用,以及分类讨论思想,属于中档题. 对a 进行分类讨论,结合指数函数的单调性列出方程组,解得答案. 【解答】解:当a >1时,函数f (x )=a x +b 在定义域上是增函数, 所以{1+b =0a −1+b =−1,解得b =-1,1a =0不符合题意舍去;当0<a <1时,函数f (x )=a x +b 在定义域上是减函数, 所以{1+b =−1a −1+b =0,解得b =-2,a =12, 综上a +b =−32, 故答案为:−32 .48.【答案】(1)解:原式=log 322×8329-52log 53=2-32=-7.(2)解:原式=(32)2×12-1-(32)3×23+(32)2=32-1-94+94=12.【解析】本题考查了指数幂与对数的运算性质,考查了计算能力,属于基础题. (1)利用对数的运算性质即可得出. (2)利用指数的运算性质即可得出.49.【答案】解:(1)√(3−π)44+(0.008)13-(0.25)12×(√2)-4=π-3+0.2-0.5×4 =π-3+0.2-2 =π-4.8.(2)(√23×√3)6+(√2√2)43-4(1649)−12-√24×80.25-(-2009)0=4×27+(234)43-7-1614-1=108+2-7-2-1=100.【解析】本题主要考查指数式化简求值,是基础题.解题时要认真审题,注意有理数指数幂的性质、运算法则的合理运用. (1)利用有理数指数幂的性质、运算法则求解. (2)利用有理数指数幂的性质、运算法则求解.50.【答案】解:(1)原式=53−(23)3×13-1+2−2×(−12)=53−23-1+2=2. (2)原式=lg8×1252×512lg10×(−lg10)=lg102−12=-4.(3)∵a ,b ,c 为正实数,a x =b y =c z =k >0,k ≠1. ∴x =lgklga ,y =lgklgb ,z =lgklgc , ∵1x +1y +1z =0,∴lga+lgb+lgc lgk=lg(abc)lgk=0,∴abc =1.【解析】(1)本题考查了指数幂的运算性质,考查了推理能力与计算能力,属于基础题.利用指数幂的运算性质即可得出.(2)本题考查了对数的运算性质,考查了推理能力与计算能力,属于基础题.利用对数的运算性质即可得出.(3)本题考查了对数的运算性质,考查了推理能力与计算能力,属于基础题.设a x =b y =c z =k >0,可得x =lgk lga ,y =lgk lgb ,z =lgklgc ,再利用对数的运算性质即可得出.51.【答案】解:(1)(214)12−(−0.96)0−(338)−23+(1.5)−2 =32−1−[(32)3]−23+(32)−2=12−(32)−2+(32)−2 =12. (2)∵10x =3,10y =4, ∴102x -y =102x 10y =(10x )210y =94.【解析】本题考查有理数指数幂的化简求值,是基础题,解题时要认真审题,注意有理数指数幂的性质、运算法则的合理运用.(1)利用有理数指数幂的性质、运算法则求解. (2)利用有理数指数幂的性质、运算法则求解.52.【答案】解:(1)原式=0.82×(−12)+33×23-1-23=54+9-1-8=54.(2)原式=log 3(102×0.81)=log 334=4.【解析】(1)利用指数的运算性质即可得出. (2)利用对数的运算性质即可得出.本题考查了指数与对数的运算性质,考查了推理能力与计算能力,属于基础题.53.【答案】解:(1)原式=(8116)0.5−1÷(43)2+(2764)23=94−916+916=94.(2)原式=log 3332+lg 1004+lg4+2+1=32+2−lg4+lg4+3=132.【解析】(1)本题考查指数式化简求值,是基础题.利用有理数指数幂的性质及运算法则求解,解题时要认真审题,注意有理数指数幂的性质及运算法则的合理运用.(2)本题考查对数式和指数式的化简求值,是基础题.利用对数的运算性质化简即可.54.【答案】解:(1)(279)12-(2√3-π)0-(21027)−23+0.25−32,原式=√259-1-(6427)−23+(14)−32=53-1-(2764)23+432 =23-916+8=8548.(2)由题意:0<x <1, ∴x 12−x −12<0所以:(x 12−x −12)2=x +x -1-2. ∵x +x -1=3, ∴(x 12−x −12)2=1, 故得x 12−x −12=-1.【解析】本题考查了指数幂的运算性质,属于基础题. (1)利用指数幂的运算性质即可得出. (2)由题意0<x <1,且x +x -1=3,判断x 12-x−12的值为负,采用两边平方后,再开方可得答案.55.【答案】解(1)原式=(94)12−1−(278)−23+(110)−2=32-1-49+100=180118.(2)∵(x 12+x −12)2=x +x -1+2=5, ∴x 12+x −12=√5, ∴(x +x -1)2=x 2+x -2+2=9, ∴x 2+x -2=7, ∴x 12+x−12x 2+x −2+3=√510.【解析】本题考查了幂的运算性质,属于基础题. (1)根据幂的运算性质计算即可, (2)根据幂的运算性质计算即可.56.【答案】解:(1)(2a23b12)(-6a12b13)÷(-3a16b56)(a >0,b >0)=4a 23+12−16b 12+13−56 =4a .(2)2(lg √2)2+lg √2×lg5+√(lg √2)2−lg2+1 =lg √2(lg2+lg5)+√(lg √2−1)2 =lg √2+1−lg √2 =1.【解析】本题考查指数、对数的化简求值,是基础题,解题时要认真审题,注意指数式、对数式性质、运算法则的合理运用. (1)利用指数式性质、运算法则求解. (2)利用对数性质、运算法则求解.57.【答案】解:1612+(181)−0.25−(−12)0 =4+3-1 =6.(2a 14b −13)(−3a −12b 23)÷(−14a −14b −23) = 24a 14−12+14b −13+23+23 = 24b .【解析】本题考查指数性质、运算法则的应用,是基础题,解题时要认真审题,注意指数性质、运算法则的合理运用. 利用指数性质、运算法则直接求解.58.【答案】解:根据题意,函数的定义域显然为(-∞,+∞). 令u =f (x )=3+2x -x 2=4-(x -1)2≤4. ∴y =3u 是u 的增函数,当x =1时,u max =f (1)=4,而u ∈(−∞,4). ∴0<3u ≤34,即值域为(0,81].(3)当x ≤1时,u =f (x )为增函数,y =3u 是u 的增函数,根据同增异减原则.即原函数单调增区间为(-∞,1],单调减区间为(1,+∞); 其证明如下:任取x 1,x 2∈(-∞,1]且令x 1<x 2,则f(x 1)f(x 2)=3−x 12+2x 1+3÷3−x 22+2x 2+3=3−x 12+2x 1+3+x 22−2x 2−3=3(x 22−x 12)+2(x 1−x 2)= 3(x 1−x 2)(2−x 1−x 2)∵x 1<x 2,x 1,x 2∈(-∞,1] ∴x 1-x 2<0,2-x 1-x 2>0 ∴(x 1-x 2)(2-x 1-x 2)<0 ∴3(x 1−x 2)(x 1+x 2+2)<1∴f (x 1)<f (x 2)∴原函数单调增区间为(-∞,1]同理可证,原函数单调减区间为[1,+∞).即原函数单调增区间为(-∞,1],单调减区间为(1,+∞).【解析】根据题意,定义域的求解易知为(-∞,+∞),值域的求解通过换元法将3+2x -x 2换成u ,通过二次函数的知识求得u 的范围为(-∞,4],再根据指数函数y =3u 的单调性即可求解利用复合函数的单调性的特点(根据同增异减口诀,先判断内层函数的单调性,再判断外层函数单调性,在同一定义域上,若两函数单调性相同,则此复合函数在此定义域上为增函数,反之则为减函数)判断出函数的单调区间,在根据定义:(就是定义域内的任意取x 1,x 2,且x 1<x 2,比较f (x 1),f (x 2)的大小,或f (x 1)<f (x 2)则是增函数;反之则为减函数)证明即可本题考查了以指数函数为依托,通过换元法进行求解函数值域,另外还有复合函数的单调性问题,属于基础题.59.【答案】解:(Ⅰ)因为f (x )是奇函数,所以f (0)=0,即b−1a+2=0⇒b =1,∴f(x)=1−2x a+2x+1, 又由f (1)=-f (-1)知1−2a+4=−1−12a+1⇒a =2. 所以a =2,b =1.经检验a =2,b =1时,f(x)=−2x +12x+1+2是奇函数. (Ⅱ)由(Ⅰ)知f(x)=1−2x 2+2x+1=−12+12x +1,易知f (x )在(-∞,+∞)上为减函数.又因为f (x )是奇函数,所以f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (k -2t 2),因为f (x )为减函数,由上式可得:t 2-2t >k -2t 2.即对一切t ∈R 有:3t 2-2t -k >0,从而判别式Δ=4+12k <0⇒k <−13.所以k 的取值范围是(−∞,−13).【解析】本题主要考查函数奇偶性与单调性的综合应用,同时考查一元二次不等式恒成立问题的解决策略,属于中档题.(Ⅰ)利用奇函数的定义,在f (x )=-f (-x )中运用特殊值求a ,b 的值;(Ⅱ)首先确定函数f (x )的单调性,然后结合奇函数的性质把不等式f (t 2-2t )+f (2t 2-k )<0转化为关于t 的一元二次不等式,最后由一元二次不等式知识求出k 的取值范围. 60.【答案】解:(1)∵f (-x )=-f (x ),∴a−2−x1+2−x =-a−2x 1+2x ,即a⋅2x −11+2x =2x −a1+2x, ∴a =1,∴f (x )=1−2x1+2x ;(2)函数f(x)为R上的减函数. ∵f(x)的定义域为R,∴任取x1,x2∈R,且x2>x1,∴f(x2)-f(x1)=1−2x21+2x2−1−2x11+2x1=2(2x1−2x2)(1+2x1)(1+2x2),∵x2>x1,∴2x2>2x1>0,∴f(x2)−f(x1)<0即f(x2)<f(x1),∴函数f(x)为R上的减函数;(3)由(2)知,函数f(x)在[0,2]上为减函数,∴f(2)≤f(x)≤f(0),即−35≤f(x)≤0,即函数的值域为[-35,0].【解析】本题主要考查函数奇偶性的应用以及函数单调性和值域的求解,利用定义法是解决本题的关键.(1)根据条件建立方程关系即可求a的值;(2)根据函数单调性的定义判断并证明函数f(x)的单调性;(3)结合函数的单调性即可求f(x)在[0,2]上的值域.61.【答案】解:(Ⅰ)∵t=2x在x∈[−12,12]上单调递增,∴t∈[√22,√2] ;(Ⅱ)函数可化为:f(x)=g(t)=t2-2t+3 ,∵g(t)在[√22,1]上单减,在[1,√2]上单增,比较得g(√22)<g(√2),∴f(x)min=g(1)=2,f(x)max=g(√2)=5-2√2,∴函数的值域为[2,5-2√2].【解析】本题考查了指数函数的值域的求法,指数函数与一元二次函数组成的复合函数的值域的求法,属于基础题.解题的关键是熟练掌握指数函数的性质与二次函数的性质,本题的重点在第二小题,将求复合函数的值域转化为求两个基本函数的值域,先求内层函数的值域再求外层函数的值域,即可得到复合函数的值域,求复合函数的值域问题时要注意此技能使用.(Ⅰ)由题意,可先判断函数t=2x,x∈[−12,12]单调性,再由单调性求出函数值的取值范围,易得;(Ⅱ)由于函数f(x)=4x-2x+1+3是一个复合函数,可由t=2x,将此复合函数转化为二次函数g(t)=t2-2t+3,此时定义域为t∈[√22,√2],求出二次函数在这个区间上的值域即可得到函数f(x)的值域.62.【答案】解:由a2x-7>a4x-1知需要进行分类,具体情况如下:当a>1时,∵y=a x在定义域上递增,∴2x-7>4x-1,解得x<-3;当0<a<1时,∵y=a x在定义域上递减,∴2x-7<4x-1,解得x>-3;综上得,当a>1时,x的取值范围为(-∞,-3);当0<a<1时,x的取值范围为(-3,+∞).【解析】根据不等式需要对a进行分两类:a>1时和0<a<1时,再分别利用指数函数的单调性列出不等式求解,最后要把结果分开表示.本题考查了利用指数函数的单调性求有关指数不等式的解,关键是根据底数判断函数的单调性,考查了分类讨论思想.63.【答案】解:(1)根据题意,f(x)=(12x−1+12)x,则有2x-1≠0,解可得x≠0,则函数的定义域为{x|x≠0},(2)设任意x≠0,∵f(−x)=(12−x−1+12)(−x)=(2x1−2x+12)(−x)=(2x−1+11−2x+12)(−x)=(11−2x−12)(−x)=(1 2x−1+12)x=f(x).∴f(x)为偶函数;(3)根据题意,f(x)为偶函数,f(-x)=f(x),当x>0时,2x-1>0,则f(x)=(12x−1+12)x>0,又由f(x)为偶函数,则当x<0时,f(x)>0,综合可得:f(x)>0.【解析】本题考查函数奇偶性与单调性的综合应用,判定函数的奇偶性时要先分析函数的定义域.(1)根据题意,由函数的解析式可得2x-1≠0,解可得x的范围,即可得答案;(2)由(1)的结论,进而分析f(-x)=f(x),结合函数奇偶性的定义即可得答案;(3)根据题意,当x>0时,分析易得f(x)=(12x−1+12)x>0,结合函数的奇偶性分析可得答案.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数式及指数函数题型归纳(2019.10.25)一. 指数幂与根式的互化:题组一:根式化为分数指数幂(1) 化简√a 12√a 12√a =________. (2) 计算2√a⋅√a23=________.(3)若a <0,则√ax 3=________. (4)√a √a √a 的值为( )题组二:运用分数指数幂进行化简:(1)下列各式中错误的是( ) 1. A. 225×2 52=2B. (127)−13=3C. √226=√23D. (−18)23=2. 化简(a 23b 12)×(-3a 12b 13)÷(13a 16b 56)的结果( )A. 6aB. −aC. −9aD. 9a 23.(1)计算:1612+(181)−0.25−(−12)0 (2)化简:(2a 14b −13)(−3a −12b 23)÷(−14a −14b −23).(3)(√23×√3)6+(√2√2)43-4(1649)−12-√24×80.25-(-2009)0.题组三:指数式的条件求值问题:1.已知a 12+a −12=3,求下列各式的值(写出过程):(1)a 1+a −1 (2)a 2+a −2 (3)a 32+a −32=2.(1)已知x +x−1=3,求x 12+x−12x 2+x −2+3的值.(2)已知2x +2-x =3,则 4x +4-x = ______ .题组四:利用指数函数比较大小; 1.下列各式比较大小正确的是: 1.72.3______ 1.74 ; 0.6−1______ 0.62 ; 1.70.3______ 0.92.3 0.8−0.1______ 1.250.22.已知a =(13)−1.1,b =π0,c =30.9,则a ,b ,c 三者的大小关系是()A. c <b <aB. c <a <bC. b <a <cD. b <c <a3. 已知a =(35)25,b =(25)35,c =(25)25,则()A. a <b <cB. c <b <aC. c <a <bD. b <c <a题组五:指数函数过定点问题;1.函数f (x )=2-a x +1(a >0且a ≠1)的图象恒过定点( )A. (0,2)B. (1,2)C. (−1,1)D. (−1,2)2.函数y =a x -3+1(a >0且a ≠1)图象一定过点______ .3.函数y =a −x 2+2x+3(a >0,a ≠1)的图象经过定点为______4. 题组六:指数函数解方程(或不等式);1. 设集合A ={x |-1<x <2},{x |18<(12)x <1},则A ∩B =()A. (0,3)B. (1,3)C. (0,2)D. (1,+∞)2.(1)不等式3−x 2+2x>13x+4的解集为________.(2)不等式2x-2>22x+4的解集为______(3)求不等式a 2x -7>a 4x -1(a >0,且a ≠1)中x 的取值范围3.方程4x -6×2x +8=0的解是______ .题组七:指数函数有关图像问题;1.函数f(x)=a x +b −1(其中0<a <1且0<b <1)的图象一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 2. 若函数y =a x +b 的部分图象如图所示,则( )A. 0<a <1,−1<b <0B. 0<a <1,0<b <1C. a >1,−1<b <0D. a >1,0<b <13.函数f (x )=-3|x |+1的图象大致是( )A.B.C.D.4.函数y =xa x|x |(a >1)的图象的大致形状是( )A.B.C.D.5.如图①y =a x ,②y =b x ,③y =c x ,④y =d x ,根据图象可得a 、b 、c 、d 与1的大小关系为( )A. B. C.D.题组八:指数函数有关复合函数问题: 1.(1)函数y =(13)x 2−6x 的单调递增区间为______( 2 ) 函数y =2−x2−4x的单调递减区间为_____ 2.(1)函数y =(12)−x2+2x的值域是( )A. RB. [12,+∞)C. (2,+∞)D. (0,+∞)(2)函数f(x)=(13)x 2−6x+5的值域为_____ (3)函数y =2x 2−1的值域是______3.求函数y =3−x 2+2x+3的定义域、值域和单调区间.题组九:指数函数与其它函数交汇问题: 1.已知f (x )=a x 1+a x(a ≠0),则f (−2018)+f (−2017)+⋯+f (2017)+f (2018)=( )A. 2018B.40372C. 2019D.403922.已知函数f(x)={3x −1,x >0−2x 2−4x,x ⩽0,若方程f(x)=m 有3个不等的实根,则实数m 的取值范围是________.3.若直线y =2a 与函数y =|a x -1|(a >0且a ≠1)的图象有两个公共点,则a 的取值范围是______.4.已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =______.5.函数f (x )=4x −2x+1+3的定义域为x ∈[−12,12]. (Ⅰ)设t =2x ,求t 的取值范围; (Ⅱ)求函数f(x)的值域.6.已知函数f(x)=a−2x 1+2x(a ∈R),且x ∈R 时,总有f(−x)=−f(x)成立.(1)求a 的值;(2)判断并证明函数f(x)的单调性; (3)求f(x)在[0,2]上的值域.6.已知定义域为R 的函数,f(x)=−2x +b 2x+1+a是奇函数.(Ⅰ)求a ,b 的值;(Ⅱ)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.答案和解析1.【答案】C【解析】【分析】本题主要考查指数幂的计算,要求熟练掌握指数幂的运算法则,属基础题. 根据分数指数幂的运算法则进行求解即可.【解答】解:由条件知a≥0,则√a12√a12√a=√a12√a12+12=√a12⋅√a=√a12⋅a12=a12.故选C.2.【答案】A【解析】【分析】本题考查有理指数幂的运算法则的应用,考查计算能力,属于基础题.利用已知条件,通过开方运算,求解即可,利用a12+a−12=√(a12+a−12)2,即可得. 【解答】解:由a+1a=7,可得a>0,a12+a−12>0,∴a12+a−12=√(a12+a−12)2=√7+2=3,故选A.3.【答案】B【解析】【分析】本题考查指数运算及倒序相加法进行求和,属于中档题.由已知f(x)+f(−x)=a x1+a x+a−x1+a−x=1+a x1+a x=1,再利用倒序相加进行求和即可求解.【解答】解: 由已知有f(x)+f(−x)=a x1+a x+a−x1+a−x=1+a x1+a x=1,设T=f(−2018)+f(−2017)+⋯+f(2017)+f(2018),则T=f(2018)+f(2017)+⋯+f(−2017)+f(−2018),两式相加得2T=4037×1,故选B .4.【答案】C【解析】【分析】本题考查有理指数幂的化简求值,是基础的计算题.化根式为分数指数幂,再由有理指数幂的运算性质化简求值. 【解答】 解:2√a⋅√a 23=a 2⋅a −12⋅a −23=a 2−12−23=a 56. 故选C .5.【答案】A【解析】解:原式=a 32−12b 14−14=a ,故选:A根据指数幂的运算性质计算即可.本题考查了指数幂的运算性质,属于基础题. 6.【答案】A【解析】【分析】本题考查了指数函数解析式,由已知解析式得到5a +b =3,所求为5a •5b ,利用同底数幂的乘法运算转化即可,属于中档题. 【解答】解:因为f (x )=5x ,因为f (a +b )=3,所以5a +b =3, 则f (a )•f (b )=5a •5b =5a +b =3. 故选A .7.【答案】B【解析】【分析】本题主要考查函数值的计算,利用指数幂的运算性质是解决本题的关键,比较基础. 根据指数幂的运算性质,进行平方即可得到结论. 【解答】解:∵f (x )=3x +3-x , ∴f (a )=3a +3-a =4, 平方得32a +2+3-2a =16, 即32a +3-2a =14.即f (2a )=32a +3-2a =14. 故选B . 8.【答案】D【解析】解:∵a <0,ax 3≥0, ∴x ≤0,∴√ax 3=|x |√ax =-x √ax ,本题考查了根式的化简,属于基础题. 9.【答案】B【解析】【分析】本题考查了交、并、补集的混合运算,考查了不等式的解法,是基础题.求解一元二次不等式和指数不等式化简集合M ,N ,然后直接利用补集和交集的运算求解.【解答】解:由题意,集合M ={x |x 2+x -6<0}={x |-3<x <2}, N ={x |(12)x ≥4}={x |x ≤-2},全集为R , 所以∁R N ={x |x >-2},所以M ∩(∁R N )={x |-2<x <2}, 所以M ∩(∁R N )=(-2,2). 故选B .10.【答案】A【解析】解:A 、原式=225+52=22910; B 、原式=(3−3)−13=3;C 、原式=√226=(22)16=√23;D 、原式=(−2−3)23=(−2)−2=14.故选:A根式与分数指数幂的互化公式是√x m n =x mn ,分数指数幂公式是x -n=1x n (x ≠0),按公式运算即可.本题考查了根式与分数指数幂的互化以及负分数指数幂的运算问题,是基础题. 11.【答案】C【解析】【分析】根据指数幂的运算性质计算即可.本题考查了分数指数幂和根式的互化,以及指数幂的运算性质,属于基础题. 【解答】解:√a √a √a =(a ·(a ·a 12)12)12=a 78, 故选C .12.【答案】C【解析】解:(a 23b 12)(−3a 12b 13)÷(13a 16b 56)=(−3)÷13×a 23+12−16b 12+13−56=-9a故选:C .由指数幂的运算法则直接化简即可.13.【答案】D【解析】解:a =(13)−1.1=31.1,b =π0=1,c =30.9,∵指数函数y =3x 在R 上单调递增, ∴31.1>30.9>30=1, 即有a >c >b , 即b <c <a . 故选:D .运用指数函数的单调性,可得31.1>30.9>1,即可得到a ,b ,c 的大小关系. 本题考查指数函数的单调性的运用:比较大小,考查运算能力,属于基础题. 14.【答案】B【解析】【分析】本题考查函数的定义域与值域,以及函数图象的判断,属于基础题.先求出函数的定义域,再分别讨论x >0,x <0时函数的范围,由此判断函数的图象即可. 【解答】解:函数f (x )=e xx 的定义域为:(−∞,0)∪(0,+∞),排除选项A .当x >0时,函数f (x )=e xx>0,选项C 不满足题意.当x <0时,函数f (x )=e xx<0,选项D 不正确,故选B .15.【答案】C【解析】【分析】本题考查识图问题,利用特值或转化为比较熟悉的函数,利用图象变换或利用函数的性质是识图问题常用的方法.f (x )中含有|x |,故f (x )是分段函数,根据x 的正负写出分段函数的解析式,对照图象选择即可. 【解答】解:f (x )是分段函数,根据x 的正负写出分段函数的解析式,f (x )={a x (x >0)−a x (x <0),∴x >0时,图象与y =a x (a >1)在第一象限的图象一样,x <0时,图象与y =a x (a >1)的图象关于x 轴对称, 故选C .16.【答案】B【解析】解:函数y =(2a -1)x 在R 上为单调减函数, ∴0<2a -1<1 解得12<a <1故选:B .本题主要考查了指数函数的单调性,通过底数判断指数函数单调性的方法,属基础题 17.【答案】C【解析】【分析】本题考查指数函数的图象过定点问题,即a 0=1的应用,属于基础题.由x +1=0得x =-1代入解析式后,再利用a 0=1求出f (-1)的值,即可求出答案. 【解答】解:由x +1=0得x =-1,则f (-1)=2-a 0=1, ∴函数f (x )=2-a x +1的图象恒过定点(-1,1). 故选C .18.【答案】A【解析】【分析】本题考查的知识点是函数的图象,其中根据函数的解析式分析出函数的性质及与坐标轴交点位置,是解答的关键.根据已知可分析出函数的奇偶性,进而分析出函数图象的对称性,将x =0代入函数解析式,可判断函数图象与y 轴交点的位置,利用排除法可得函数的图象. 【解答】解:∵函数f (x )=-3|x |+1,∴f (-x )=-3|-x |+1=-3|x |+1=f (x ),即函数为偶函数,其图象关于y 轴对称,故排除B 、D , 当x =0时,f (0)=-30+1=0,即函数图象过原点,故排除C . 故选A .19.【答案】C【解析】【分析】本题主要考查了指数函数的图象的应用及函数图像的平移变换,属于基础题,由0<a <1可得函数y =a x 的图象单调递减,且过第一、二象限,再利用图象的平移,可得结论. 【解答】解:由0<a <1可得函数y =a x 的图象单调递减,且过第一、二象限, ∵0<b <1, ∴-1<b -1<0, ∴0<1-b <1,∵y =a x 的图象向下平移1-b 个单位即可得到y =a x +b -1的图象, ∴y =a x +b 的图象一定在第一、二、四象限,一定不经过第三象限. 故选C .20.【答案】A【解析】【分析】此题考查复合函数的单调性,属于基础题,利用二次函数及指数函数的单调性可得出函数的单调性. 【解答】 解:∵函数y =(13)x 2−9是由函数t =x 2−9与y =(13)t复合而成,又y =(13)t单调递减,所以函数y =(13)x 2−9的单调递增区间为(−∞,0).故选A .21.【答案】C【解析】【分析】本题考查指数型函数图象恒过定点问题,关键是掌握该类问题的求解方法,是基础题. 由指数式的指数等于0求解x 值,进一步求得y 值得答案. 【解答】解:由x -3=0,得x =3,此时y =a 0+1=2.∴函数y =a x -3+1(a >0且a ≠1)图象一定过点(3,2). 故选:C . 22.【答案】B【解析】【分析】本题考查了指数函数的单调性的应用,属于基础题. 根据指数函数的单调性判断数的大小即可. 【解答】解:y =1.7x 为增函数,2.5<3,∴1.72.5<1.73,故A 错误, y =0.6x 为减函数,-1<2,∴0.6-1>0.62,故B 正确, 由于1.70.3>1.70=1,0.93.1<0.90=1,故C 错误,由于0.8-0.1=1.250.1,对于指数函数y =1.25x 为增函数,0.1<0.2, ∴0.8-0.1<1.252,故D 错误, 故选B .23.【答案】B【解析】【分析】本题主要考查复合函数的单调性、指数函数的定义域和值域,属于基础题,令t =-x 2+2x ,则y =(12)t ,再根据t ≤1以及指数函数的单调性求得y 的值域. 【解答】解:令t =−x 2+2x =−(x −1)2+1≤1,则y =(12)t , 由于t ≤1,∴y ≥(12)1=12,所以函数y =(12)−x 2+2x的值域是[12,+∞).故选B .24.【答案】D【解析】【分析】本题考查了利用指数函数、幂函数的单调性判断数的大小,属于基础题.解:∵y =(25)x 为减函数,且35>25, ∴b <c ,又∵y =x 25在(0,+∞)为增函数, ∴a >c , ∴b <c <a , 故选D . 25.【答案】C【解析】【分析】本题考查描述法表示集合的定义及表示形式,指数式的运算,以及指数函数的单调性,交集的运算.可写出18=(12)3,1=(12)0,然后根据指数函数单调性即可求出集合B ={x |0<x <3},根据交集的定义运算即可得出A ∩B . 【解答】解:18=(12)3,1=(12)0; ∴由18<(12)x <1得,0<x <3; ∴B ={x |0<x <3},且A ={x |-1<x <2}; ∴A ∩B =(0,2). 故选C . 26.【答案】A【解析】解:由图象可以看出,函数为减函数,故0<a <1,因为函数y =a x 的图象过定点(0,1),函数y =a x +b 的图象过定点(0,b +1), ∴-1<b <0, 故选A .根据指数函数的图象和性质即可判断.本题主要考查函数图象的应用,利用函数过定点是解决本题的关键. 27.【答案】C【解析】【分析】本题主要考查指数函数的图象和性质,比较函数值的大小即可,比较基础. 根据指数函数的图象和性质即可得到结论. 【解答】解:很显然a ,b 均大于1;且y =b x 函数图象比y =a x 变化趋势小, 故b <a ,综上所述:a >b >1. 故选:C . 28.【答案】B【解析】【分析】本题考查对数函数的图象与性质,作出直线x =1,给出直线与四条曲线的交点坐标是正确解答本题的关键,本题的难点是意识到直线x =1与四条曲线交点的坐标的纵坐标恰好是四个函数的底数,此也是解本题的重点.可在图象中作出直线x =1,通过直线与四条曲线的交点的位置确定出a 、b 、c 、d 与1的大小关系,选出正确选项【解答】解:由图,直线x=1与四条曲线的交点坐标从下往上依次是(1,b),(1,a),(1,d),(1,c)故有b<a<1<d<c故选:B.29.【答案】C【解析】【分析】本题考查指数型函数的图象与性质,由函数的图象可以看出其变化趋势,由图象特征推测出参数的范围.观察到函数是一个指数型的函数,不妨作出其图象,从图象上看出其是一个减函数,并且是由某个指数函数向下平移而得到的,故可得出结论.【解答】解:如图所示,图象与y轴的交点在y轴的负半轴上(纵截距小于零),即a0+b-1<0,且0<a<1,∴0<a<1,且b<0.故选C.30.【答案】C【解析】【分析】令x-1=0,求出x的值,从而求出对应的y的值,从而求出定点的坐标.本题考查了指数函数的性质,是一道基础题.【解答】解:令x-1=0,解得:x=1,故x=1时,y=1,故函数过(1,1),故选C.31.【答案】D【解析】【分析】本题主要考查复合函数求单调区间的问题,复合函数求单调区间时,一般分离成两个简单函数根据同增异减的特性来判断.)z,z=x2-6x+5,根据同增异减性可得答案.将原函数分离成两个简单函数y=(13【解答】解:令z=x2-6x+5是开口向上的二次函数,x∈(-∞,3]上单调递减,x∈[3,+∞)上单调递增.则原函数可以写为:y =(13)t ,t =x 2-6x +5, 因为y =(13)t 单调递减,故原函数的单调递减区间为:[3,+∞). 故选D . 32.【答案】C【解析】【分析】本题考查了指数函数的定义,属于容易题. 函数y =(a 2−5a +5)a x 是指数函数,所以必须满足{a 2−5a +5=1a >0,且a ≠1,解出即可.【解答】解:∵函数y =(a 2−5a +5)a x 是指数函数,∴{a 2−5a +5=1a >0,且a ≠1,解得a =4.故选C .33.【答案】C【解析】【分析】本题考查指数函数的单调性的应用,考查计算能力.直接判断a ,b 的大小,然后求出结果. 【解答】解:由题意可知1>a =0.60.6>b =0.61.5,c =1.50.6>1, 可知:c >a >b . 故选C . 34.【答案】5【解析】【分析】本题考查对数式、指数式化简求值,属于基础题. 利用指数,对数的性质、运算法则求解. 【解答】 解:=1+3×23+lg100 =1+2+2 =5.故答案为5. 35.【答案】7【解析】解:∵2x +2-x =3,∴4x +4-x =(2x +2-x )2-2=32-2=7. 故答案为:7.直接把要求解的式子配方后代入已知条件得答案.本题考查了有理指数幂的化简求值,关键是完全平方式的应用,是基础题. 36.【答案】19【解析】【分析】本题考查有理指数幂的化简求值,考查计算能力,直接利用有理指数幂化简求值即可. 【解答】解:0.027−13-(-17)-2+25634-3-1+(√2-1)0 =103-49+64-13+1 =19.故答案为19. 37.【答案】-6b【解析】解:(−3a 13b 23)·(a 12b 12)÷(12a 56b 16)=−6a 13+12−56b 23+12−16 =−6a 0b 1=-6b故答案为-6b .本题考查了指数的运算法则,与单项式相乘除的法则相同,系数相乘除作系数,同底数幂相乘除,底不变,指数相加减,即可得出. 38.【答案】x =1或x =2【解析】【分析】求解关于2x 的一元二次方程,然后进一步求解指数方程得答案.本题考查有理指数幂的化简与求值,考查了一元二次方程的解法,是基础题. 【解答】解:由4x -6×2x +8=0,得 (2x -2)(2x -4)=0, 即2x =2或2x =4. ∴x =1或x =2.故答案为:x =1或x =2. 39.【答案】3【解析】【分析】本题主要考查了根式的化简,属于基础题. 根据根式的特点化简即可.【解答】解:由4<x <7,则式子√(x −4)44+√(x −7)44=|x -4|+|x -7|=x -4+7-x =3, 故答案为3.40.【答案】(−1,4)【解析】【分析】本题考查指数函数单调性的应用,一元二次不等式的解法等基础知识,考查运算求解能力与转化思想.先利用指数函数单调性,得−x 2+2x >−x −4,解不等式即可. 【解答】解:原不等式可化为3−x 2+2x >3−x−4, ∵函数y =3x 为R 上的增函数, ∴−x 2+2x >−x −4, 解得−1<x <4 故答案为(−1,4).41.【答案】(2,2)【解析】【分析】本题考查指数函数的图象过定点问题,属基础题,本题也可利用指数函数的图象变换求出.令x -2=0,则x =2,即为定点横坐标,代入函数式可得定点纵坐标. 【解答】解:令x =2,得y =a 0+1=2,所以函数y =1+a x−2的图象恒过定点坐标是(2,2). 故答案为(2,2). 42.【答案】(0,3]【解析】【分析】本题考查了指数函数的性质,复合函数的值域,利用换元法求函数的值域,属于基础题. 令t =x 2-1,将求函数y =(13)x2−1的值域的问题转化为求y =(13)t 在[-1,+∞)上的值域问题,再利用函数y =(13)t 的单调性求值域. 【解答】解:令t =x 2-1,t ∈[-1,+∞), 即y =(13)t ,t ∈[-1,+∞),函数y =(13)t 在区间[-1,+∞)上是减函数, 故y ≤(13)−1=3 , 故函数y =(13)x2−1的值域是(0,3].故答案为(0,3].43.【答案】(0,2)【解析】【分析】本题考查函数的零点个数,函数的图象的应用,属于中档题. 利用分段函数画出函数的图象,然后判断m 的范围即可. 【解答】解:画出函数f(x)={3x −1,x >0−2x 2−4x,x ⩽0的图象如下:由函数f(x)=m有3个不等实根,即函数f(x)与直线y=m有3个交点,结合图象得:0<m<2,即m∈(0,2).故答案为(0,2).44.【答案】0<a<12【解析】解:①当0<a<1时,作出函数y=|a x-1|图象:若直线y=2a与函数y=|a x-1|(a>0且a≠1)的图象有两个公共点由图象可知0<2a<1,∴0<a<1.2②当a>1时,作出函数y=|a x-1|图象:若直线y=2a与函数y=|a x-1|(a>0且a≠1)的图象有两个公共点由图象可知0<2a<1,此时无解..综上:a的取值范围是0<a<12故答案为:0<a<12先分:①0<a<1和a>1时两种情况,作出函数y=|a x-1|图象,再由直线y=2a与函数y=|a x-1|(a>0且a≠1)的图象有两个公共点,作出直线,移动直线,用数形结合求解.本题主要考查指数函数的图象和性质,主要涉及了函数的图象变换及函数的单调性,同时,还考查了数形结合的思想方法.45.【答案】[3,+∞)【解析】【分析】本题主要考查了函数的定义域问题,由根式内部的代数式大于等于0,然后求解指数不等式.【解答】解:由2x-8≥0,得2x≥8,则x≥3,∴函数y=y=√2x−8的定义域为[3,+∞).故答案为[3,+∞).46.【答案】(2,3)【解析】【分析】本题考查指数型函数的图象恒过定点问题,关键是掌握此类问题的求法,是基础题. 由指数式的指数等于0求得x 值,进一步求得y 值,则答案可求. 【解答】解:由x -2=0,得x =2,此时y =3.∴函数y =a x -2+2(a >0且a ≠1)一定过定点(2,3). 故答案为(2,3).47.【答案】−32【解析】【分析】本题考查指数函数的单调性的应用,以及分类讨论思想,属于中档题. 对a 进行分类讨论,结合指数函数的单调性列出方程组,解得答案. 【解答】解:当a >1时,函数f (x )=a x +b 在定义域上是增函数, 所以{1+b =0a −1+b =−1,解得b =-1,1a =0不符合题意舍去;当0<a <1时,函数f (x )=a x +b 在定义域上是减函数, 所以{1+b =−1a −1+b =0,解得b =-2,a =12, 综上a +b =−32, 故答案为:−32 .48.【答案】(1)解:原式=log 322×8329-52log 53=2-32=-7.(2)解:原式=(32)2×12-1-(32)3×23+(32)2=32-1-94+94=12.【解析】本题考查了指数幂与对数的运算性质,考查了计算能力,属于基础题. (1)利用对数的运算性质即可得出. (2)利用指数的运算性质即可得出.49.【答案】解:(1)√(3−π)44+(0.008)13-(0.25)12×(√2)-4=π-3+0.2-0.5×4 =π-3+0.2-2 =π-4.8.(2)(√23×√3)6+(√2√2)43-4(1649)−12-√24×80.25-(-2009)0=4×27+(234)43-7-1614-1=108+2-7-2-1=100.【解析】本题主要考查指数式化简求值,是基础题.解题时要认真审题,注意有理数指数幂的性质、运算法则的合理运用. (1)利用有理数指数幂的性质、运算法则求解. (2)利用有理数指数幂的性质、运算法则求解.50.【答案】解:(1)原式=53−(23)3×13-1+2−2×(−12)=53−23-1+2=2. (2)原式=lg8×1252×512lg10×(−lg10)=lg102−12=-4.(3)∵a ,b ,c 为正实数,a x =b y =c z =k >0,k ≠1. ∴x =lgklga ,y =lgklgb ,z =lgklgc , ∵1x +1y +1z =0,∴lga+lgb+lgc lgk=lg(abc)lgk=0,∴abc =1.【解析】(1)本题考查了指数幂的运算性质,考查了推理能力与计算能力,属于基础题.利用指数幂的运算性质即可得出.(2)本题考查了对数的运算性质,考查了推理能力与计算能力,属于基础题.利用对数的运算性质即可得出.(3)本题考查了对数的运算性质,考查了推理能力与计算能力,属于基础题.设a x =b y =c z =k >0,可得x =lgk lga ,y =lgk lgb ,z =lgklgc ,再利用对数的运算性质即可得出.51.【答案】解:(1)(214)12−(−0.96)0−(338)−23+(1.5)−2 =32−1−[(32)3]−23+(32)−2=12−(32)−2+(32)−2 =12. (2)∵10x =3,10y =4, ∴102x -y =102x 10y =(10x )210y =94.【解析】本题考查有理数指数幂的化简求值,是基础题,解题时要认真审题,注意有理数指数幂的性质、运算法则的合理运用.(1)利用有理数指数幂的性质、运算法则求解. (2)利用有理数指数幂的性质、运算法则求解.52.【答案】解:(1)原式=0.82×(−12)+33×23-1-23=54+9-1-8=54.(2)原式=log 3(102×0.81)=log 334=4.【解析】(1)利用指数的运算性质即可得出. (2)利用对数的运算性质即可得出.本题考查了指数与对数的运算性质,考查了推理能力与计算能力,属于基础题.53.【答案】解:(1)原式=(8116)0.5−1÷(43)2+(2764)23=94−916+916=94.(2)原式=log 3332+lg 1004+lg4+2+1=32+2−lg4+lg4+3=132.【解析】(1)本题考查指数式化简求值,是基础题.利用有理数指数幂的性质及运算法则求解,解题时要认真审题,注意有理数指数幂的性质及运算法则的合理运用.(2)本题考查对数式和指数式的化简求值,是基础题.利用对数的运算性质化简即可.54.【答案】解:(1)(279)12-(2√3-π)0-(21027)−23+0.25−32,原式=√259-1-(6427)−23+(14)−32=53-1-(2764)23+432 =23-916+8=8548.(2)由题意:0<x <1, ∴x 12−x −12<0所以:(x 12−x −12)2=x +x -1-2. ∵x +x -1=3, ∴(x 12−x −12)2=1, 故得x 12−x −12=-1.【解析】本题考查了指数幂的运算性质,属于基础题. (1)利用指数幂的运算性质即可得出. (2)由题意0<x <1,且x +x -1=3,判断x 12-x−12的值为负,采用两边平方后,再开方可得答案.55.【答案】解(1)原式=(94)12−1−(278)−23+(110)−2=32-1-49+100=180118.(2)∵(x 12+x −12)2=x +x -1+2=5, ∴x 12+x −12=√5, ∴(x +x -1)2=x 2+x -2+2=9, ∴x 2+x -2=7, ∴x 12+x−12x 2+x −2+3=√510.【解析】本题考查了幂的运算性质,属于基础题. (1)根据幂的运算性质计算即可, (2)根据幂的运算性质计算即可.56.【答案】解:(1)(2a23b12)(-6a12b13)÷(-3a16b56)(a >0,b >0)=4a 23+12−16b 12+13−56 =4a .(2)2(lg √2)2+lg √2×lg5+√(lg √2)2−lg2+1 =lg √2(lg2+lg5)+√(lg √2−1)2 =lg √2+1−lg √2 =1.【解析】本题考查指数、对数的化简求值,是基础题,解题时要认真审题,注意指数式、对数式性质、运算法则的合理运用. (1)利用指数式性质、运算法则求解. (2)利用对数性质、运算法则求解.57.【答案】解:1612+(181)−0.25−(−12)0 =4+3-1 =6.(2a 14b −13)(−3a −12b 23)÷(−14a −14b −23) = 24a 14−12+14b −13+23+23 = 24b .【解析】本题考查指数性质、运算法则的应用,是基础题,解题时要认真审题,注意指数性质、运算法则的合理运用. 利用指数性质、运算法则直接求解.58.【答案】解:根据题意,函数的定义域显然为(-∞,+∞). 令u =f (x )=3+2x -x 2=4-(x -1)2≤4. ∴y =3u 是u 的增函数,当x =1时,u max =f (1)=4,而u ∈(−∞,4). ∴0<3u ≤34,即值域为(0,81].(3)当x ≤1时,u =f (x )为增函数,y =3u 是u 的增函数,根据同增异减原则.即原函数单调增区间为(-∞,1],单调减区间为(1,+∞); 其证明如下:任取x 1,x 2∈(-∞,1]且令x 1<x 2,则f(x 1)f(x 2)=3−x 12+2x 1+3÷3−x 22+2x 2+3=3−x 12+2x 1+3+x 22−2x 2−3=3(x 22−x 12)+2(x 1−x 2)= 3(x 1−x 2)(2−x 1−x 2)∵x 1<x 2,x 1,x 2∈(-∞,1] ∴x 1-x 2<0,2-x 1-x 2>0 ∴(x 1-x 2)(2-x 1-x 2)<0 ∴3(x 1−x 2)(x 1+x 2+2)<1∴f (x 1)<f (x 2)∴原函数单调增区间为(-∞,1]同理可证,原函数单调减区间为[1,+∞).即原函数单调增区间为(-∞,1],单调减区间为(1,+∞).【解析】根据题意,定义域的求解易知为(-∞,+∞),值域的求解通过换元法将3+2x -x 2换成u ,通过二次函数的知识求得u 的范围为(-∞,4],再根据指数函数y =3u 的单调性即可求解利用复合函数的单调性的特点(根据同增异减口诀,先判断内层函数的单调性,再判断外层函数单调性,在同一定义域上,若两函数单调性相同,则此复合函数在此定义域上为增函数,反之则为减函数)判断出函数的单调区间,在根据定义:(就是定义域内的任意取x 1,x 2,且x 1<x 2,比较f (x 1),f (x 2)的大小,或f (x 1)<f (x 2)则是增函数;反之则为减函数)证明即可本题考查了以指数函数为依托,通过换元法进行求解函数值域,另外还有复合函数的单调性问题,属于基础题.59.【答案】解:(Ⅰ)因为f (x )是奇函数,所以f (0)=0,即b−1a+2=0⇒b =1,∴f(x)=1−2x a+2x+1, 又由f (1)=-f (-1)知1−2a+4=−1−12a+1⇒a =2. 所以a =2,b =1.经检验a =2,b =1时,f(x)=−2x +12x+1+2是奇函数. (Ⅱ)由(Ⅰ)知f(x)=1−2x 2+2x+1=−12+12x +1,易知f (x )在(-∞,+∞)上为减函数.又因为f (x )是奇函数,所以f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (k -2t 2),因为f (x )为减函数,由上式可得:t 2-2t >k -2t 2.即对一切t ∈R 有:3t 2-2t -k >0,从而判别式Δ=4+12k <0⇒k <−13.所以k 的取值范围是(−∞,−13).【解析】本题主要考查函数奇偶性与单调性的综合应用,同时考查一元二次不等式恒成立问题的解决策略,属于中档题.(Ⅰ)利用奇函数的定义,在f (x )=-f (-x )中运用特殊值求a ,b 的值;(Ⅱ)首先确定函数f (x )的单调性,然后结合奇函数的性质把不等式f (t 2-2t )+f (2t 2-k )<0转化为关于t 的一元二次不等式,最后由一元二次不等式知识求出k 的取值范围. 60.【答案】解:(1)∵f (-x )=-f (x ),∴a−2−x1+2−x =-a−2x 1+2x ,即a⋅2x −11+2x =2x −a1+2x, ∴a =1,∴f (x )=1−2x1+2x ;(2)函数f(x)为R上的减函数. ∵f(x)的定义域为R,∴任取x1,x2∈R,且x2>x1,∴f(x2)-f(x1)=1−2x21+2x2−1−2x11+2x1=2(2x1−2x2)(1+2x1)(1+2x2),∵x2>x1,∴2x2>2x1>0,∴f(x2)−f(x1)<0即f(x2)<f(x1),∴函数f(x)为R上的减函数;(3)由(2)知,函数f(x)在[0,2]上为减函数,∴f(2)≤f(x)≤f(0),即−35≤f(x)≤0,即函数的值域为[-35,0].【解析】本题主要考查函数奇偶性的应用以及函数单调性和值域的求解,利用定义法是解决本题的关键.(1)根据条件建立方程关系即可求a的值;(2)根据函数单调性的定义判断并证明函数f(x)的单调性;(3)结合函数的单调性即可求f(x)在[0,2]上的值域.61.【答案】解:(Ⅰ)∵t=2x在x∈[−12,12]上单调递增,∴t∈[√22,√2] ;(Ⅱ)函数可化为:f(x)=g(t)=t2-2t+3 ,∵g(t)在[√22,1]上单减,在[1,√2]上单增,比较得g(√22)<g(√2),∴f(x)min=g(1)=2,f(x)max=g(√2)=5-2√2,∴函数的值域为[2,5-2√2].【解析】本题考查了指数函数的值域的求法,指数函数与一元二次函数组成的复合函数的值域的求法,属于基础题.解题的关键是熟练掌握指数函数的性质与二次函数的性质,本题的重点在第二小题,将求复合函数的值域转化为求两个基本函数的值域,先求内层函数的值域再求外层函数的值域,即可得到复合函数的值域,求复合函数的值域问题时要注意此技能使用.(Ⅰ)由题意,可先判断函数t=2x,x∈[−12,12]单调性,再由单调性求出函数值的取值范围,易得;(Ⅱ)由于函数f(x)=4x-2x+1+3是一个复合函数,可由t=2x,将此复合函数转化为二次函数g(t)=t2-2t+3,此时定义域为t∈[√22,√2],求出二次函数在这个区间上的值域即可得到函数f(x)的值域.62.【答案】解:由a2x-7>a4x-1知需要进行分类,具体情况如下:当a>1时,∵y=a x在定义域上递增,∴2x-7>4x-1,解得x<-3;当0<a<1时,∵y=a x在定义域上递减,∴2x-7<4x-1,解得x>-3;综上得,当a>1时,x的取值范围为(-∞,-3);当0<a<1时,x的取值范围为(-3,+∞).【解析】根据不等式需要对a进行分两类:a>1时和0<a<1时,再分别利用指数函数的单调性列出不等式求解,最后要把结果分开表示.本题考查了利用指数函数的单调性求有关指数不等式的解,关键是根据底数判断函数的单调性,考查了分类讨论思想.63.【答案】解:(1)根据题意,f(x)=(12x−1+12)x,则有2x-1≠0,解可得x≠0,则函数的定义域为{x|x≠0},(2)设任意x≠0,∵f(−x)=(12−x−1+12)(−x)=(2x1−2x+12)(−x)=(2x−1+11−2x+12)(−x)=(11−2x−12)(−x)=(1 2x−1+12)x=f(x).∴f(x)为偶函数;(3)根据题意,f(x)为偶函数,f(-x)=f(x),当x>0时,2x-1>0,则f(x)=(12x−1+12)x>0,又由f(x)为偶函数,则当x<0时,f(x)>0,综合可得:f(x)>0.【解析】本题考查函数奇偶性与单调性的综合应用,判定函数的奇偶性时要先分析函数的定义域.(1)根据题意,由函数的解析式可得2x-1≠0,解可得x的范围,即可得答案;(2)由(1)的结论,进而分析f(-x)=f(x),结合函数奇偶性的定义即可得答案;(3)根据题意,当x>0时,分析易得f(x)=(12x−1+12)x>0,结合函数的奇偶性分析可得答案.。

相关文档
最新文档