2012-2013学年第一学期衢州市五校联谊期中质量检测九年级数学试卷

合集下载

2013-2014学年九年级数学第一学期期中联考试卷 (新人教版 第81套)

2013-2014学年九年级数学第一学期期中联考试卷 (新人教版 第81套)

泰顺县五校2013-2014学年第一学期期中联考九年级数学试卷一、选择题(共10小题,每题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.若点P (2,m )是反比例函数x4y =图象上一点,则m 的值是( ) A .1 B .2C .3D .42.抛物线5)3(22+--=x y 的顶点坐标是( )A . (3, -5)B .(-3, 5)C .(3, 5)D .(-3, -5) 3.反比例函数x2y -=的图象位于( ) A .第一、二象限 B.第三、四象限 C .第一、象限 D .第二、四象限 4.如图,C 是⊙O 上一点,O 是圆心.若∠AOB=80°,则∠ACB 的度数为( )A .80°B .100°C .160°D . 40°5.将抛物线22x y =的图象先向右平移2个单位,再向上平移3个单位后,得到的抛物线的解析式是( )A.3)2(22--=x y B.3)2(22+-=x y C. 3)2(22-+=x y D.3)2(22++=x y6. 绍兴是著名的桥乡,如图,圆拱桥的拱顶到水面的距离CD 为8m ,桥拱半径OC 为5m ,则水面宽AB 为( ) A. 4m B. 5m C. 6m D. 8m7.已知圆锥的底面半径为3cm ,母线长为5cm ,则它的侧面积为( )第4题 第6题A.60π2cmB.45π2cmC.30π2cmD.15π2cm8.已知二次函数的图象(﹣0.7≤x ≤2)如图所示、关于该函数在所给自变量x 的取值范围内,下列说法正确的是( )A. 有最小值1,有最大值2B. 有最小值-1,有最大值1C. 有最小值-1,有最大值2D. 有最小值-1,无最大值 9.已知),(111y x P ,),(222y x P ,),(333y x P 是反比例函数xy 2=的图象上的三点,且3210x x x <<<,则321y y y 、、的大小关系是( )A. 123y y y << B .321y y y << C. 312y y y << D. 132y y y << 10.小明从图所示的二次函数c bx ax y ++=2的图象中,观察得出了下面四条信息:①032=+b a ;②ac b 42-<0;③0>+-c b a ;④方程02=++c bx ax 必有一个根在-1到0之间.你认为其中正确信息的个数有( )A .1个B .2个C .3个D .4个二、填空题(共6小题,每题5分,共30分) 11.抛物线332-+-=x x y 与y 轴的交点坐标为 _________ .12.已知正比例函数x 2-y =与反比例函数xky =的图象的一个交点坐标为 (-1,2),则另一个交点的坐标为 13.如图,已知∠BPC=50°,则∠BAC=第8题14.如图,已知Rt △ABC 是⊙O 的内接三角形,其中直角边AC=6、BC=8,则⊙O 的半径是 _________ .15.如图,二次函数的图象与x 轴相交于点(﹣1,0)和(3,0),则它的对称轴是 _________ .16.如图,如果边长为1的等边△PQR 沿着边长为1的正方形ABCD 的外部的边如图位置开始顺时针连续滚动,当它滚动121次时,点P 所经过的路程是 _________ .二、解答题(共8小题,共80分。

浙江省宁波地区2012-2013学年度第一学期五校第次联考初三数学试卷

浙江省宁波地区2012-2013学年度第一学期五校第次联考初三数学试卷

宁波地区2012-2013学年度第一学期五校第一次联考初三数学试卷一、选择题(本题有12小题,每题3分,共36分.每小题只有一个正确选项)1、下列命题中,是真命题的是( )A 、三点确定一个圆B 、相等的圆心角所对的弧相等C 、抛物线y=62--x x 的顶点在第四象限D 、平分弦的直径垂直于这条弦 2、抛物线y =122+-x x 与坐标轴交点为( )A 、二个交点B 、一个交点C 、无交点D 、三个交点 3、如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D = 35°,则∠OAC 的度数是( )A 、35°B 、55°C 、65°D 、70°4、如图,冰淇淋蛋筒下部呈圆锥形,底面圆的直径为5cm ,母线为8 cm. 则蛋筒圆锥部分包装纸的面积(接缝忽略不计)是( )A 、36πcm 2B 、20πcm 2C 、18πcm 2D 、8πcm 25、二次函数2y ax bx c =++的图象如图所示,则反比例函数ay x=与一次函数y bx c =+在同一坐标系中的大致图象是( ).6、 小明从图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;你认为其中正确信息的个数有( ) A 、1个B 、2个C 、3个D 、4个7、⊙O 的直径为10CM,弦AB=8CM ,P 是弦AB 上一点,若OP 的长为整数,则满足条件的点P 有( )A 、2个B 、3个C 、4个D 、5个 8、若二次函数2()1y x m =--.当x ≤l 时,y 随x 的增大而减小,则m 的取值范围是( )A .m =lB .m >lC .m ≥lD .m ≤l9、直线y =-2x +5分别与x 轴,y 轴交于点C 、D ,与反比例函数y =3x的图象交于点A 、B .过点A 作AE ⊥y 轴于点E ,过点B 作BF ⊥x 轴于点F ,连结EF ,下列结论:①AD =BC ;②EF //AB ;③四边 形AEFC 是平行四边形:④S △AOD =S △BOC . 其中正确的个数是( )A .1B .2C .3D .4 10、如图,Rt ABC △中,90ACB ∠= ,30CAB ∠= ,2BC =,O H ,分别为边AB AC ,的中点,将ABC △绕点B 顺时针旋转120 到11A BC △的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为( )A.7π3B.4π3+C .πD.4π311、若},,,max{21n s s s 表示实数n s s s ,,,21 中的最大者.设),,(321a a a A =,⎪⎪⎪⎭⎫ ⎝⎛=321b b b B ,记}.,,max{332211b a b a b a B A =⊗设,1(-=x A 1+x ,),⎪⎪⎪⎭⎫ ⎝⎛--=|1|21x x B ,若1-=⊗x B A ,则x 的取值范围为( )A .131≤≤-x B .211+≤≤x C .121≤≤-x D . 311+≤≤x12、若z y x ,,均为非负数,且满足12123y z x +--==,则222x y z ++可取得的最小值为( )(提示:令12123y z x +--==t =) A .3 B .5914C .0D .229二、填空题(本题共8小题,每题3分,共24分) 13、抛物线y =x 2 –2x –3 的顶点坐标是 .14、如图,AB 是⊙O 的弦,OC ⊥AB 于点C ,AB =16cm , OC =6cm ,那么⊙O 的半径是__________cm .第10题AH BOC 1O1H 1C15、函数23y x =+的图象不经过第 象限. 16、如图所示,直角坐标系中一条圆弧经过网格点A 、B 、C ,其中B 点的坐标是(4,4),则该圆弧所在圆的圆心坐标为 .17、⊙O 的半径为1cm ,弦AB=2cm ,AC=3cm ,则∠BAC的度数为___________ 18、如图,菱形ABCD 中,AB =2,∠C =60°,菱形ABCD 在直线,上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过36次这样的操作,菱形中心O 所经过的路径总长为(结果保留π) .19、如图,⊿ABC 中,∠B=∠C=30°,点A D ⊥BC ,O 是AD 的中点,过O 点的直线MN 分别交线段BE 和CF 于点M ,N ,若AM :MB=3:5, 则AN :NC 的值是_______20、如图,在直角三角形ABC 中,∠ACB = 90°,CA = 4.点P 是半圆弧AC 的中点,连接BP ,线段BP 把整个图形APCB (指半圆和三角形ABC 组成的图形)分成两部分,则这两部分面积之差的绝对值是 .BEM FNCBD OAyx正常水位班级 学号 姓名 试场号 座位号_________________◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆初三数学答卷一、选择题(本题有12小题,每题3分,共36分.每小题只有一个正确选项) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题(本题共8小题,每题3分,共24分) 题号 13 14 15 16 17 18 19 20 答案三、解答题(共6大题,总分60分) 21、(本小题8分)如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小都相同.正常水位时,大孔 水面宽度20AB =米,顶点M 距水面6米(即6MO =米),小孔顶点N 距水面4.5米(即 4.5NC =米).当水位上涨刚好淹没小孔时,借助图中的直角坐标系,求此时大孔的水面宽 度EF .22、(本小题8分)如图,已知在⊙O 中,AC 是⊙O 的直径,AC ⊥BD 于F ,∠A=30°.(1)求图中阴影部分的面积;(2)若用阴影扇形OBD 围成一个圆锥侧面,请求出这个圆锥的底面圆的半径。

九年级数学上学期期中模拟卷(浙教版九上第1~4章:二次函数+简单事件的概率+圆的基本性质)考试版

九年级数学上学期期中模拟卷(浙教版九上第1~4章:二次函数+简单事件的概率+圆的基本性质)考试版

2024-2025学年九年级数学上学期期中模拟卷(浙教版)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:浙教版九上第1~4章(二次函数+简单事件的概率+圆的基本性质+相似三角形)。

5.难度系数:0.65。

第一部分(选择题共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.已知线段a、b,如果a:b=2:3,那么下列各式中一定正确的是( )A.2a=3b B.a+b=5C.a+ba =52D.a+3b+2=12.关于二次函数y=﹣(x+1)2的图象,下列说法错误的是( )A.开口向下B.对称轴为直线x=﹣1C.当x<﹣1时,y随x的增大而增大D.当x=﹣1时,函数有最小值,最小值为y=33.如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=2,ED=8,则⊙O的半径是( )A.3B.4C.5D4.如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若EF=BD =8,则菱形ABCD 的周长为( )A .8B .C .D .5.如图,身高1.5米的小明(AB )在太阳光下的影子AG 长1.8米,此时,立柱CD 的影子一部分是落在地面的CE ,一部分是落在墙EF 上的EH .若量得CE =1.2米,EH =1.5米,则立柱CD 的高为( )A .2.5mB .2.7mC .3mD .3.6m6.“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”.小文购买了“二十四节气”主题邮票,他要将“立春”“立夏”“秋分”“大寒”四张邮票中的两张送给好朋友小乐.小文将它们背面朝上放在桌面上(邮票背面完全相同),让小乐从中随机抽取一张(不放回),再从中随机抽取一张,则小乐抽到的两张邮票恰好是“立春”和“立夏”的概率是( )A .16B .18C .23D .127.如图,在△ABC 中,点D 在AB 上,BD =2AD ,DE ∥BC 交AC 于E ,则下列结论不正确的是( )A .BC =3DEB .BD BA =CE CAC .△ADE ∽△ABCD .S △ADE =13S △ABC8.已知二次函数y =﹣3x 2+12x ﹣9与直线y =m ,以下说法不正确的是( )A .若方程﹣3x 2+12x ﹣9=m 有实数根,则m ≤3B .若二次函数y =﹣3x 2+12x ﹣9与直线y =m 交于点E ,F ,若EF =6,则m =﹣24C .若x 1,x 2(x 1<x 2)是方程﹣3x 2+12x ﹣9=m (m <0)的两个根,则x 1<1<x 2<3D .二次函数y =﹣3x 2+12x ﹣9﹣m 图象实质是将二次函数y =﹣3x 2+12x ﹣9的图象向下平移m 个单位长度9.如图,点A ,B ,C 是圆O 上的三点,且四边形ABCO 是平行四边形,OF ⊥OC 交⊙O 于点F ,则∠BAF 的度数为( )A .12.5°B .15°C .20°D .22.5°10.如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,图象过点A (﹣3,0),对称轴为直线x =﹣1,给出四个结论:①b 2>4ac ;②b ﹣2a =0;③a +b +c >0;④若点B(―52,y 1),C(―12,y 2)为函数图象上的两点,则y 1<y 2.其中正确结论是( )A .①②④B .①④C .①③④D .②④第二部分(非选择题 共90分)二、填空题(本大题共6小题,每小题3分,满分18分)11.已知线段AB =10,C 为AB 的黄金分割点(AC >BC ),则AC = .12.如图,四边形ABCD 为⊙O 的内接四边形,已知∠BOD =140°,则∠BCD 的度数为 .13.如图,在Rt△ABC中,∠ABC=90°,AB=2,∠BCA=30°,以点B为圆心,AB的长为半径作弧,分别交AC,BC于点D,E,则图中阴影部分的面积为.14.如图,D、E分别是△ABC的边上AB、BC上的点,DE∥AC,若S△BDE :S△CDE=1:3,当S△DOE=1时,则S△AOC的值为.15.已知二次函数y=ax2+bx+c,当x=2时,该函数取最大值12.设该函数图象与x轴的一个交点的横坐标为x1,若x1>4,则a的取值范围是.16.如图1是护眼学习台灯,该台灯的活动示意图如图2所示.灯柱BC=6cm,灯臂AC绕着支点C可以旋转,灯罩呈圆弧形(即AD和EF).在转动过程中,AD(EF)总是与桌面BH平行.当AC⊥BH时,AB=46cm,DM⊥MH,测得DM=37.5cm(点M在墙壁MH上,且MH⊥BH);当灯臂AC转到CE 位置时,FN⊥MH测得FN=13.5cm,则点E到桌面BH的距离为cm.若此时点C,F,M在同一条直线上,EF的最低点到桌面BH的距离为35cm,则EF所在圆的半径为cm.三、解答题(本大题共8小题,满分72分.解答应写出文字说明,证明过程或演算步骤)17.(8分)已知:二次函数y =ax 2+bx +c 的图象与x 轴相交于A (﹣4,0),B (2,0)两点,与y 轴相交于点C (0,﹣4),点D 为抛物线的顶点.(1)求二次函数的解析式;(2)求S △ABC :S △ACD 的值.18.(8分)对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A ,B ,C ,D 四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A 小区的概率是 ;(2)请用列表或画树状图的方法求甲组抽到A 小区,同时乙组抽到C 小区的概率.19.(8分)如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,AE =2,CD =8.(1)求⊙O 的半径长;(2)连接BC,作OF⊥BC于点F,求OF的长.20.(8分)如图,在△ABC中,点D在BC边上,点E在AC边上,且AD=AB,∠DEC=∠B.(1)求证:△AED∽△ADC;(2)若AE=1,EC=3,求AB的长.21.(8分)在平面直角坐标系中,设二次函数y=―12(x―2m)2+3―m(m是实数).(1)当m=2时,判断函数图象与x轴有几个交点;(2)小明说二次函数图象的顶点在直线y=―12x+3上,你认为他的说法对吗?为什么?(3)已知点P(a+1,c),Q(4m﹣5+a,c)都在该二次函数图象上,求证:c≤13 8.22.(10分)如图,△ABC内接于⊙O,∠ABC>90°,△ABC的外角∠EAC的平分线交⊙O于点D,连接DB,DC,DB交AC于点F.(1)求证:△DBC是等腰三角形.(2)若DA=DF.①求证:BC2=DC•BF.②若⊙O的半径为5,BC=6,求S△BCFS△ADF的值.23.(10分)跳台滑雪是冬季奥运会比赛项目之一.如图,运动员通过助滑道后在点A处起跳经空中飞行后落在着陆坡BC上的点P处,他在空中飞行的路线可以看作抛物线的一部分.这里OA表示起跳点A到地面OB的距离,OC表示着陆坡BC的高度,OB表示着陆坡底端B到点O的水平距离.建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=―116x2+bx+c.已知OA=70m,OC=60m,落点P的水平距离是40m,竖直高度是30m.(1)点A的坐标是,点P的坐标是;(2)求满足的函数关系y=―116x2+bx+c;(3)运动员在空中飞行过程中,当他与着陆坡BC竖直方向上的距离达到最大时,直接写出此时的水平距离.24.(12分)在⊙O中,半径为8.(1)如图一,若B为AC上一个点(不与A、C重合),且ABC的度数为90°,①求∠ABC的度数;②若E为弦AB的中点,F为弦BC的中点,求线段EF的长度.(2)如图二,若AB的度数为60°,CD的度数为120°,BD的度数为60°,点E为弦AB的中点,点F为弦CD的中点,求线段EF的长度.。

2023-2024浙江省北仑区第一学期精准联盟期中质量调研九年级数学卷

2023-2024浙江省北仑区第一学期精准联盟期中质量调研九年级数学卷

2023学年第一学期精准联盟期中质量调研九年级数学卷考生须知:1.本试卷分试题卷和答题卷两部分,满分120分。

2.答题前,必须在答题卷的规定区内填写校名、班级、姓名等。

3.所有答案都必须写在答题卷标定的位置上,务必注意试题序号和答题序号相对应。

4.如需画图作答,必须用黑色字迹的钢笔或签字笔将图形线条描黑。

一、选择题:本题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项最符合题目要求.1.“明天是晴天”这个事件是()A.确定事件B.不确定事件C.必然事件D.不可能事件2.抛物线y=−2(x−2)2−5的顶点坐标是()A.(−2,5)B.(2,5)C.(−2,−5)D.(2,−5)3.如图,五线谱是由等距离、等长度的五条平行横线组成的,同一条直线上的三个点A,B,C都在横线上.若线段AC=152,则线段AB的长是()A.52B.5C.32D.24.若线段a=2,b=8,则线段a,b的比例中项为()A.±4 B.±16C. 4 D.165.如图,已知AB是⊙O的直径,CD是弦,若∠BCD=24°,则∠ABD=()A.54°B.56°C.64°D.66°第2题图第5题图第9题图6.在Rt△ABC中,∠ACB=90°,AC=6,AB=10,以C为圆心,BC为半径作⊙C,则点A与⊙C的位置关系是()A.点A在⊙C内B.点A在⊙C上C.点A在⊙C外D.无法确定7.对于二次函数y=x2−4x−1的图象,下列说法错误的是()A.开口向上B.与x轴有两个交点C.抛物线的对称轴为直线x=2D.当x≥2时,y随x的增大而减小8. 下列有关圆的一些结论:①平分弧的直径垂直于弧所对的弦;②平分弦的直径垂直于弦;③在同圆或等圆中,相等的弦所对的圆周角相等;④同弧或等弧所对的弦相等,其中正确的有()A.①④B.②③C.①③D.②④9.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O 于点E,若∠A O B=3∠ADB,则()A.DE=EB B.√2 DE=EB C.DE=O B D.√3 DE=D O10.已知抛物线y=(x−b)2+c经过A(1−n,y1),B(n,y2),C(n+3,y3)三点,y1=y3.当1−n≤x≤n 时,二次函数的最大值与最小值的差为16,则n的值为()D.4 A.-5 B.3 C.196二、填空题:本题有6个小题,每小题4分,共24分.11.如图,转盘被分成5个面积相等的扇形,任意转动这个转盘1次,当转盘停止转动时,指针落在阴影区域的概率为.第11题图第12题图第14题图12.如图,四边形ABCO的顶点A、B、C在⊙O上,若∠ABC=130°,则∠AOC=.13.已知点E是线段AB的黄金分割点,且BE>AE,若AB=2,则BE=.14.如图,将ABC绕点A逆时针旋转45°后得到ADE.若AB=4,则图中阴影部分图形的面积为.(结果保留π)15.若⊙O的直径AB为2,弦AC=√2,弦AD=√3,则∠CAD的度数为.16.有一个开口向下的二次函数,下表是函数中四对x与y的对应值.若其中有一对对应值有错误,则对于该二次函数,当时,x的取值范围是. 三、解答题:本题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.(6分)如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1),(2,1).(1)画出△BOC绕点O逆时针旋转90度,得到的△B1O C1,并写出点B的对应点B1的坐标;(2)在(1)的条件下,求点B旋转到点B1所经过的路径长(结果保留π).18.(8分)在学校开展的数学活动课上,小明和小刚制作了一个正三棱锥(质量均匀,四个面完全相同),并在各个面上分别标记数字1,2,3,4,游戏规则如下:每人投掷三棱锥一次,并记录底面的数字,如果两人底面数字的和为奇数,那么小明赢;如果和为偶数,那么小刚赢.(1)请用列表或画树状图的方法表示上述游戏中的所有可能结果.(2)请分别求出小明和小刚能赢的概率,并判断此游戏对双方是否公平.19.(8分)已知二次函数y=ax2+bx−3的图象经过点A(2,-3),B(-1,0).(1)求二次函数的解析式;(2)要使该二次函数的图象与x轴只有一个交点,应把图象沿y轴向上平移几个单位?20.(10分)如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE=4米时,是否要采取紧急措施?21.(10分)已知AB是⊙O的直径,点C在⊙O上,D为弧BC的中点.(1)如图①,连接AC,AD,OD.求证:OD//AC;(2)如图②,过点D作DE⊥AB交⊙O于点E,直径EF交AC于点G,若G为AC中点,①求证:∠BOD=45°;②若⊙O的半径为2,求AC的长.22.(12分)某商家代理经销某种商品,以每件进价40元,批发购进该商品915件,经走访市场发现:每天的销售量y x x≥50(1)写出y关于x的函数关系式.(2)问定价x为多少时,每天获得利润最大,并求最大利润.(3)商家在实际销售过程中,以每天最大利润销售了10天后,他发现销售时间只剩下最后两天,所以在最后不超过2天时间内销售完余下的商品,这915件商品的总利润为w元,则总利润w的最大值为(直接写出答案).23.(12分)如图,AB为⊙O的直径,点C、D都在⊙O上,且CD平分∠ACB,交直径AB于点E.(1)求证:∠ABD=∠BCD;(2)若DE=13,AE=17,求⊙O的半径;(3)DF⊥AC于点F,试探究线段AF、DF、BC之间的数量关系,并说明理由.。

2012-2013第二学期五校联考高二理科数学试卷和答案

2012-2013第二学期五校联考高二理科数学试卷和答案

2012-2013学年度下学期期末考试五校联考高二年级数学(理科)试题 2013年7月试题说明:本试卷分选择题和非选择题两部分,满分为150分。

考试时间为120分钟。

注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的学校、班级、姓名和学号填写在第II 卷和答题卡上,并在答题卡上用2B 铅笔将相应的信息点涂黑。

不按要求填涂的,答卷无效。

2、 单项选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3、 非单项选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4、 考生必须保持答题卡的整洁,考试结束后,将第II 卷及答题卡一并交回。

第一部分 选择题(共40分)一、选择题:(本题共8小题,每小题5分,共40分。

每小题给出的四个选项中,只有一个选项最符合题目要求。

) 1、已知全集U R =,集合{}5,4,3,2,1,0=M 和{}Z n n x x N ∈==,2的关系的韦恩(Venn )图如图1所示,则阴影部分所示的集合的元素共有( )A. 1个B. 2个C. 3个D. 4个2、设,a b R ∈,i 是虚数单位,则“0ab =”是“复数bi a -为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3、在等差数列}{n a 中,5,142==a a ,则}{n a 的前5项和5S =( )A .7B .15C .20D .254、下列函数中,既是奇函数又在()+∞,0上单调递增的是( )A .2x y =B .x y sin =C .x y =D .3x y =5、如图2所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体 的体积为( )A .6B .9C .12D .186、设ABC ∆的内角,,A B C 的对边分别为,,a b c , 且54cos ,5,6===A b a ,则=B ( ) A .6π B .3πC .6π或65πD .3π或32π7、执行如图3所示的程序框图(in C 为组合数),如果输入5=n ,则输出的S 的值是( )A .16B .32C .64D .1288、对于正整数b a ,(b a <).定义)()3)(2)((!ka b a b a b a b b a -⋅⋅⋅---=,其中k 是满足ka b >的最大整数,则=!20!1864( ) A .1 B .427 C .215 D .415 第二部分 非选择题(共110分)二、填空题(本大题共7小题,考生作答6小题,每小题5分,共30分.) (一)必做题(9~13题)9、函数)32lg()(2++-=x x x f 的定义域为 .10、某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 名学生.11、已知双曲线C :)0,0(12222>>=-b a by a x 的焦距为10 ,点)1,2(P 在C 的渐近线上,则C 的离心率为 .12、设,x y 满足约束条件:,013x y x y x y ≥⎧⎪-≥-⎨⎪+≤⎩;则2z x y =-的最小值为 .13、设0a >.若曲线y =与直线,0x a y ==所围成封闭图形的面积为2a ,则a = .(二)选做题(14、15题,考生只能从中选做一题,两题全答的,只计前一题的得分) 14、(坐标系与参数方程选讲选做题) 直线2cos 1ρθ=与圆2cos ρθ=相交的弦长为 .15、(几何证明选讲选做题) 如图4,AB 为圆O 的直径,BC 为圆O 的切线,且3=BC ,连接CO CA ,分别交圆O 于E D ,,且1=CE ,则=CD _______.三、解答题(本大题共6小题,共80分,要写出详细的解答过程或证明过程) 16、(本小题满分12分)已知函数),0,0)(6cos()(R x A x A x f ∈>>-=ωπω的最大值为2,最小正周期为π. (Ⅰ)求函数)(x f 的解析式; (Ⅱ)若41)12(=+παf ,)0,2(πα-∈,求αsin 的值.17、(本小题满分12分)甲、乙两班各15名同学参加数学竞赛,甲班同学的成绩茎叶图如图5所示,其中茎为十位数,叶为个位数;乙班同学的成绩频率分布直方图如图6所示, 其中成绩分组区间是:[)60,70、[)70,80、[)80,90、[]90,100. (Ⅰ)根据图5计算甲班同学成绩的均值; (Ⅱ)计算图6中x 的值;(Ⅲ)从甲、乙两班成绩在90分以上(含90分)的同学中随机选取2人,记ξ为抽到乙班同学的人数,求ξ的分布列和数学期望.图418、(本小题满分14分) 如图7,平面图形ABCDEFG 由一个等腰直角三角形和两个正方形组成,其中1===CD BC AB ,现将该平面图形分别沿BG 和CF 折叠,使ABG ∆和正方形CDEF 所在平面都与平面BCFG 垂直,再分别连接GE AD AE ,,,得到如图8所示的空间图形.(Ⅰ)求证:⊥AE 平面CDG ; (Ⅱ)求二面角G AE C --的余弦值.19、(本小题满分14分) 已知正项数列{}n a 的前n 项和为n S ,且n n S S a a +=12对一切正整数n 都成立.(Ⅰ)求1a ,2a 的值; (Ⅱ)若数列⎭⎬⎫⎩⎨⎧++121log )2(n a n a 的前n 项和为nT ,求证:43<n T .20、(本小题满分14分)已知抛物线C 的顶点为原点,焦点()0,a 在直线022=--y x 上,圆M 的方程为012822=+-+x y x ,圆心为M . (Ⅰ)求抛物线C 的方程;(Ⅱ)过抛物线C 上的动点P 作圆M 的两条切线,切点为B A ,,求四边形AMBP 的面积的最小值;(Ⅲ)直线1l 经过圆M 的圆心,与抛物线C 交于F E ,两点,直线2l 经过EF 的中点,且与y 轴交于点),0(b .若直线1l 与2l 的倾斜角互补,求b 的取值范围.21、 (本小题满分14分) 已知函数221)(x bx ae x f x+-=在点)1,0(处的切线与x 轴平行. (Ⅰ)求()f x 的解析式;(Ⅱ)若kx x f x h +'=)()(,设)(k g 是)(x h 在[]1,0上的最小值,求)(k g 的表达式,并探讨)(k g 在)2,(--e 上的单调性.图8图72012-2013学年度下学期期末考试五校联考高二年级数学(理科)答案一、选择题:本题共8小题,每小题5分,共40分。

浙教版九年级第一学期12月数学试卷及答案

浙教版九年级第一学期12月数学试卷及答案

浙教版九年级第一学期12月数学试卷亲爱的同学:1.本试卷分试题卷和答题卷两部分,考试时间120分钟,满分120分.2.所有答案都必须做在答题卷规定的位置上,注意试题序号与答题序号相对应.一、选择题(本大题有10小题,每小题3分,共30分)1.已知⊙O 的半径为4,若PO =3,则点P 与⊙O 的位置关系是……………………( ▲ ) A.点P 在⊙O 内 B.点P 在⊙O 上 C.点P 在⊙O 外 D.无法判断2.下列事件中,属于必然事件的是……………………………………………………( ▲ ) A.三角形的内心到三角形三个顶点的距离相等 B.重心有可能在三角形外 C.外心是三角形三条角平分线的交点 D.等边三角形的内心与外心重合 3.将抛物线22x y =向左平移2个单位后所得到的抛物线为 ………………………( ▲ ) A.222-=x y B.222+=x y C.2)2(2-=x yD.2)2(2+=x y4. △ABC ∽△DEF 且它们的面积比为,则周长比为…………………………………( ▲ )A .B .C .D .5.若扇形的半径为6,圆心角为120°,则此扇形的面积是…………………………( ▲ ) A. 2π B. 4π C.12π D.16π6.对于二次函数1)2(2+-=x y 的图象,下列说法正确的是………………………( ▲ )A.开口向下B.对称轴是直线2-=xC.顶点坐标是(2,1)D.与x 轴有两个交点 7. 如图,AB 是⊙O 直径,弦CD ⊥AB ,连结BD 、BC ,若∠ABD=56°,则∠C 度数为( ▲ ) A .14° B .28° C .34° D .56°8.把三角形ABC 三边的长度扩大为原来的3倍,则锐角A 的正弦函数值…………( ▲ )A .不变B .缩小为原来的13C .扩大为原来的3倍D .不能确定 9.如图,PA ,PB ,DE 分别切⊙O 于点A ,B ,C ,过C 的切线分别交PA ,PB 于点E ,D ,若△PDE 的周长为8,OP =5,则⊙O 的半径为……………………………………( ▲ ) A .2 B .3 C .4 D .不能确定 10. 如图,已知正方形ABCD 的边长是8,点E 是AB 边上一动点,连接CE ,过点B 作BG ⊥CE 于点G ,点P 是AB 边上另一动点,则PD +PG 的最小值是……………( ▲ ) A . 4138- B . 4134- C . 4108- D .4104-第10题图第7题图 第9题图二、填空题(本题有6小题,每小题4分,共24分) 11.已知 x = -y ,那么(x -y ):x = ▲ .12.有10个杯子,其中2个是一等品,2个是二等品,其余是三等品,任意取一个杯子,是一等品的概率是 ▲ .13.如图,△ABC 绕着顶点B 顺时针旋转150°得△EBD ,连结CD ,若∠ACB =90°,∠A BC =30°,则∠BDC 的度数是 ▲ .14.已知二次函数y =(x -2)2+1中,若A (m ,y 1),B (m +4,y 2)两点都在该函数的图象上,当m = ▲ 时,.21y y =15. 如图,在△ABC 中,点D 是BC 的中点,DA ⊥AC ,tan ∠BAD =21,AB =54,则BC 的 长度为 ▲ .16.如图,四边形OABC 是矩形,点A 坐标为(2,0),点C 坐标为(0,4).点P 从点O出发,沿OA 以每秒1个单位长度的速度向点A 运动,同时点Q 从点A 出发,沿AB 以每秒2个单位长度的速度向点B 运动,当点P 与点A 重合时运动停止.设运动时间为t 秒. (1)当△CBQ 与△PAQ 相似时,则t = ▲ ;(2)当t =1时,抛物线y =2x 2+bx +c 经过P ,Q 两点,与y 轴交于点M ,在该抛物线上找点D ,使∠MQD =21∠MPQ ,则点D 的坐标为 ▲ . 三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.(本题6分)计算:()0220191π45tan )21()1(+++-+-- .18.(本题6分)已知抛物线c bx ax y ++=2的图象经过三个点(-1,0),点(3,0),点(0,-3);(1)求抛物线解析式; (2)求抛物线的顶点坐标.19.(本题6分)将背面相同,正面分别标有数字1,2,3,4的四张卡片洗匀后,背面朝上放在桌子上.(1)从中随机抽取一张卡片,求该卡片正面上的数字是偶数的概率; (2)先从中随机抽取一张卡片(不放回...),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,组成的两位数恰好是4的倍数的概率是多少?请用树状图或列表法加以说明.第16题图AC B ED 第13题图 第15题图 B D AC20.(本题8分)如图,斜坡BE ,坡顶B 到水平地面的距离AB 为3米,坡底AE 为16米,在B 处,E 处分别测得CD 顶部点D 的仰角为30∘,60∘,求CD 的高度.第20题图21.(本题8分)如图,AB 为⊙O 的直径,弦4=AC ,︒=∠30B ,ACB ∠的平分线交⊙O于点D ,求:(1)BC ,AD 的长;(2)图中两阴影部分面积之和.22.(本题10分)图1是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图2.已知铁环的半径为25cm ,设铁环中心为O ,铁环钩与铁环相切点为M ,铁环与地面接触点为A ,∠MOA =α,且sinα=.第22题图 (1)求点M 离地面AC 的高度BM ;(2)设人站立点C 与点A 的水平距离AC =55cm ,求铁环钩MF 的长度.•A B C O 第21题图B23.(本题10分)如果三角形的两个内角α与β满足2α+β=90°,那么称这样的三角形为“准互余三角形”.(1)若△ABC是“准互余三角形”,∠ACB>90°,∠BAC=58°,则∠ABC=°.(2)如图①,在Rt△ABC中,∠C=90°,∠B=30°,AC=2,点D在边BC上,△ABD是“准互余三角形”,求△ABD的面积.(3)如图②,在Rt△ABC中,∠C=90°,AC=3,BC=4.在边BC上是否存在点D,使得△ABD是“准互余三角形”?若存在,请求出BD的长;若不存在,请说明理由.图①图②第23题图24. (本题12分)如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(6,0),B(0,8),动点C从点B出发,沿射线BO方向以每秒1个单位的速度运动,同时动点D 从点A出发,沿x轴正方向以每秒1个单位的速度运动,连结CD交直线AB于点E,设点C运动的时间为t秒.(1)当点C在线段BO上时,①当OC=5时,求点D的坐标;②问:在运动过程中,CEED的值是否为一个不变的值?若是,请求出CEED的值,若不是,请说明理由?(2)是否存在t的值,使得△BCE与△DAE全等?若存在,请求出所有满足条件的t的值;不存在,请说明理由.(3)过点E作AB的垂线交x轴于点H,交y轴于点G(如图),当以点C为圆心,CE长为半径的⊙C经过点G或点H时,请直接写出所有满足条件的t的值.第24题图参考答案一、选择题(本大题有10小题,每小题3分,共30分) 1—5 ADDBC 6—10 CCABB二、填空题(本题有6小题,每小题4分,共24分)11.2 12.5113. 15° 14.0 15. 28 16.(1) 215-3或 (2) ),)或(,(894182541-三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.原式=-1+4+1+1=5 (6分)18.(1)322--=x x y (4分) (2)(1,-4)(2分) 19.(1)12(3分) (2)14(3分)20.2938+米(8分)21. (1)34=BC , (3分) 24=AD (3分) (2) 348320--π(2分) 22. 解:(1)过点M 作MD ⊥OA 交OA 于点D , 在RT △ODM 中,sinα=,∴DM =15cm ∴OD =20 cm ,∴AD =BM =5cm ;(5分)(2)延长DM 交CF 于点E ,易得:∠FME =∠AOM =α, ∵ME=AC ﹣DM =55﹣15=40cm ,∴cosα=∴MF =50cm . (5分)23. 解:(1)∵△ABC 是“准互余三角形”,∠ACB >90°,∠BAC =58°,∴2∠B +∠A =90°,解得∠B =16° (3分) (2)△ABD 是顶角为120°的等腰三角形,334S =(3分) (3)4725或(4分)24.解:(1)①当OC =5时,BC =8-5=3=t ,∴OD =OA+AD =6+3=9,∴D 为(9,0). (2分) ②CEED的值不变.过点C 作CP ∥AB 交x 轴于点P ,则BC APBO AO∴86t AP ,∴AP=34t ,∴34CE AP ED AD . (3分)(2)①当点C 在线段BO 上时(如图2), 此时∠BCE 和∠EAD 都是钝角 ∵BC=AD=t ,∠BEC =∠AED ,∴当∠ABO =∠CDO 时,△BCE ≌△DAE ∴tan ∠ABO =tan ∠CDO ∴6886AOOC t BO OD t,即∴t =2;②当点C 在y 轴负半轴上时(如图3),此时,∠BEC ,∠AED 分别是△DAE ,△BCE 的外角, 只能∠BEC =∠AED ,由∠BEC +∠AED =180°得∠BEC =∠AED =90°,∵BC =AD =t ,∠CBE =∠ADE , ∴△BCE ≌△DAE ∴tan ∠CBE =tan ∠ADE ∴6886AO OC t BOOD t,即∴t =50. (4分) (3)150400831113t或或。

高三数学一轮复习材料

高三数学一轮复习材料

2012-2013学年高一下学期五校联考期中考试高一数学 试题卷说明:1.本试卷满分为100分;2.考试时间为90分钟,考试过程中不得使用计算器; 3.所有题目均做在答题卷上.一、选择题(本题有10个小题,每个小题3分,共30分)1,…则23是该数列的( )A . 第6项B . 第7项C .第8项D . 第9项 2.在⊿ABC 中,A =45°,B =60°,2=a ,则b 等于( )A.6B.2C.3D. 62 3.已知数列{}n a 中,11=a ,31+=+n n a a ,若2008=n a ,则n =( )A.667B.668C.669D.670 4.=-8sin 8cos44ππ( )A 、0B 、1CD 、 5. 等差数列{}n a 中,14739a a a ++=,36927a a a ++=,则数列{}n a 的前9项的和9S等于( ) A .66B .99C .144D .2976. 若函数21)4(sin )(2-+=πx x f ,则函数)(x f 是( ) A .周期为π的偶函数 B .周期为2π的偶函数C .周期为2π的奇函数D .周期为π的奇函数7.ABC ∆中,角,,A B C 所对边分别为,,a b c .若cos sin a A b B =,则2sin cos cos A A B +=( ) A .- 12B .12C . -1D .18.若()2tan 5αβ+=,且1tan 44πβ⎛⎫-= ⎪⎝⎭,则tan 4πα⎛⎫+ ⎪⎝⎭的值是( ) A 、1613 B 、223C 、2213D 、163 9.在各项均不为零的等差数列{}n a 中,若2110(2)n n n a a a n +--+=≥,则214n S n --=( )A.2-B.0C.1D.210. 给出下列4个命题:①若B A 2sin 2sin =,则ABC ∆是等腰三角形;②若B A cos sin =,则ABC ∆是直角三角形;③若0cos cos cos <C B A ,则ABC ∆是钝角三角形;④若1)cos()cos()cos(=---A C C B C A ,则ABC ∆是等边三角形.其中正确的命题是( ) A .①③ B .③④ C .①④ D .②③二、填空题(本题有6个小题,每个小题4分,共24分)11. 在△ABC 中,已知三边c b a ,,满足ab c b a =-+222,则∠C = ; 12. 若31sin =α且παπ32<<,则=+2cos 2sin αα ;13. 在等差数列{}n a 中,若4,184==S S ,则20191817a a a a +++的值= ;14. cos 23x x a +=-中,a 的取值范围是 ; 15.已知A 船在灯塔C 北偏东80处,且A 船到灯塔C 的距离为2km ,B 船在灯塔C 北偏西40处,B A 、两船间的距离为3km ,则B 船到灯塔C 的距离为 ;16.等差数列{}n a 中,n S 是它的前n 项之和,且8776,S S S S ><则 ①此数列的公差d <0 ②9S 一定小于6S③7a 是各项中最大的一项 ④7S 一定是n S 中的最大值其中正确的是 (填入你认为正确的所有序号)三、计算题 (本题有四个大题,17题10分,18~20题各12分,共46分)17.求值: ①sin 47sin17cos30cos17- ②10cos 310sin 1-18. 已知函数x x x x f 22cos 2)cos (sin )(++=,(1)求函数)(x f 的最小正周期和单调递减区间;(2)当⎥⎦⎤⎢⎣⎡∈2,0πx 时,求)(x f 的最大值和最小值.19.ABC ∆中,c b a ,,分别是角C B A ,,的对边,且有0)cos(32sin =++B A C . (1)13,4==c a ,求ABC ∆的面积; (2)若AB CA CA BC BC AB C B A ∙-∙-∙>=32,cos cos ,3求π的值.20. 设数列{}n a 的前n 项和为n S ,点(,)()nS n n N n*∈均在函数12+-=x y 的图像上. (1)写出n S 关于n 的函数表达式; (2)求数列{}n a 的通项公式;(3)计算16T =||||||||16321a a a a ++++ ; (4)已知213-=n n a b ,若对一切*∈N n 均有n n b m S ∙<-3成立,求实数m 的取值范围.2012学年第二学期五校联考期中卷高一数学 答案二、 填空题(每空4分,共24分) 11、 60 12、332- 13、9 14、2521≤≤a 15、61+- 16、①②④ 三、 解答题(17题10分,18~20题各12分,共46分) 17、①21;② 4 ……. 每小题各5分。

2022-2023学年安徽省滁州市五校九年级上学期期中联考数学试卷

2022-2023学年安徽省滁州市五校九年级上学期期中联考数学试卷

2022-2023学年安徽省滁州市五校九年级上学期期中联考数学试卷1.若双曲线位于第一、三象限,则a的值可以是()A.B.C.D.2.甲、乙两地相距1600米,在地图上,用8厘米表示这两地的距离,那么这幅地图的比例尺是()A.B.C.D.3.如图,两条直线被平行线,,所截,点A,B,C,D,E,F为截点,且AB=5,BC=6,EF=4,则DE的长为()A.2 B.C.D.44.抛物线的对称轴是()A.直线B.直线C.直线D.直线5.某电子产品的售价为8000元,购买该产品时可分期付款:前期付款3000元,后期每个月分别付相同的数额,则每个月付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.B.C.D.6.如图,抛物线关于直线x=1对称,点(3,0)在抛物线上,那么使得的x的取值范围是()A.或B.C.D.7.如图,已知等边,点D,E分别是边BC,AC上的动点,BD=CE,则图中相似的三角形的对数是()A.3对B.4对C.5对D.6对8.如图,点A在反比例函数的图象上,过点A作AB⊥x轴于点B,点C在y轴的负半轴上,若,则k的值为()A.2 B.1C.8 D.49.如图是二次函数的图象,则函数的图象可能是()A.B.C.D.10.如图,已知菱形ABCD的边长为2,对角线AC,BD相交于点O,点M,N分别是边BC,CD上的动点,,连接MN,OM,则下列结论错误的是()A.是等边三角形B.MN的最小值是C.当MN最小时,D.当时,11.如果6是m与12的比例中项,那么m的值是___________.12.如图,与位似,点O为位似中心,位似比为.若的周长为4,则的周长是___________.13.如图,双曲线与正方形ABCD的边BC交于点E,与边CD交于点F,且BE=3CE,,,则CF=___________.14.如图,已知抛物线与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0).(1)抛物线的顶点坐标是___________.(2)已知P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,点P的坐标是___________.15.已知,且,求值.16.已知抛物线与x轴有交点,求m的取值范围.17.如图,D,E分别是的边AC,AB上的点,AD=6,AB=10,BC=12,且.(1)求证:;(2)求DE的长.18.如图,在平面直角坐标系中,的三个顶点坐标分别为,,.(1)已知与关于y轴对称,请画出;(2)以原点O为位似中心,在x轴上方画出的位似图形(点A,B,C的对应点分别为点,,),使与的位似比为.19.“冰墩墩”和“雪容融”两个可爱的冬奥会吉祥物以满满的“未来感”和“中国风”圈粉无数.某商家购进了A,B两种类型的冬奥会吉祥物纪念品,已知5套A型纪念品与4套B型纪念品的进货价钱一样;2套A型纪念品与1套B型纪念品的进货价共260元.(1)求A,B两种类型纪念品每件的进货价分别是多少元?(2)该商家准备以p元/套的售价销售A型纪念品,每天A型纪念品的销量为q套,且q与p之间的关系满足.如何确定售价才能使每天A型纪念品的销售利润最大?20.如图,在矩形ABCD中,点E在边AD的延长线上,DE=DC,连接BE,分别交边DC、对角线AC于点F,G,AD=FD.(1)求的度数;(2)求证:.21.如图,直线y=ax+6经过点,交反比例函数的图象于点.(1)求k的值;(2)点D为第一象限内反比例函数图象上点B下方的一个动点,过点D作轴交线段AB于点C,连接AD,求的面积的最大值.22.如图,正方形ABCD中,点F是BC边上一点,连结AF,以AF为对角线作正方形AEFG,边FG与正方形ABCD的对角线AC相交于点H,连结DG.(1)填空:若∠BAF=18°,则∠DAG=______°.(2)证明:△AFC∽△AGD;(3)若=,请求出的值.23.如图,抛物线(其中a,m均为常数,且,)与x轴交于点A,B,与y轴交于点,顶点为F,交抛物线于点D.(1)当a=1时,求点D的坐标;(2)在(1)的条件下,若,为该抛物线上任意两点,其中,直接写出:当___________时,.(3)若点E是第一象限内抛物线上的点,满足,求点E的纵坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档