七年级数学上册 4.5 最基本的图形——点和线 帮你学好“三线”素材 华东师大版 精
数学七年级上册第四章图形的初步认识4.5最基本的图形--点和线1点和线作业课件 华东师大版

3.(4分)下列选项中给出的直线、射线、线段, 根据各自的性质,判断能相交的是(A )
4.(4分)下列语句表达正确的是(A ) A.直线m和n相交于点A B.直线m和n相交于点a C.直线ab和cd相交于点M D.直线AB和CD相交于点m
5.(4分)经过三点中的任意两点,可作的直线( D) A.只有一条 B.一定有三条 C.有三条以上 D.有一条或三条
8.(4分)(2017·随州)某同学用剪刀沿直线将一片平整的银杏叶减掉一部分 (如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一 现象的数学知识是( A)
A.两点之间线段最短 B.两点确定一条直线 C.垂线段最短 D.经过直线外一点,有且只有一条直线与这条直线平行
9.(4分)用钉子把一根木条固定在墙上至少要两个钉子, 这是因为__两__点__确__定__一__条__直__线__.
13.(新疆中考)如图所示,某同学的家在A处,书店在B处,星期日他到 书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线( )B
A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B
14.平面上三条直线两两相交, 最多有___3_个交点,最少有___1_个交点.
第四章 图形的初步认识
4.5 最基本的图形——点和线
4.5.1 点和线
1.两点之间,_线__段_最短.
2.经过两点__有__一__条__直__线_,并且只有___一__条__直__线____. 即两点确定一条直线.
1.(4分)下列叙述中,正确的是( ) B ①线段AB可表示为线段BA; ②射线AB可表示为射线BA; ③直线AB可表示为直线BA. A.①② B.①③ C.②③ D.①②③ 2.(4分)如图,在直线a上取四个点A,B,C,D, 则图中直线和射线各有( ) C A.4条和8条 B.1条和4条 C.1条和8条 D.4条和4条
2023七年级数学上册第4章图形的初步认识4.5最基本的图形——点和线1点和线教案(新版)华东师大版

3. 随堂测试:
- 学生在随堂测试中能够准确回答问题和完成题目,表明他们对点和线的基本概念和性质有扎实的掌握。
- 学生能够运用所学的点和线的基本概念和性质解决实际问题,显示出良好的应用能力和解决问题的能力。
- 学生在测试中表现出良好的时间管理和答题策略,能够有效地完成题目。
4. 作业完成情况:
- 学生能够按时完成作业,作业质量符合要求,表明他们对课堂所学的内容有深入的理解和掌握。
- 学生在作业中能够正确运用点和线的基本概念和性质,解决实际问题,显示出良好的应用能力和解决问题的能力。
2. 对于难点内容,可以采取以下策略:
- 通过引导学生观察和分析实际问题,让学生亲身体验和感知点和线的性质,从而更好地理解和运用。
- 提供一些典型的例题和练习题,让学生通过动手操作和思考,逐步掌握解决实际问题的方法和技巧。
- 鼓励学生积极参与讨论和交流,引导学生运用逻辑推理和数学思维来解决问题,提高其解决问题的能力。
本节课的内容与学生的日常生活紧密相关,便于学生理解和接受。教学过程中,教师需要结合课本中的例题和练习题,让学生通过观察、思考、动手操作等方式,掌握点、线的基本概念和性质。同时,教师还需注意引导学生运用所学的知识解决实际问题,提高学生的数学应用能力。
在教学过程中,教师应注重培养学生的观察能力、思考能力和动手操作能力。通过本节课的学习,学生应能掌握点、线的基本概念和性质,并能在实际问题中运用这些知识。
设计课堂互动环节,提高学生学习点和线的积极性和主动性。
(二)课堂导入(预计用时:3分钟)
激发兴趣:
提出问题或设置悬念,引发学生的好奇心和求知欲,引导学生进入点和线的学习状态。
七年级数学上册4.5最基本的图形——点和线4.5.1点和线跟踪训练(含解析)(新版)华东师大版

4.5.1点和线一.选择题(共9小题)1.2012年12月26日京广高铁全线通车.一列往返于北京和广州的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制()种车票.A. 6 B.12 C.15 D.302.如图,一条流水生产线上L1、L2、L3、L4、L5处各有一名工人在工作,现要在流水生产线上设置一个零件供应站P,使五人到供应站P的距离总和最小,这个供应站设置的位置是()A.L2处B.L3处C.L4处D.生产线上任何地方都一样3.下列说法错误的是()A.两点确定一条直线B.线段是直线的一部分C.一条直线是一个平角 D.把线段向两边延长即是直线4.如图,点A、B、C是直线l上的三个点,图中共有线段条数是()A.1条B.2条C.3条D.4条5.下列语句正确的是()A.画直线AB=10厘米 B.画直线l的垂直平分线C.画射线OB=3厘米 D.延长线段AB到点C,使得BC=AB6.有三个点A,B,C,过其中每两个点画直线,可以画出直线()A.1条B.2条C.1条或3条D.无法确定7.要在墙上固定一根木条,小明说只需要两根钉子,这其中用到的数学道理是()A.两点之间,线段最短 B.两点确定一条直线C.线段只有一个中点 D.两条直线相交,只有一个交点8.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚9.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A. B. C.D.10.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因_________ .11.如图,从A到B有多条道路,人们往往走中间的直路,而不会走其他的曲折的路,这是因为_________ .12.要把木条固定在墙上至少需要钉 _________ 颗钉子,根据是_________ .13.在同一平面内,三条直线两两相交,最多有3个交点,那么4条直线两两相交,最多有_________ 个交点,8条直线两两相交,最多有_________ 个交点.14.一条直线上有若干个点,以任意两点为端点可以确定一条线段,线段的条数与点的个数之间的对应关系如下表所示.请你探究表内数据间的关系,根据发现的规律,则表中n= _________ .点的个数 2 3 4 5 6 7线段的条数 1 3 6 10 15 n15.往返于甲、乙两地的火车中途要停靠三个站,则有_________ 种不同的票价(来回票价一样),需准备_________ 种车票.三.解答题(共7小题)16.(1)如图①当线段AB上标出1个点时(A、B除外),图中共有_________ 个不同的线段;(2)如图②当线段AB上标出2个点时(A、B除外),图中共有_________ 个不同的线段;(3)如图③当线段AB上标出3个点时(A、B除外),图中共有_________ 个不同的线段;(4)如图④当线段AB上标出n个点时(A、B除外),图中共有多少条不同的线段?(用含有n的式子表示)17.如图,平面内有4个点A、B、C、D,按下列语句在指定位置上画出图形.(2)画线段AC;(3)画射线DC.18.已知线段AB,(1)作图:延长线段AB到C,使得AC=3AB;(2)当AB的长等于2cm时,求线段BC的长.19.(1)如图(1)所示,点D在直线EF _________ ,或直线_________ 经过点D.(2)如图(2),直线_________ ,_________ 交于点O.(3)如图(3),经过点M三条直线_________ ,_________ ,_________ .(4)如图(4)所示,直线L与直线_________ ,_________ ,分别交于_________ ,_________ 两点.20.如图所示,工厂A与工厂B想在公路m旁修建一座共用的仓库O,并且要求O到A与O到B的距离之和最短,请你在m上确定仓库应修建的O点位置,同时说明你选择该点的理由.21.平面上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池,不考虑其他因素,请你画图确定蓄水池H的位置,使它与四个村庄的距离之和最小(A,B,C,D四个村庄的地理位置如图所示),你能说明理由吗?22.把一根本条钉在墙上,在只钉了一根钉子的时候,这根木条还可以转动,为什么?如果在这根木条的某个地方再钉上一根钉子.这根木条就不会动了,这是为什么?你能把它画出来吗?第四章图形的初步认识4.5.1点和线参考答案与试题解析一.选择题(共9小题)1.2012年12月26日京广高铁全线通车.一列往返于北京和广州的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制()种车票.A. 6 B.12 C.15 D.30考点:直线、射线、线段.分析:分别求出从北京出发的有5种车票,从石家庄出发的有4种车票,从郑州出发的有3种车票,从武汉出发的有2种车票,从长沙出发的有1种车票,即可得出答案.解答:解:∵从北京出发的有5种车票,从石家庄出发的有4种车票,从郑州出发的有3种车票,从武汉出发的有2种车票,从长沙出发的有1种车票,∴一列往返于北京和广州的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制2×(5+4+3+2+1)=30种车票,故选D.点评:本题考查了用数学知识解决实际问题的应用,主要考查学生的理解能力和计算能力.2.如图,一条流水生产线上L1、L2、L3、L4、L5处各有一名工人在工作,现要在流水生产线上设置一个零件供应站P,使五人到供应站P的距离总和最小,这个供应站设置的位置是()A.L2处B.L3处C.L4处D.生产线上任何地方都一样考点:直线、射线、线段.分析:设在L3处为最佳,求出此时的总距离为L1L5+L2L4,假如设于任意的X处,求出总距离为L1L5+L2L4+L3X,和L1L5+L2L4比较即可.解答:解:在5名工人的情况下,设在L3处为最佳,这时总距离为L1L5+L2L4,理由是:如果不设于L3处,而设于X处,则总距离应为L1L5+L2L4+L3X>L1L5+L2L4,即在L3处5个工人到供应站距离的和最小.故选B.点评:本题考查了比较线段的长短,此题比较好,但是有一定的难度,主要考查了学生的分析问题和解决问题的能力.3.下列说法错误的是()A.两点确定一条直线 B.线段是直线的一部分C.一条直线是一个平角 D.把线段向两边延长即是直线考点:直线、射线、线段.分析:根据直线公理对A进行判断;根据线段的定义对B、D进行判断;根据平角的定义对C进行判断.解答:解:A、两点确定一条直线,所以A选项的说法正确;C、一个角由有公共端点的两射线组成,一个平角的两边在一条直线上,则一条直线不是一个平角,所以C选项的说法错误;D、把线段向两变边延长得到直线,所以D选项的说法正确.故选C.点评:本题考查了直线、射线、线段:直线上某一点一边的部分叫射线,直线上两点之间的部分叫线段.也考查了阅读理解能力.4.如图,点A、B、C是直线l上的三个点,图中共有线段条数是()A.1条B.2条C.3条D.4条考点:直线、射线、线段.分析:写出所有的线段,然后再计算条数.解答:解:图中线段有:线段AB、线段AC、线段B C,共三条.故选C.点评:记住线段是直线上两点及其之间的部分是解题的关键.5下列语句正确的是()A.画直线AB=10厘米 B.画直线l的垂直平分线C.画射线OB=3厘米D.延长线段AB到点C,使得BC=AB考点:直线、射线、线段.分析:本题较简单,要熟知直线、射线、线段、定义及性质即可解答.解答:解:A、直线无限长;B、直线没有中点,无法画垂直平分线;C、射线无限长;D、延长线段AB到点C,使得BC=AB,正确.故本题选D.点评:直线:是点在空间内沿相同或相反方向运动的轨迹.向两个方向无限延伸.线段:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点.射线:直线上的一点和它一旁的部分所组成的图形称为射线,可向一方无限延伸.6.有三个点A,B,C,过其中每两个点画直线,可以画出直线()A.1条B.2条C.1条或3条D.无法确定考点:直线、射线、线段.分析:此题考查直线的基本性质:两点确定一条直线.解答:解:∵三点在一条直线上能画一条直线,三点不在一条直线上能画三条直线;故选C.点评:注意对题目中已知条件的不同情况的分析.7.要在墙上固定一根木条,小明说只需要两根钉子,这其中用到的数学道理是()A.两点之间,线段最短 B.两点确定一条直线C.线段只有一个中点 D.两条直线相交,只有一个交点考点:直线的性质:两点确定一条直线.分析:根据概念利用排除法求解.解答:解:经过两个不同的点只能确定一条直线.故选B.点评:本题是两点确定一条直线在生活中的应用,数学与生活实际与数学相结合是数学的一大特点.8.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚考点:直线的性质:两点确定一条直线.分析:根据直线的性质,两点确定一条直线解答.解答:解:∵两点确定一条直线,∴至少需要2枚钉子.故选B.点评:本题考查了直线的性质,熟记两点确定一条直线是解题的关键.9.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A. B. C. D.考点:线段的性质:两点之间线段最短;几何体的展开图.专题:压轴题;动点型.分析:此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.解答:解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM 上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选:D.点评:本题考核立意相对较新,考核了学生的空间想象能力.二.填空题(共6小题)10.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因两点之间线段最短.考点:线段的性质:两点之间线段最短;三角形三边关系.专题:开放型.分析:根据线段的性质解答即可.解答:解:为抄近路践踏草坪原因是:两点之间线段最短.故答案为:两点之间线段最短.点评:本题考查了线段的性质,是基础题,主要利用了两点之间线段最短.11.如图,从A到B有多条道路,人们往往走中间的直路,而不会走其他的曲折的路,这是因为两点之间线段最短.考点:线段的性质:两点之间线段最短.专题:应用题.分析:此题为数学知识的应用,由题意从A到B,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.解答:解:如果从A到B,沿直线行走,这样A、B两点处于同一条线段上,两点之间线段最短.点评:本题主要考查两点之间线段最短.12.要把木条固定在墙上至少需要钉 2 颗钉子,根据是两点确定一条直线.考点:直线的性质:两点确定一条直线.专题:探究型.分析:根据公理“两点确定一条直线”,来解答即可.解答:解:∵两点确定一条直线,∴要把木条固定在墙上至少需要钉2颗钉子.故答案为:2,两点确定一条直线.点评:本题考查的是“两点确定一条直线”在实际生活中的应用,此类题目有利用于培养同学们学以致用的思维习惯.13在同一平面内,三条直线两两相交,最多有3个交点,那么4条直线两两相交,最多有 6 个交点,8条直线两两相交,最多有28 个交点.考点:直线、射线、线段.专题:规律型.分析:可先画出三条、四条、五条直线相交,发现:3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n﹣1)=个交点.解答:解:4条直线相交最多有6个交点,8条直线两两相交,最多有=×8×7=28.故答案为:28.点评:此题在相交线的基础上,着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊项一般猜想的方法.14.一条直线上有若干个点,以任意两点为端点可以确定一条线段,线段的条数与点的个数之间的对应关系如下表所示.请你探究表内数据间的关系,根据发现的规律,则表中n= 21 .点的个数 2 3 4 5 6 7线段的条数 1 3 6 10 15 n考点:直线、射线、线段.专题:压轴题;规律型.分析:根据表中数据,寻找规律,列出公式解答.n个m条2 13 1+24 1+2+3…n m=1+…+(n﹣1)=7个点把线段AB共分成=21条.点评:本题体现了“具体﹣﹣﹣抽象﹣﹣﹣﹣具体”的思维探索过程,探索规律、运用规律,有利于培养学生健全的思维能力.15.往返于甲、乙两地的火车中途要停靠三个站,则有10 种不同的票价(来回票价一样),需准备20 种车票.考点:直线、射线、线段.专题:应用题;压轴题.分析:先求出线段条数,一条线段就是一种票价,车票是要考虑顺序,求解即可.解答:解:此题相当于一条线段上有3个点,有多少种不同的票价即有多少条线段:4+3+2+1=10;有多少种车票是要考虑顺序的,则有10×2=20.点评:主要考查运用数学知识解决生活中的问题;需要掌握正确数线段的方法.三.解答题(共7小题)16.(1)如图①当线段AB上标出1个点时(A、B除外),图中共有 3 个不同的线段;(2)如图②当线段AB上标出2个点时(A、B除外),图中共有 6 个不同的线段;(3)如图③当线段AB上标出3个点时(A、B除外),图中共有10 个不同的线段;(4)如图④当线段AB上标出n个点时(A、B除外),图中共有多少条不同的线段?(用含有n的式子表示)考点:直线、射线、线段.专题:规律型.分析:根据任何两点之间都有一条线段,根据点的个数,可得线段的条数.解答:解:(1)如图①当线段AB上标出1个点时(A、B除外),图中共有 3个不同的线段;(2)如图②当线段AB上标出2个点时(A、B除外),图中共有 6个不同的线段;(3)如图③当线段AB上标出3个点时(A、B除外),图中共有 10个不同的线段;(4)如图④当线段AB上标出n个点时(A、B除外),图中共有条不同的线段,点评:本题考查了直线、射线、线段,每一个点与它本身之外的点都能组成一条线段.17.如图,平面内有4个点A、B、C、D,按下列语句在指定位置上画出图形.(1)画直线AB;(2)画线段AC;(3)画射线DC.考点:直线、射线、线段.分析:利用作射线,直线和线段的方法作图.解答:解:作图如下:点评:本题主要考查了作图﹣J基本作图,解决此类题目的关键是熟悉基本几何图形的性质.18.已知线段AB,(1)作图:延长线段AB到C,使得AC=3AB;(2)当AB的长等于2cm时,求线段BC的长.考点:直线、射线、线段.分析:(1)画射线AP,在射线AP上顺次截取AC=3AB即可.(2)由图可知BC=2AB,然后将AB=2代入即可.解答:解:(1)画射线AP,在射线AP上顺次截取AC=3AB,(2)由图可知:BC=2AB,当AB=2cm时,BC=2AB=2×2=4cm.点评:考查基本作图;掌握在射线上作出所求线段为已知线段的整数倍的方法是解决本题的关键.19.(1)如图(1)所示,点D在直线EF 上,或直线EF 经过点D.(2)如图(2),直线 a , b 交于点O.(3)如图(3),经过点M三条直线 a , b , c .(4)如图(4)所示,直线L与直线 a , b ,分别交于 A , B 两点.考点:直线、射线、线段.分析:根据线段、直线的定义,线段有限长,有两个端点;直线无限长,没有端点进而进行判断即可.解答:解:(1)点D在图(1)所示,点D在直线EF上,或直线EF经过点D.(2)如图(2),直线 a,b交于点O.(3)如图(3),经过点M三条直线a,b,c.(4)如图(4)所示,直线L与直线a,b,分别交于A,B两点.点评:本题考查了线段和直线的定义,明确直线和线段定义并找出图中的直线和线段是解题的关键.20.如图所示,工厂A与工厂B想在公路m旁修建一座共用的仓库O,并且要求O到A与O到B的距离之和最短,请你在m上确定仓库应修建的O点位置,同时说明你选择该点的理由.考点:线段的性质:两点之间线段最短.专题:常规题型.分析:根据两点之间线段最短,连接AB与直线m的交点即为所求.解答:解:如图,连接AB交直线m于点O,则O点即为所求的点.理由如下:根据连接两点的所有线中,线段最短,∴OA+OB最短.点评:本题主要考查了线段的性质,熟记两点之间线段最短并灵活运用是解题的关键.21.平面上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池,不考虑其他因素,请你画图确定蓄水池H的位置,使它与四个村庄的距离之和最小(A,B,C,D四个村庄的地理位置如图所示),你能说明理由吗?考点:线段的性质:两点之间线段最短.分析:根据线段的性质:两点之间,线段距离最短;结合题意,要使它与四个村庄的距离之和最小,就要使他在AC与BD的交点处.解答:解:如答图所示,连接AC,BD,它们的交点是H,点H就是修建水池的位置,这一点到A,B,C,D 四点的距离之和最小.点评:本题考查线段的性质:两点之间,线段距离最短.要求学生能灵活应用所学的知识,解决实际问题.22.把一根本条钉在墙上,在只钉了一根钉子的时候,这根木条还可以转动,为什么?如果在这根木条的某个地方再钉上一根钉子.这根木条就不会动了,这是为什么?你能把它画出来吗?考点:直线的性质:两点确定一条直线.分析:根据过一点可以作无数条直线,两点确定一条直线解答.解答:解:如图;把一根本条钉在墙上,在只钉了一根钉子的时候,这根木条还可以转动,是因为过一点可以作无数条直线;如果在这根木条的某个地方再钉上一根钉子,这根木条就不会动了,是因为两点确定一条直线.点评:本题考查了直线的性质,熟记两点确定一条直线是解题的关键.。
华师大版数学七年级上册 4.5 最基本的图形——点和线

4.5 最基本的图形——点和线1.点和线【基本目标】1.使学生理解任何图形都是由点和线组成的,体会线段、射线、直线的形象,正确区分这三个图形,掌握它们的表示方法.2.感受、体会、理解“两点之间,线段最短以及两点确定一条直线”,掌握两点间距离的概念.【教学重点】线段、射线、直线的定义以及表示方法,熟悉简单的几何语言.【教学难点】线段、射线、直线的区别与联系.一、情境导入,激发兴趣1.如果你站在一座足够高的楼上,望着楼底下的某一个人,那么你将能见到什么?2.黑夜中用聚光灯照射远处的墙壁,我们会看到什么?3.如果你把一条两头都打结的绳子拉直了,你将能发现什么?【教学说明】让学生充分发挥想象,对于学生的回答教师应该给予肯定,激发学生探究的兴趣.二、合作探究,探索新知1.从情景中,我们可以知道,你能看到的将是一个点,而这个点就表示着这个人或聚光灯照射处的位置,因此,可以概括:点通常表示一个物体的位置.点图形:·A表示:点A(A点).2.日常生活中,一根拉紧的绳子、一根竹竿、人行横道线都给我们以线段的形象.线段图形:表示:线段AB 线段d【教学说明】在讲解时,要注意一方面通过现实生活中的实例让学生理解这些概念,另一方面要引导学生考虑现实生活中的哪些事物具有这些形象.3.利用线段的形象,我们顺利引出了射线与直线.概括:把线段向一方无限延伸所形成的图形叫做射线;把线段向两方无限延伸所形成的图形叫做直线.射线图形:表示:射线AB 射线d直线图形:表示:直线AB直线d【教学说明】考虑到“线段”的概念更为直观,所以由“线段”引入“射线”和“直线”,可让学生经历直线和射线的形成过程.注意几个概念间的区别和联系.4.小结:对于线段、射线、直线,应该进行综合的比较:【教学说明】将线段、射线、直线之间的区别以表格形式呈现,便于学生进行对比,从而更好的掌握特征.可以先呈现表格,然后让学生观察填空.5.试一试.(1)线段公理观察下图,从A地到B地有三条路径,你会选择哪一条?从上边的图中,我们很容易发现:如果从A地到B地,走直路的路程是最短的,即在这些把A、B连结起来的线中,线段AB是最短的.概括:两点之间,线段最短.连结两点间的线段的长度叫做两点间的距离.【教学说明】两点间的距离是指连结两点的线段的长度而不是线段本身,这是一个数量概念,要求学生正确理解两点间距离的含义.(2)直线的公理我们要把一根木条钉紧,只用一个钉子,行吗?那么至少需要订几个钉子才能将木条钉紧?由生活中的经验,我们都知道,一个是不够的,至少需要两个钉子才能将木条钉紧.概括:经过两点有一条直线,并且只有一条直线.即两点确定一条直线.【教学说明】由实际生活现象归纳出相应的数学原理,是一个难点,教师可多举一些实例便于学生理解和应用.三、练习反馈,巩固提高1.如图所示,A、B、C是同一直线上的依次三点,下列说法正确的是()A.射线AB与射线BA是同一条射线B.射线AB与射线BC是同一条射线C.射线AB与射线AC是同一条射线D.射线BA与射线BC是同一条射线2.下列说法正确的是()A.直线AB的长是A、B两点间的距离B.线段AB是A、B两点间的距离C.A、B两点间连线的长是A、B两点间的距离D.线段AB的长是A、B两点间的距离3.平面上有四个点,经过每两个点作一条直线,则作出的直线最多有()A.3条B.4条C.5条D.6条4.四条直线两两相交,其交点个数最多有()A.3个B.4个C.5个D.6个5.如图所示,共有线段条;共有射线条;共有直线条.6.用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,这说明;用两个钉子把细木条钉在木板上,就能固定细木条,这说明.【教学说明】学生独立完成,对于第5题,学生容易数漏,教师应引导学生总结规律,第6题是学生不太熟悉此的问题,教师可适当补充一些实例,加深学生的理解.【答案】1.C 2.D 3.D 4.D5.5,6 ,36.经过一点可以画无数条直线,两点确定一条直线四、师生互动,课堂小结1.线段、射线和直线有什么联系和区别?2.两点之间,线段最短.连结两点间的线段的长度叫做两点间的距离.3.经过两点有一条直线,并且只有一条直线.即两点确定一条直线.【教学说明】教师引导学生对所学内容进行总结,主要是比较三线的区别,对相关的方法进行总结,加强学生对本节课知识的理解.完成本课时对应的练习.本节课是学生学习几何的入门课,培养学生的几何意识对于本节课来讲就很重要.教师可以从具体形象的实际例子入手,使学生经历从具体到抽象的思维过程,从而培养学生的几何意识.抽象是数学的一种基本思想和基本方法,让学生从实际生活的物体、图形中抽象得到点、线、面、体等数学概念.概括事物的数学属性,引导学生从数学的角度去看待实际物体,提高学生的抽象思维能力,引导学生的思维习惯.2.线段的长短比较【基本目标】1.使学生掌握分别用测量与重叠来比较线段大小的方法;2.使学生充分理解两条线段大小比较所隐含的意义,能从“量”与“形”上进行转化;3.线段中点的性质及其简单运算.【教学重点】线段大小比较的方法及其原理.【教学难点】如何引导学生从“数量”的角度引入到从“形”的角度来分析两条线段的大小比较.一、情境导入,激发兴趣1.如果有两个同学在比较高矮,你们一般是怎么做的?解决方法:让两个人站在一起来比较;分别量出这两个同学的身高.2.如何比较数学书长和宽的长度大小?你能够想到什么方法?解决办法:可以拿两本相同的数学书,将长和宽重叠进行比较;分别测量长和宽的长度;用圆规截取书本的宽度,再和长相比较.【教学说明】在这几个问题中要充分发挥学生间的讨论,让他们自己发现解决问题的方法,对于第2个问题更要提醒学生采用多种方法进行比较.二、合作探究,探索新知1.从上面的探究,怎样比较下图中两条线段的长短?小结:从上面的引例,我们很容易知道,比较两条线段的长短有两种方法:(1)用刻度尺度量;(2)利用圆规进行移动.如图有线段AB与线段CD,且进行了以上的有关比较方法.如果通过比较知:线段AB比线段CD短,则表示为:AB<CD(或CD>AB)【教学说明】让学生动手操作,然后在小组内讨论总结方法,对于用几何语言表示线段的大小关系,学生比较陌生,教师应示范讲解,可多举几个例子让学生尝试写一下.2.如图,MN是已知线段,你能用直尺和圆规准确地画一条与MN相等的线段吗?小结:我们可以先画射线AB,然后用圆规量出线段MN的长,再在射线AB上截取AC=MN,那么,AC就是所要画的线段.【教学说明】教师可以先示范讲解,然后让学生自己尝试画图.3.在一张半透明的纸上画一条线段AB,将线段AB折叠,使点A和点B重合,折痕与线段AB的交点为C,测量AC与BC、AB的长度,你有什么发现?小结:AC=CB=12AB,AC+CB=AB归纳:把一条线段分成两条相等线段的点,叫做这条线段的中点. 如上图,点C是线段AB的中点.【教学说明】教师讲解,要求学生动手操作完成,然后将得到的结果进行交流,教师总结线段中点的定义,然后示范用几何语言表示.三、示例讲解,掌握新知例:如图,AB=6cm,点C是线段AB的中点,点D是线段CB的中点,那么AD多长呢?解:因为C点是AB的中点所以AC=BC=12AB=3cm因为D点是BC的中点所以CD=12BC=1.5cm所以AD=AC+CD=3+1.5=4.5cm【教学说明】例题应掌握其解题的有关方法,特别是基本的格式.这是一个简单的推理解答,教师在讲解时要注意引导学生掌握思路和方法.四、练习反馈,巩固提高1.如图①,AD=AB-=AC+ .图①2.如图②,下列说法不能判断点C是线段的中点的是()A.AC=CBB.AB=2ACC.AC+CB=ABD.CB=12AB图②3.在直线m上顺次取A、B、C三点,使AB=4cm,BC=3cm,如果O是线段AC的中点,求线段OB的长.分析:由题意画图,根据线段的和、差及中点的意义去考虑.【教学说明】第1、2题,主要是对线段的和差、线段的中点进行检测,提醒学生观察图形进行解答,第3题是第一次由学生接触到由几何语言转化为几何图形的题型,应引导学生先画出图形,再进行解答.【答案】1.BD CD 2.C 3.AC=AB+BC=4+3=7cm∵O是AC的中点,∴AO=12AC=12×7=3.5cm∴OB=AB-AO=4-3.5=0.5cm五、师生互动,课堂小结1.比较两条线段的长短有两种方法:(1)用刻度尺度量;(2)利用圆规进行移动.2.把一条线段分成两条相等线段的点,叫做这条线段的中点.如下图,点C是线段AB的中点,则AC=CB=12AB,AC+CB=AB.【教学说明】教师引导学生对本节课知识进行回顾,重点强调用几何语言表示实际问题的规范性,理解中点的含义.完成本课时对应的练习.在本节课的安排上应逐渐在几何中渗透几何语言的描述,并应注意到其语言的规范性.在知识上应对本节课内容上有所拓展,而不能局限于教材.要引导学生来发现问题,并学会找到解决问题的方法.。
七年级数学上册 第4章 图形的初步认识 4.5 最基本的图形点和线同步课件 华东师大级上册数学课件

12/9/2021
第十二页,共四十二页。
【跟踪训练】
①找一找图中各有几条射线(shèxiàn)、直 线?
C·
·
·
·
A
O
②如图:有A、B、C三点(sān diǎn)
画直线AC
射线BC
·
AB 线段 12/9/2021
B
第十三页,共四十二页。
B ·A
· C
图形
•
线A
段
a
墨线也是直的,你能用学过的几何知识(zhī shi)来解释他们这样做的道理
吗?
经过两点有一条直线(zhíxiàn),并且只有一条直线 (zhíxiàn).
12/9/2021
第十八页,共四十二页。
小明家
(1) (2)
学校
(3) 4.如图,从小明家到学校共有三条路,小明为了尽快(jǐnkuài)到 学校,应选择第________(_2条) 路,用数学知识解释为
例1.用圆规(yuánguī)作一条线段等于已知线段. ① 作射线AB; ② 用圆规量出已知线段的长度(记作a); ③ 在射线AB上截取AC = a.
12/9/2021
则AC为 所作的线段.
a
AC
B
第二十五页,共四十二页。
读句画图:
(1)画射线AM; (2)射线AM上截取线段AB; (3)再在射线AM上顺次(shùncì)截取BC=CD=AB. 试观察图中的线段AB、AC、AD、BC、BD、CD之间有什么关系?
第三十九页,共四十二页。
1.直线、射线(shèxiàn)、线段三者的区别与联系. 2.不同几何语言(文字语言、符号语言、图形语言)的 相互转化. 3. 掌握(zhǎngwò)两点间的距离概念,知道“两点之间的所有 连线中,线段最短”,知道“经过两点有一条直线,并且只
七年级数学上册4_5最基本的图形__点和线基本方法素材新版华东师大版

4.5最基本的图形——点和线3.利用线段解决最小值问题近年来,中考数学的一个热门考点就是“线段和的最值与定值”问题,也是难点之一.学生常常找不到解题的突破口,此类试题往往同根而异形,利用两个“典型题例”进行“发散式”的概括和引申,是解决此类问题的一个捷径.解题的依据是连结两点的所有连线中线段最短.解题时,连接两个点,得到一条线段,这条线段就是所求的最短路径.警误区 解决图形问题勿忘表述理由 在解题时,往往感觉题目很简单,从而忽略了解题步骤的书写,也有的同学只会作图,不会表述理由.【例3】如图所示,直线MN 表示一条河流,在河流两旁各有一点A ,B 表示两块稻田,要在河岸开渠引水灌溉稻田,问在河岸哪个位置开渠使水到两块地的距离最短?分析:连结AB ,线段AB 交MN 于点C ,C 即为开渠位置.解:如图所示,在C 点开渠.4.线段在实践中的应用借助于线段图解题,可以化抽象的语言为具体、形象、直观的图形,小学时我们经常利用线段图解决应用题,现在利用线段的端点的数目,可以解决许多现实生活中的应用题. 例如求往返于两地之间的某一客车中途有几个停靠站,需要多少种不同的车票,多少种不同的票价等等.一般的,如果一条直线上有n 个点,这条直线上线段的条数是n (n -1)2. 在一条直线上(有n 个停靠点)行驶的列车,需要的车票票价有n (n -1)2种;由于车票分往返两种,所以最多需要n (n -1)种不同的车票. 【例4-1】 往返于A ,B 两个城市的客车,中途有三个停靠点.(1)该客车有__________种不同的票价?(2)该客车上要准备__________种车票?解析:根据题意画图表示.(1)图中线段有AC,AD,AE,AB,CD,CE,CB,DE,DB,EB,共有10条,因此有10种不同的票价;(2)同一路段,往返时起点和终点正好相反,所以应准备20种车票.答案:(1)10 (2)20【例4-2】小明乘公共汽车回姥姥家,发现这条汽车线路上共有7个小站,于是思考,(1)用于这条线路上的车票票价最多有多少种呢?(2)最多有多少种不同的车票呢?分析:我们可以假定这7个车站在同一条直线上,于是问题(1)转化为:在同一条直线上有A,B,C,D,E,F,G7个点,问这条直线上有多少条可以用字母表示的线段?问题(2)可以利用问题(1)求解.解:最多有6+5+4+3+2+1=21种不同的车票票价;最多有21×2=42种不同的车票.。
七年级数学上册4.5最基本的图形——点和线帮你学好“三线”素材华东师大版(new)

帮你学好“三线"线段、射线和直线(以下简称“三线”)是构成丰富的图形世界的三个最基本的元素,学好“三线"可为后续的学习打下良好基础。
下面就“三线"的学习提出几点建议。
一、理解“三线"的概念1。
线段:课本中没有给出严格的定义,是用描述性的语言予以说明的,如绷紧的琴弦、人行横道线,都可以近似地看做线段。
线段有如下特点:①线段是直的;②线段有两个端点,如长方形的每一条边、正方体的每一条棱等都是线段。
2.射线:将线段向一个方向无限延长就形成了射线,射线只有一个端点。
如手电筒、探照灯所射出的光线可近似地看成射线.3.直线:将线段向两个方向无限延长就形成了直线.将射线反向延长也可形成直线,直线没有端点。
如笔直的铁轨可以近似地看成直线。
二、掌握“三线”的表示方法三、弄清“三线"的联系与区别联系:(1)射线和线段都是直线的一部分,线段又是射线的一部分,即在直线上任取两点就可以得到一条线段,在射线上任取一点(端点除外)就可以得到一条线段,在直线上任取一点就可以得到两条射线.(2)把一条射线反向延长或把一条线段向两方延长,都可以得到一条直线.区别:(1)线段有两个端点,而射线只有一个端点,直线无端点.(2)线段不能向任何一方伸展,而射线可以向一方无限延伸;直线向两方无限延伸.(3) 线段有长度,可以度量;而射线和直线无长度,不可度量.四、理解两条重要性质1.直线的性质:经过两点有且只有一条直线,即两点确定一条直线.2.线段的性质:两点之间的所有连线中,线段最短.简称为:两点之间,线段最短。
温馨提示: (1)直线的性质包含两层意思:一是说经过两点有一条直线,肯定有,不是没有(即存在性);二是说经过两点只有一条直线,不会有两条、三条……(即唯一性)。
(2)直线和线段的性质在现实生活有着广泛的应用。
例如工人师傅要把许多电线杆排立在一条直线上时,只要定出两根杆的位置(即两点),就能定出一行电线杆所在直线的位置等,就是直线性质的运用.走路时“抄近道”的现象,就是线段性质的运用。
华师大七年级数学上册 4.5《最基本的图形——点和线》课件

直线的表示方法:
EF
直线 EF 或 直线FE或直线a ● ●
a
注意:①在表示线段、射线、直线时都要在前面表明
“线段”“射线”“直线”②表示线段、直线时两
个字母可以交换位置。
试一试
2、从A地到B地有三条路径,你会选择哪一条?
A
答:线段BA。
B
C
线段公理: 两点之间,线段最短。
练一练
7、在纸上画出A、B两点,过点A你能画出几条直线?经 过A、B点画直线,又能画出几条?
●
●
●
●
说一说
3、你能说出如图所示的从B到C的可行路线吗?哪条最 短呢?从A到B呢?
A
B
C
反馈·总结
4、已知不在同一条直线上的三点A、B、C,分别连接AB、 BC、AC,并量出它们之间的长度。
A
●
B●
●C
画一画
5、经过三点可以画出几条直线?
反馈·总结
6、关于“两点间的距离”下列说法正确的是(C )
6、 教育不在于使人知其所未知,而在于按其所未行而行。2021年11月2021/11/252021/11/252021/11/2511/25/2021 7、教育是一个逐步发现自己无知的过程。2021/11/252021/11/25November 25, 2021 8、is a admirable thing, but it is well to remember from time to time that nothing worth knowing can be taught.教 育是令人羡慕的东西,但是要不时地记住:凡是值得知道的,没有一个是能够教会的。2021/11/252021/11/252021/11/252021/11/25
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
帮你学好“三线”
线段、射线和直线(以下简称“三线”)是构成丰富的图形世界的三个最基本的元素,学好“三线”可为后续的学习打下良好基础.下面就“三线”的学习提出几点建议.
一、理解“三线”的概念
1.线段:课本中没有给出严格的定义,是用描述性的语言予以说明的,如绷紧的琴弦、人行横道线,都可以近似地看做线段.线段有如下特点:①线段是直的; ②线段有两个端点,如长方形的每一条边、正方体的每一条棱等都是线段.
2.射线:将线段向一个方向无限延长就形成了射线,射线只有一个端点.如手电筒、探照灯所射出的光线可近似地看成射线.
3.直线:将线段向两个方向无限延长就形成了直线.将射线反向延长也可形成直线,直线没有端点.如笔直的铁轨可以近似地看成直线.
二、掌握“三线”的表示方法
三、弄清“三线”的联系与区别
联系: (1)射线和线段都是直线的一部分,线段又是射线的一部分,即在直线上任取两点就可以得到一条线段,在射线上任取一点(端点除外)就可以得到一条线段,在直线上任取一点就可以得到两条射线.
(2)把一条射线反向延长或把一条线段向两方延长,都可以得到一条直线.
区别: (1)线段有两个端点,而射线只有一个端点,直线无端点.
(2)线段不能向任何一方伸展,而射线可以向一方无限延伸;直线向两方无限延伸.
(3) 线段有长度,可以度量; 而射线和直线无长度,不可度量.
四、理解两条重要性质
1.直线的性质:经过两点有且只有一条直线,即两点确定一条直线.
2.线段的性质:两点之间的所有连线中,线段最短.简称为:两点之间,线段最短.
温馨提示: (1)直线的性质包含两层意思:一是说经过两点有一条直线,肯定有,不是没有(即存在性);二是说经过两点只有一条直线,不会有两条、三条……(即唯一性).
(2)直线和线段的性质在现实生活有着广泛的应用.例如工人师傅要把许多电线杆排立在一条直线上时,只要定出两根杆的位置(即两点),就能定出一行电线杆所在直线的位置等,就是直线性质的运用.走路时“抄近道”的现象,就是线段性质的运用.。