2020年中考数学三轮复习专项练习:《相似综合》

合集下载

2020年九年级中考数学复习专题训练:《相似综合 》(含答案)

2020年九年级中考数学复习专题训练:《相似综合 》(含答案)

2020年九年级中考数学复习专题训练:《相似综合》1.如图1,点P从菱形ABCD的顶点B出发,沿B→D→A匀速运动到点A,BD的长是;图2是点P运动时,△PBC的面积y(cm2)随时间x(s)变化的函数图象.(1)点P的运动速度是cm/s;(2)求a的值;(3)如图3,在矩形EFGH中,EF=2a,FG﹣EF=1,若点P、M、N分别从点E、F、G三点同时出发,沿矩形的边按逆时针方向匀速运动,当点M到达点G(即点M与点G重合)时,三个点随之停止运动;若点P不改变运动速度,且点P、M、N的运动速度的比为2:6:3,在运动过程中,△PFM关于直线PM的对称图形是△PF'M,设点P、M、N的运动时间为t(单位:s).①当t=s时,四边形PFMF'为正方形;②是否存在t,使△PFM与△MGN相似,若存在,求t的值;若不存在,请说明理由.2.如图1,四边形ABCD中,AD∥BC,∠A=90°,AD=3,AB=4,BC=6,动点P从点A出发以1个单位/秒的速度沿AB运动,动点Q同时从点C出发以2个单位/秒的速度沿CB 运动,过点P作EP⊥AB,交BD于E,连接EQ.当点Q与点B重合时,两动点均停止运动,设运动的时间为t秒.(1)当t=1时,求线段EP的长;(2)运动过程中是否存在某一时刻,使△BEQ与△ABD相似?若存在,请求出所有满足要求的t的值;若不存在,请说明理由;(3)如图2,连接CE,求运动过程中△CEQ的面积S的最大值.3.如图1,在△ABC中,AB=AC=10,,点D为BC边上的动点(点D不与点B,C 重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F,连接CF.(1)求证:△ABD∽△DCE;(2)当DE∥AB时(如图2),求AE的长;(3)点D在BC边上运动的过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由.4.如图(1),在矩形ABCD中,AD=nAB,点M,P分别在边AB,AD上(均不与端点重合),且AP=nAM,以AP和AM为邻边作矩形AMNP,连接AN,CN.【问题发现】(1)如图(2),当n=1时,BM与PD的数量关系为,CN与PD的数量关系为.【类比探究】(2)如图(3),当n=2时,矩形AMNP绕点A顺时针旋转,连接PD,则CN与PD之间的数量关系是否发生变化?若不变,请就图(3)给出证明;若变化,请写出数量关系,并就图(3)说明理由.【拓展延伸】(3)在(2)的条件下,已知AD=4,AP=2,当矩形AMNP旋转至C,N,M三点共线时,请直接写出线段CN的长.5.如图,在△ABC中,∠C=90°,AB=10,AC=8,D、E分别是AB、BC的中点.连接DE.动点P从点A出发,以每秒5个单位长度的速度沿AB向终点B运动.同时,动点Q从点C 出发,沿折线CE﹣ED向终点D运动,在CE、ED上的速度分别是每秒3个单位长度和4个单位长度,连接PQ,以PQ、PD为边作▱DPQM.设▱DPQM与四边形ACED重叠部分图形的面积是S(平方单位),点P的运动时间为t(s).(1)当点P在AD上运动时,PQ的长为(用含t的代数式表示);(2)当▱DPQM是菱形时,求t的值;(3)当0<t<2时,求S与t之间的函数关系式;(4)当△DPQ与△BDE相似时,直接写出t的值.6.如图,在平行四边形ABCD中,AC为对角线,过点D作DE⊥DC交直线AB于点E,过点E 作EH⊥AD于点H,过点B作BF⊥AD于点F.(1)如图1,若∠BAD=60°,AF=3,AH=2,求AC的长;(2)如图2,若BF=DH,在AC上取一点G,连接DG、GE,若∠DGE=75°,∠CDG=45°﹣∠CAB,求证:DG=CG.7.(1)问题引入:如图1所示,正方形ABCD和正方形AEFG,则BE与DG的数量关系是,=;(2)类比探究:如图2所示,O为AD、HG的中点,正方形EFGH和正方形ABCD中,判断BE和CF的数量关系,并求出的值;(3)解决问题:①若把(1)中的正方形都改成矩形,且==,则(1)中的结论还成立吗?若不能成立,请写出BE与GD的关系,并求出值;②若把(2)中的正方形也都改成矩形,且==2n,请直接写出BE和CF的关系以及的8.在正方形ABCD中,点E是直线AB上动点,以DE为边作正方形DEFG,DF所在直线与BC 所在直线交于点H,连接EH.(1)如图1,当点E在AB边上时,延长EH交GF于点M,EF与CB交于点N,连接CG,①求证:CD⊥CG;②若tan∠HEN=,求的值;(2)当正方形ABCD的边长为4,AE=1时,请直接写出EH的长.9.如图a,在正方形ABCD中,E、F分别为边AB、BC的中点,连接AF、DE交于点G.(1)求证:AF⊥DE;(2)如图b,连接BG,BD,BD交AF于点H.①求证:GB2=GA•GD;②若AB=10,求三角形GBH的面积.10.如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP 翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP交DC于点N.(1)求证:AD2=DP•PC;(2)请判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC分别交PM、PB于点E、F.若AD=3DP,探究EF与AE之间的的数量关系.11.△ABC中,∠C=90°,∠A=60°,AC=2cm.长为1cm的线段MN在△ABC的边AB上沿AB方向以1cm/s的速度向点B运动(运动前点M与点A重合).过M,N分别作AB的垂线交直角边于P,Q两点,线段MN运动的时间为ts.(1)当0≤t≤1时,PM=,QN=(用t的代数式表示);(2)线段MN运动过程中,四边形MNQP有可能成为矩形吗?若有可能,求出此时t的值;若不可能,说明理由;(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?12.如图,四边形ABCD是矩形,AB=6,BC=4,点E在边AB上(不与点A、B重合),过点D作DF⊥DE,交边BC的延长线于点F.(1)求证:△DAE∽△DCF.(2)设线段AE的长为x,线段BF的长为y,求y与x之间的函数关系式.(3)当四边形EBFD为轴对称图形时,则cos∠AED的值为.13.如图,矩形ABCD中,AB=3,BC=2,点M在BC上,连接AM,作∠AMN=∠AMB,点N 在直线AD上,MN交CD于点E.(1)求证:△AMN是等腰三角形;(2)求证:AM2=2BM•AN;(3)当M为BC中点时,求ME的长.14.如图,在平面直角坐标系中,过原点O及A(8,0)、C(0,6)作矩形OABC,连接AC,一块直角三角形PDE的直角顶点P始终在对角线AC上运动(不与A、C重合),且保持一边PD始终经过矩形点B,PE交x轴于点Q(1)=;(2)在点P从点C运动到点A的过程中,的值是否发生变化?如果变化,请求出其变化范围,如果不变,请说明理由,并求出其值;(3)若将△QAB沿直线BQ折叠后,点A与点P重合,则PC的长为.15.如图,在矩形OABC中,点A,B的坐标分别为A(4,0),B(4,3),动点N,P分别从点B,A同时出发,点N以1单位/秒的速度向终点C运动,点P以5/4单位/秒的速度向终点C运动,连结NP,设运动时间为t秒(0<t<4)(1)直接写出OA,AB,AC的长度;(2)求证:△CPN∽△CAB;(3)在两点的运动过程中,若点M同时以1单位/秒的速度从点O向终点A运动,求△MPN的面积S与运动的时间t的函数关系式(三角形的面积不能为0),并直接写出当S =时,运动时间t的值.16.如图,在正方形ABCD中,点E在边CD上(不与点C,D重合),连结AE,BD交于点F.(1)若点E为CD中点,AB=2,求AF的长.(2)若tan∠AFB=2,求的值.,(3)若点G在线段BF上,且GF=2BG,连结AG,CG,=x,四边形AGCE的面积为S1,求的最大值.△ABG的面积为S217.如图1,在△ABC中,AB=AC,点D,E分别是边BC,AC上的点,且∠ADE=∠B.(1)求证:AB•CE=BD•CD;(2)若AB=5,BC=6,求AE的最小值;(3)如图2,若△ABC为等边三角形,AD⊥DE,BE⊥DE,点C在线段DE上,AD=3,BE =4,求DE的长.18.如图,△ABC中,AB=AC,点P为BC边上一动点(不与B,C重合),以AP为边作∠APD=∠ABC,与BC的平行线AD交于点D,与AC交于点E,连结CD.(1)求证:△ABP∽△DAE.(2)已知AB=AC=5,BC=6.设BP=x,CE=y.①求y关于x的函数表达式及自变量x的取值范围;=时,求CE的值.②当S△ACD19.如图,在矩形ABCD的边AB上取一点E,连接CE并延长和DA的延长线交于点G,过点E作CG的垂线与CD的延长线交于点H,与DG交于点F,连接GH.(1)当tan∠BEC=2且BC=4时,求CH的长;(2)求证:DF•FG=HF•EF;(3)连接DE,求证:∠CDE=∠CGH.20.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“友好四边形”.(1)如图1,在4×4的正方形网格中,有一个网格Rt△ABC和两个网格四边形ABCD与ABCE,其中是被AC分割成的“友好四边形”的是;(2)如图2,将△ABC绕点C逆时针旋转得到△A'B'C,点B'落在边AC,过点A作AD∥A'B'交CA'的延长线于点D,求证:四边形ABCD是“友好四边形”;(3)如图3,在△ABC中,AB≠BC,∠ABC=60°,△ABC的面积为6,点D是∠ABC 的平分线上一点,连接AD,CD.若四边形ABCD是被BD分割成的“友好四边形”,求BD 的长.参考答案1.解:(1)由图2可知,s点P从点B运动到点D,∵BD=,∴点P的运动速度=÷=1(cm/s),故答案为:1;(2)如图1,作DQ⊥BC于点Q,当点P在BD上时,a=×BC×DP,∵四边形ABCD为菱形,点P的运动速度为1,∴AD=BC=1×a=a,∴a=×a×DP,解得,DQ=2,在Rt△BDQ中,BQ==1,∴CQ=a﹣1,在Rt△CDQ中,CD2=CQ2+DQ2,即a2=(a﹣1)2+22,解得,a=;(3)①∵点P的运动速度1cm/s,点P、M的运动速度的比为2:6 ∴点M的运动速度3cm/s,由题意得,EF=2a=5,∵FG﹣EF=1,∴FG=6,∴PF=5﹣t,FM=3t,由翻转变换的性质可知,PF=PF′,FM=FM′,当PF=FM时,PF=PF′=FM=FM′,∴四边形PFMF'为菱形,又∠F=90°,∴四边形PFMF'为正方形,∴5﹣t=3t,即t=1.25时,四边形PFMF'为正方形,故答案为:1.25;②存在,∵点P的运动速度1cm/s,点P、M、N的运动速度的比为2:6:3,∴点M的运动速度3cm/s,点N的运动速度1.5cm/s,∴PF=5﹣t,FM=3t,GN=1.5t,∵点M的运动速度3cm/s,FG=6,∴0≤t≤2,当△PFM∽△MGN时,=,即=,解得,t=,当△PFM∽△NGM时,=,即=,解得,t1=﹣7﹣(舍去),t2=﹣7+,综上所述,当t=或﹣7+时,△PFM与△MGN相似.2.解:(1)当t=1时,则AP=1,∴BP=AB﹣AP=3,∵EP⊥AB,∴∠EPB=∠A=90°,∴EP∥AD,∴△BPE∽△BAD,∴,∴,∴EP=;(2)∵∠A=90°,AD=3,AB=4,∴BD===5,∵EP⊥AB,∴∠EPB=∠A=90°,∴EP∥AD,∴△BPE∽△BAD,∴,∴,∴BE=5﹣t,∵AD∥BC,∴∠ADB=∠EBQ,若∠BEQ=∠A=90°,∴△BAD∽△QEB,∴,∴=,∴t=28(不合题意舍去),若∠BQE=∠A=90°,∴△BAD∽△EQB,∴,∴t=,(3)∵S=×CQ×PB=×2t×(4﹣t)=﹣(t﹣2)2+4,∴当t=2时,S最大值为4,∴△CEQ的面积S的最大值为4.3.证明:(1)∵AB=AC,∴∠B=∠ACB,∵∠ADE+∠CDE=∠B+∠BAD,∠ADE=∠B,∴∠BAD=∠CDE,∴△BAD∽△DCE;(2)如图2中,作AM⊥BC于M.在Rt△ABM中,设BM=4k,∵=,∴,由勾股定理,得到AB2=AM2+BM2,∴102=(3k)2+(4k)2,∴k=2或﹣2(舍弃),∴AM=6,BM=8,∵AB=AC,AM⊥BC,∴BC=2BM=2×2k=16,∵DE∥AB,∴∠BAD=∠ADE,∵∠ADE=∠B,∠B=∠ACB,∴∠BAD=∠ACB,∵∠ABD=∠CBA,∴△ABD∽△CBA,∴,∴=,∵DE∥AB,∴,∴=.(3)点D在BC边上运动的过程中,存在某个位置,使得DF=CF.理由:作FH⊥BC于H,AM⊥BC于M,AN⊥FH于N.则∠NHM=∠AMH=∠ANH=90°,∴四边形AMHN为矩形,∴∠MAN=90°,MH=AN,∵AB=AC,AM⊥BC,∵AB=10,∴BM=CM=8,∴BC=16,在Rt△ABM中,由勾股定理,得AM=6,∵AN⊥FH,AM⊥BC,∴∠ANF=90°=∠AMD,∵∠DAF=90°=∠MAN,∴∠NAF=∠MAD,∴△AFN∽△ADM,∴,∴,∴CH=CM﹣MH=CM﹣AN=8﹣=,当DF=CF时,由点D不与点C重合,可知△DFC为等腰三角形,∵FH⊥DC,∴CD=2CH=7,∴BD=BC﹣CD=16﹣7=9,∴点D在BC边上运动的过程中,存在某个位置,使得DF=CF,此时BD=9.4.解:(1)BM=PD,,理由如下:当n=1,则AD=AB,AP=AM,∴AD﹣AP=AB﹣AM,∴DP=BM,∵四边形ABCD是矩形,四边形AMNP是矩形,∴AD=CD=AB,AP=AM=NP,∠ADC=∠APN=90°,∴AC=AD,AN=AP,∴AC﹣AN=(AD﹣AP),∴CN=PD,故答案为:BM=PD,;(2)CN与PD之间的数量关系发生变化,,理由如下:如图(1)在矩形ABCD和矩形AMNP中,∵当n=2.AD=2AB,AP=2AM,∴,,∴.,如图(3)连接AC,∵矩形AMNP绕点A顺时针旋转,∴∠NAC=∠PAD,∴△ANC∽△APD,∴,∴;(3)如图,当点N在线段CM上时,∵AD=4,AD=2AB,∴AB=CD=2,∴AC===,∵AP=2,AP=2AM,∴AM=1,∴CM===,∴CN=CM﹣MN=﹣2;如图,当点M在线段CN上时,同理可求CM=,∴CN=CM+MN=+2;综上所述:线段CN的长为或.5.解:(1)∵∠C=90°,AB=10,AC=8,∴BC===6,∵D、E分别是AB、BC的中点.∴DE∥AC,DE=AC=4,BD=AD=5,BE=CE=3,∵动点P从点A出发,以每秒5个单位长度的速度沿AB向终点B运动,∴AP=5t,∴BP=10﹣5t,∵DE∥AC,∴△BPQ∽△BAC,∴,∴∴PQ=8﹣4t,故答案为:8﹣4t;(2)当点P在AD上运动时,∵四边形DPQM是菱形,∴PD=PQ,∴5﹣5t=8﹣4t,∴t=﹣3(不合题意舍去),当点P在BD上运动时,过点P作PH⊥DQ于H,∵四边形DPQM是菱形,∴PD=PQ,且PH⊥DQ,∴DH=HQ=DQ=[4﹣4(t﹣1)]=4﹣2t,∵DE∥AC,∴∠DEB=∠ACB=90°=∠PHD,∴PH∥BE,∴△PDH∽△BDE,∴,∴,∴t=,PH=3t﹣3,综上所述:当t=时,▱DPQM是菱形;(3)当0<t<1时,S=×(8﹣4t+4)×(3﹣3t)=6t2﹣24t+18,当t=1时,不能作出▱DPQM,当1<t<2时,S=×(8﹣4t)×(3t﹣3)=﹣6t2+18t﹣12;(4)当点P在AD上时,不存在△DPQ与△BDE相似,当点P在BD上时,则∠PDQ=∠BDE,若∠PQD=∠DEB=90°时,∴△PDQ∽△BDE,∴,∴∴t=,若∠DPQ=∠DEB=90°时,∴△QPD∽△BED,∴,∴∴t=综上所述:当t=或时,△DPQ与△BDE相似.6.解:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,CD=AB,CD∥AB,∵BF⊥AD于F,∴∠AFB=90°,∵∠BAD=60°,∴AB=2AF=6,BF=AF=3,∵EH⊥AD于H,∴AE=2AH=4,EH=AH=2,∵DE⊥DC交AB于E,∴∠DEA=90°,∴AD=2AE=8,∴CB=AD=8,如图1,作AM⊥CB于M,则∠ABM=∠BAD=60°,∴BM=(1/2)AB=3,AM=BM=3,∴CM=CB+BM=11,在Rt△ACM中:AC===2.(2)如图2,作EN⊥AC于N,连接DN、CE,则∠CNE=90°.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,CD=AB,CD∥AB,∵DE⊥DC交AB于E,∴∠CDE=∠DEA=90°,∵EH⊥AD于H,∴∠DHD=∠EHA=90°,∵BF⊥AD于F,∴∠DFB=∠AFB=90°,∴∠DHE=∠BFA,∵∠DEH+∠HEA=∠HEA+∠BAF=90°,∴∠DEH=∠BAF,∵DH=BF,∴△DEH≌△BAF(AAS),∴DE=BA=CD,∴△CDE是等腰直角三角形,∠DCE=∠DEC=45°,∵∠CDE=∠CNE=90°,∴C、D、N、E四点共圆,∴∠DNC=∠DEC=45°,∵∠CDG=45°﹣∠CAB,∴∠CDG+∠CAB=45°,∵CD∥AB,∴∠CAB=∠DCG,∴∠DGN=∠DCG+∠CDG=45°=∠DNC,∴△DGN是等腰直角三角形,∠GDN=90°,DG=DN,∵∠CDG+∠GDE=∠GDE+∠EDN=90°,∴∠CDG=∠EDN,∴△CDG≌△EDN(SAS),∴EN=CG,∵∠CGD=75°,∴∠CGN=∠CGD﹣∠DGN=30°,∴GN=EN=CG,∴DG=GN=CG7.解:(1)如图1中,连接AC,AF.∵四边形ABCD,四边形AEFG都是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,AC=AB,AF=AE,∠BAC=45°,∠EAF=45°,∴∠BAE=∠DAG,∴△BAE≌△DAG(SAS),∴BE=DG,∵AC=AB,AF=AE,∴=,∵∠BAC=∠EAF=45°,∴∠BAE=∠CAF,∴△BAE∽△CAF,∴==,∵DG=BE,∴=.故答案为:BE=DG,.(2)如图2中,连接OB,OE,OF,OC.∵四边形ABCD是正方形,OA=OD,∴∠A=∠CDO=90°,AB=CD,∴△AOB≌△DOC(SAS),∴OB=OC,同法可证OE=OF,∴∠OBC=∠OCB,∠OEF=∠OFE,∵BC∥AD,∴∠CBO=∠AOB,∴tan∠CBO=tan∠AOB=2,同法可证:tan∠FEO=2,∴tan∠CBO=tan∠FEO,∴∠CBO=∠FEO,∴∠OBC=∠OCB=∠OEF=∠OFE,∴∠BOC=∠EOF,∴∠EOB=∠FOC,∵OE=OF,OB=OC,∴△OEB≌△OFC(SAS),∴BE=FC,∵tan∠COD=tan∠COD=2,∴∠FOG=∠COD,∴∠FOC=∠GOD,∵==,∴△FOG∽△GOD,∴==.(3)①如图3中,结论不成立,BE=3DG.连接BE,AC,AF,CF.∵四边形ABCD,四边形AEFG都是矩形,∴∠BAD=∠EAG=90°,∴∠BAE=∠DAG,∵AB=3AD,AE=3AG,∴△BAE∽△DAG,∴==3,∴BE=3DG,由题意:=,=,∴=,∴=,∵tan∠BAC=tan∠EAF=,∴∠BAC=∠EAF,∴∠BAE=∠CAF,∴△BAE∽△CAF,∴==,∴=.②如图4中,连接OE,OB,OF,OC.由(2)可知,∠BOC=∠EOF,OE=OF,OB=OC,∴∠EOB=∠FOC,∴△EOB≌△FOC(SAS),∴BE=CF.同法可证△FOC∽△GOD,∴=,设EH=k,则GH=2nk,∴OG=nk,∴OF==•k,∵BE=CF,∴==.8.证明:(1)①∵四边形ABCD和四边形DEFG是正方形,∴∠A=∠ADC=∠EDG=90°,AD=CD,DE=DG,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴∠A=∠DCG=90°,∴CD⊥CG;②如图1,过点N作NP∥DE,∵四边形DEFG是正方形,∴EF=GF,∠EFH=∠GFH=45°,且HF=HF,∴△EFH≌△GFH(SAS),∴EH=GH,∠HEF=∠HGF,∵∠HEF=∠HGF,EF=GF,∠EFM=∠GFN,∴△EFM≌△GFN(ASA),∴FM=NF,EM=GN,∵tan∠HEN==,∴EF=4MF=4NF=GF,∴GM=3MF=EN=3NF,∴NP∥DE,∴△PNE∽△MFE,∴,∴PN=MF,∵NP∥DE,∴=,∴;(2)如图1,∵AD=4,AE=1,∴DE===,∴EF=GF=,∴NF=EF=,∵GN2=GF2+NF2,∴GN=,∵∴GH=GN=,∴EH=GH=若点E在点A左侧,如图2,设AB与DH于点O,过点F作FN⊥AB,∵∠DEA+∠FEB=90°,∠DEA+∠ADE=90°,∴∠ADE=∠FEB,且∠DAE=∠FNE=90°,DE=EF,∴△ADE≌△NEF(AAS)∴AE=NF=1,DA=EN=4,∴AN=3,BN=1,∵DA∥NF,∴,∴ON=,∴BO=,∴AO=∵DA∥BH,∴,∴BH=,∴EH===9.证明:(1)∵正方形ABCD,E、F分别为边AB、BC的中点,∴AD=BC=DC=AB,AE=BE=AB,BF=CF=BC,∴AE=BF,∵在△ADE和△BAF中,∴△ADE≌△BAF(SAS)∴∠BAF=∠ADE,∵∠BAF+∠DAF=90°∴∠ADE+∠DAF=90°=∠AGD,∴AF⊥DE;(2)①如图b,过点B作BN⊥AF于N,∵∠BAF=∠ADE,∠AGD=∠ANB=90°,AB=AD,∴△ABN≌△ADG(AAS)∴AG=BN,DG=GN,∵∠AGE=∠ANB=90°,∴EG∥BN,∴,且AE=BE,∴AG=GN,∴AN=2AG=DG,∵BG2=BN2+GN2=AG2+AG2,∴BG2=2AG2=2AG•AG=GA•DG;②∵AB=10,∴AE=BF=5,∴DE===5,∵×AD×AE=×DE×AG,∴AG=2,∴GN=BN=2,∴AN=DG=4,∴△DGH∽△BNH,∴==2,∴GH=2HN,且GH+HN=GN=2,∴GH=,=×GH×BN=××2=.∴S△GHB10.(1)证明:过点P作PG⊥AB于点G,如图1所示:则四边形DPGA和四边形PCBG是矩形,∴AD=PG,DP=AG,BG=PC,∵∠APB=90°,∴∠APG+∠GPB=∠GPB+∠PBG=90°,∴∠APG=∠PBG,∴△APG∽△PBG,∴=,∴PG2=AG•BG,即AD2=DP•PC;(2)解:四边形PMBN是菱形;理由如下:∵四边形ABCD是矩形,∴AB∥CD,∵BM∥PN,BN∥MP,∴四边形PMBN是平行四边形,∵DP∥AB,∴∠DPA=∠PAM,由题意可知:∠DPA=∠APM,∴∠PAM=∠APM,∵∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB∴AM=PM,PM=MB,∴四边形PMBN是菱形;(3)解:∵AD=3DP,∴设DP=1,则AD=3,由(1)可知:AG=DP=1,PG=AD=3,∵PG2=AG•BG,∴32=1•BG,∴BG=PC=9,AB=AG+BG=10,∵CP∥AB,∴△PCF∽△BAF,∴==,∴=,∵PM=MB,∴∠MPB=∠MBP,∵∠APB=90°,∴∠MPB+∠APM=∠MBP+∠MAP=90°,∴∠APM=∠MAP,∴PM=MA=MB,∴AM=AB=5,∵AB∥CD,∴△PCE∽△MAE,∴==,∴=,∴EF=AF﹣AE=AC﹣AC=AC,∴==.11.解:(1)由题意得:AM=t,∵PM⊥AB,∴∠PMA=90°,∵∠A=60°,∴∠APM=30°,∴PM=AM=t.∵∠C=90°,∴∠B=90°﹣∠A=30°,∴AB=2AC=4,BC=AC=2,∵MN=1,∴BN=AM﹣AM﹣1=3﹣t,∵QN⊥AB,∴QN=BN=(3﹣t);故答案为:tcm,(3﹣t)cm.(2)四边形MNQP有可能成为矩形,理由如下:由(1)得:QN=(3﹣t).由条件知,若四边形MNQP为矩形,则需PM=QN,即t=(3﹣t),∴t=.∴当t=s时,四边形MNQP为矩形;(3)由(2)知,当t=s时,四边形MNQP为矩形,此时PQ∥AB,∴△PQC∽△ABC.除此之外,当∠CPQ=∠B=30°时,△QPC∽△ABC,此时=tan30°=.∵=cos60°=,∴AP=2AM=2t.∴CP=2﹣2t.∵=cos30°=,∴BQ=(3﹣t).又∵BC=2,∴CQ=2 .∴.综上所述,当s或s时,以C,P,Q为顶点的三角形与△ABC相似.12.证明:(1)∵四边形ABCD是矩形,∴AD∥BC,∠A=∠BCD=∠ADC=90°,AD=BC=4,AB=CD=6,∴∠ADE+∠EDC=90°,∵DF⊥DE,∴∠EDC+∠CDF=90°,∴∠ADE=∠CDF,且∠A=∠DCF=90°,∴△DAE∽△DCF;(2)∵△DAE∽△DCF,∴,∴∴y=x+4;(3)∵四边形EBFD为轴对称图形,∴DE=BE,∵AD2+AE2=DE2,∴16+AE2=(6﹣AE)2,∴AE=,∴DE=BE=,∴cos∠AED==,故答案为:.13.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠NAM=∠BMA,∵∠AMN=∠AMB,∴∠AMN=∠NAM,∴AN=MN,即△AMN是等腰三角形;(2)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC=2,AB=CD=3,∴∠NAM=∠BMA,作NH⊥AM于H,如图所示:∵AN=MN,NH⊥AM,∴AH=AM,∵∠NHA=∠ABM=90°,∠NAM=∠BMA,∴△NAH∽△AMB,∴=,∴AN•BM=AH•AM=AM2,∴AM2=2BM•AN;(3)解:∵M为BC中点,∴BM=CM=BC=×2=1,由(2)得:AM2=2BM•AN,即:AM2=2AN,∵AM2=AB2+BM2=32+12=10,∴10=2AN,∴AN=5,∴DN=AN﹣AD=5﹣2=3,设DE=x,则CE=3﹣x,∵AN∥BC,∴△DNE∽△CME∴=,即=,解得:x=,即DE=,∴CE=DC﹣DE=3﹣=,∴ME===.14.解:(1)∵A(8,0)、C(0,6),∴OA=8,OC=6,∵四边形OABC是矩形,∴∠ABC=∠OAB=90°,BC=OA=8,AB=OC=6,∴==,故答案为:;(2)的值不发生变化,=,理由如下:∵∠OAB=∠BPQ=90°,∴∠AOB+∠BPQ=180°,∴A、B、P、Q四点共圆,∴∠PQB=∠PAB,∵∠ABC=∠BPQ=90°,∴△PBQ∽△BCA,∴==;(3)设BQ交AP于M,如图所示:在Rt△ABC中,由勾股定理得:AC===10,由折叠的性质得:BQ⊥AP,PM=AM,∴∠AMB=90°=∠ABC,∵∠BAM=∠CAB,∴△ABM∽△ACB,∴=,即=,解得:AM=3.6,∴PA=2AM=7.2,∴PC=AC﹣PA=10﹣7.2=2.8;故答案为:2.8.15.(1)证明:∵四边形OABC是矩形,A(4,0),B(4,3),∴OA=BC=4,AB=OC=3,∠AOC=90°,∴AC===5;(2)解:由题意得:BN=t,AP=t,∵=,==,∴=,∴PN∥AB,∴△CPN∽△CAB;(3)解:分两种情况:①当0<t<2时,延长NP交OA于D,如图1所示:由(2)得:PD∥AB,∴△APD∽△ACO,∴==,即==,解得:PD=t,AD=t,∴PN=3﹣t,DM=4﹣t﹣t=4﹣2t,∴△MPN的面积S=PN×DM=×(3﹣t)×(4﹣2t)=t2﹣t+6,即S=t2﹣t+6(0<t<2);②当2<t<4时,延长NP交OA于D,如图2所示:由(2)得:PD∥AB,∴△APD∽△ACO,∴==,即==,解得:PD=t,AD=t,∴PN=3﹣t,DM=t+﹣4t=2t﹣4,∴△MPN的面积S=PN×DM=×(3﹣t)×(2t﹣4)=﹣t2+t﹣6,即S=﹣t2+t﹣6(2<t<4);当S=,0<t<2时,则t2﹣t+6=,整理得:t2﹣6t+6=0,解得:t=3﹣,或t=3+(不合题意舍去),∴t=3﹣;当S=,2<t<4时,则﹣t2+t﹣6=,整理得:t2﹣6t+10=0,∵△=36﹣40<0,∴此方程无解;综上所述,当S=时,运动时间t的值为(3﹣)秒.16.解:(1)∵点E为CD中点,AB=AD=CD=2,∴DE=,∴AE===5,∵AB∥CD,∴△ABF∽△EDF,∴,∴AF=2EF,且AF+EF=5,∴AF=;(2)如图1,连接AC,∵四边形ABCD是正方形,∴AB=BC=CD=AD,BD=AB,AO⊥BD,AO=BO=CO=DO,∴AO=DO=BO=AB,∵tan∠AFB==2,∴OF=AO=AB,∴DF=OD﹣OF=AB,BF=OB+OF=AB,∴;(3)如图2,设AB=CD=AD=a,则BD=a,∵=x,∴DE=xa,∴S△ADE=×AD×DE=xa2,∵△ABF∽△EDF,∴=x,∴DF=x•BF,∴S△ABF=a2,∵GF=2BG,∴S2=S△ABG=S△ABF=,∵AB=CB,∠ABG=∠CBG,BG=BG,∴△ABG≌△CBG(SAS)∴S△ABG =S△CBG,∴S1=四边形AGCE的面积=a2﹣xa2﹣2×∴=﹣3x2+3x+4=﹣3(x﹣)2+∴当x=时,的最大值为.17.(1)证明:∵AB=AC,∴∠B=∠C,∵∠ADC为△ABD的外角,∴∠ADE+∠EDC=∠B+∠DAB,∵∠ADE=∠B,∴∠BAD=∠CDE,又∠B=∠C,∴△ABD∽△DCE,∴=,∴AB•CE=BD•CD;(2)解:设BD=x,AE=y,由(1)得,5×(5﹣y)=x×(6﹣x),整理得,y=x2﹣x+5=(x﹣3)2+,∴AE的最小值为;(3)解:作AF⊥BE于F,则四边形ADEF为矩形,∴EF=AD=3,AF=DE,∴BF=BE﹣EF=1,设CD=x,CE=y,则AF=DE=x+y,由勾股定理得,AD2+CD2=AC2,CE2+BE2=BC2,AF2+BF2=AB2,∵△ABC为等边三角形,∴AB=AC=BC,∴32+x2=AC2,y2+42=BC2,(x+y)2+12=AC2,∴x2﹣y2=7,y2+2xy=8,解得,x=,y=,∴DE=x+y=.18.(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵∠APC=∠ABC+∠BAP,∠APC=∠APD+∠EPC,∠APD=∠ABC,∴∠BAP=∠EPC,∴△ABP∽△PCE,∵BC∥AD,∴△PCE∽△DAE,∴△ABP∽△DAE;(2)解:①∵△ABP∽△PCE,∴=,即=,∴y=﹣x2+x(0<x<6);②∵△ABP∽△DAE,∴=,即=,∴AD=,∵AD∥BC,∴,∵,∴,∴,即13x2+24x﹣100=0,∴x=2,(舍去)1∴.19.(1)解:在Rt△BCE中,当tan∠BEC=2,∴=2,即=2,解得,BE=2,由勾股定理得,CE===2,∵四边形ABCD为矩形,∴AB∥CD,∴∠ECH=∠BEC,∴tan∠ECH==2,即=2,∴EH=4,∴CH==10;(2)证明:∵∠FEG=∠FDH=90°,∠EFG=∠DFH,∴△EFG∽△DFH,∴=,∴DF•FG=HF•EF;(3)证明:∵△EFG∽△DFH,∴∠CGD=∠CHE,又∠GCD=∠HCE,∴△GCD∽△HCE,∴=,又∠GCD=∠HCE,∴△CDE∽△CGH,∴∠CDE=∠CGH.20.解:(1)AB=2,BC=1,AD=4,由勾股定理得,AC==,CD==,AE==2,CE==5,===,∴△ABC∽△EAC,∴四边形ABCE是“友好四边形”,≠,∴△ABC与△ACD不相似,∴四边形ABCD不是“友好四边形”,故答案为:四边形ABCE;(2)证明:根据旋转的性质得,∠A'CB'=∠ACB,∠CA'B'=∠CAB,∵AD∥A'B',∴∠CA'B'=∠D,∴∠CAB=∠D,又∠A'CB'=∠ACB,∴△ABC∽△DAC,∴四边形ABCD是“友好四边形”;(3)如图3,过点A作AM⊥BC于M,在Rt△ABM中,AM=AB•sin∠ABC=AB,∵△ABC的面积为6,∴BC×AB=6,∴BC×AB=24,∵四边形ABCD是被BD分割成的“友好四边形”,且AB≠BC,∴△ABD∽△DBC∴,∴BD2=AB×BC=24,∴BD==2.。

2020-2021备战中考数学复习《相似》专项综合练习附详细答案

2020-2021备战中考数学复习《相似》专项综合练习附详细答案

2020-2021备战中考数学复习《相似》专项综合练习附详细答案一、相似1.已知线段a,b,c满足,且a+2b+c=26.(1)判断a,2b,c,b2是否成比例;(2)若实数x为a,b的比例中项,求x的值.【答案】(1)解:设,则a=3k,b=2k,c=6k,又∵a+2b+c=26,∴3k+2×2k+6k=26,解得k=2,∴a=6,b=4,c=12;∴2b=8,b2=16∵a=6,2b=8,c=12,b2=16∴2bc=96,ab2=6×16=96∴2bc=ab2a,2b,c,b2是成比例的线段。

(2)解:∵x是a、b的比例中项,∴x2=6ab,∴x2=6×4×6,∴x=12.【解析】【分析】(1)设已知比例式的值为k,可得出a=3k,b=2k,c=6k,再代入a+2b+c=26,建立关于k的方程,求出kl的值,再求出2b、b2,然后利用成比例线段的定义,可判断a,2b,c,b2是否成比例。

(2)根据实数x为a,b的比例中项,可得出x2=ab,建立关于x的方程,求出x的值。

2.在矩形ABCD中,AB=8,AD=12,M是AD边的中点,P是AB边上的一个动点(不与A、B重合),PM的延长线交射线CD于Q点,MN⊥PQ交射线BC于N点。

(1)若点N在BC之间时,如图:①求证:∠NPQ=∠PQN;②请问是否为定值?若是定值,求出该定值;若不是,请举反例说明;(2)当△PBN与△NCQ的面积相等时,求AP的值.【答案】(1)证明:∵四边形ABCD是矩形,∴∠A=∠ADC=∠ADQ=90°,AB//CD,∴∠APM=∠DQM,∵M是AD边的中点,∴AM=DM,在△APM和△DQM中,,∴△APM≌△DQM(AAS),∴PM=QM,∵MN⊥PQ,∴MN是线段PQ的垂直平分线,∴PN=QN,∴∠NPQ=∠PQN② 是定值理由:如图,过点M作ME⊥BC于点E,∴∠MEN=∠MEB=∠AME=90°,∴四边形ABEM是矩形,∠MEN=∠MAP,∴AB=EM,∵MN⊥PQ,∴∠PMN=90°,∴∠PMN=∠AME,∴∠PMN-∠PME=∠AME-∠PME,∴∠EMN=∠AMP,∴△AMP∽△EMN,∴,∴,∵AD=12,M是AD边的中点,∴AM= AD=6,∵AB=8,∴;(2)解:分点N在BC之间和点N在BC延长线上两种情况(ⅰ)当点N在BC之间时,如图,作BF⊥PN于点F,CG⊥QN于点G,再分别作Rt△PBN和Rt△NCQ的中线BS、CT,∴∠BFS=∠CGT=90°,BS= PN,CT= QN,∵PN=QN,S△PBN=S△NCQ,∴BF=CG,BS=CT在Rt△BFS和Rt△CGT中,,∴Rt△BFS≌Rt△CGT(HL),∴∠BSF=∠CTG,∴∠BNP=∠BSF=∠CTG=∠CQN,在△PBN和△NCQ中,,∴△PBN≌△NCQ(AAS),∴BN=CQ,BP=CN,∵AP=AB-BP=8-CN,又∵CN=BC-BN=12-CQ,∴AP=CQ-4又∵CQ=CD+DQ,DQ=AP,∴AP=4+AP(舍去),∴此种情况不成立;(ⅱ)当点N在BC延长线上时,如图,作BF⊥PN于点F,CG⊥QN于点G,再分别作Rt△PBN和Rt△NCQ的中线BS、CT,同理可得,△PBN≌△NCQ,∴PB=NC,BN=CQ,∵AP=DQ,∵AP+8=DQ+CD=CQ=BC+CN=12+BP,∴AP-BP=4 ①,∵AP+BP=AB=8②,①+②得:2AP=12,∴AP=6.【解析】【分析】(1)①由矩形的性质用角角边易证△APM≌△DQM,可得PM=QM,已知MN⊥PQ,由线段的垂直平分线的定义可得MN是线段PQ的垂直平分线,再根据线段的垂直平分线的性质可得PN=QN,由等边对等角可得∠NPQ=∠PQN;②过点M作ME⊥BC于点E,由矩形的性质跟据有两个角对应相等的两个三角形相似易证△AMP∽△EMN,可得比例式,结合已知条件易求得为定值;(2)根据MN⊥PQ交射线BC于N点可知分两种情况:①当点N在BC之间时,如图,作BF⊥PN于点F,CG⊥QN于点G,再分别作Rt△PBN和Rt△NCQ的中线BS、CT,通过证Rt△BFS≌Rt△CGT和△PBN≌△NCQ可求解;②当点N在BC延长线上时,如图,作BF⊥PN于点F,CG⊥QN于点G,再分别作Rt△PBN和Rt△NCQ的中线BS、CT,通过证△PBN≌△NCQ可求解。

2020年数学中考专题练习:《相似图像综合》(含答案)

2020年数学中考专题练习:《相似图像综合》(含答案)

《相似图像综合》题号一二三总分得分第Ⅰ卷(选择题)一.选择题1.如图,正方形ABCD边长为3,M、N在对角线AC上,且∠MBN=45°,作ME⊥AB 于点E,NF⊥BC于点F,反向延长ME、NF交于点G,则GE•GF的值是()A.3 B.3C.3D.2.如图,在正方形ABCD中,△ABP是等边三角形,AP、BP的延长线分别交边CD于点E、F,联结AC,CP,AC与BF相交于点H,下列结论中错误的是()A.AE=2DE B.△CFP~△APH C.△CFP~△APC D.CP2=PH•PB 3.如图,在Rt△ABC中,∠C=90°,点P是边AC上一点,过点P作PQ∥AB交BC 于点Q,D为线段PQ的中点,BD平分∠ABC,以下四个结论①△BQD是等腰三角形;②BQ=DP;③PA=QP;④=(1+)2;其中正确的结论的个数()A.1个B.2个C.3个D.4个4.如图,在△ABC中,点D、E分别在AB和AC边上且DE∥BC,点M为BC边上一点(不与点B、C重合),联结AM交DE于点N,下列比例式一定成立的是()A.=B.=C.=D.=5.如图,过菱形ABCD的顶点C的直线与AB的延长线交于点E,与AD的延长线交于点F,若菱形的边长为x,BE=a,DF=b,则a,b,x满足的关系是()A.2x=a+b B.x2=a•b C.x(a+b)=a•b D.2x2=a2+b2 6.如图,在△ABC中,∠ACB=90°,AC=4,BC=2,P是AB边上一动点,PD⊥AC 于点D,点E在P的右侧,且PE=1,连接CE,P从点A出发,沿AB方向运动,当E 到达点B时,P停止运动,设PD=x,图中阴影部分面积S1+S2=y,在整个运动过程中,函数值y随x的变化而变化的情况是()A.一直减小B.一直增大C.先减小后增大D.先增大后减小7.如图,在△ABC中,AB=6,AC=8,BC=10,D是△ABC内部或BC边上的一个动点(与B、C不重合),以D为顶点作△DEF,使△DEF∽△AB C(相似比k>1),EF∥BC.两三角形重叠部分是四边形AGDH,当四边形AGDH的面积最大时,最大值是多少?()A.12 B.11.52 C.13 D.88.如图,有一块三角形余料ABC,BC=120mm,高线AD=80mm,要把它加工成一个矩形零件,使矩形的一边在BC上,点P,M分别在AB,AC上,若满足PM:PQ=3:2,则PM的长为()A.60mm B.mm C.20mm D.mm 9.如图,点E、F分别为正方形ABCD的边BC、CD上一点,AC、BD交于点O,且∠EAF=45°,AE,AF分别交对角线BD于点M,N,则有以下结论:①△AOM∽△ADF;②EF=BE+DF;③∠AEB=∠AEF=∠ANM;④S△AEF=2S△AMN以上结论中,正确的个数有()个.A.1 B.2 C.3 D.410.如图,在边长为1的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B运动(任何一个点到达即停止),连接AE、BF交于点P,过点P作PM ∥CD交BC于M点,PN∥BC交CD于N点,连接MN,在运动过程中则下列结论:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PE•BF;⑤线段MN的最小值为.其中正确的结论有()A.2个B.3个C.4个D.5个第Ⅱ卷(非选择题)二.填空题11.如图,在△ABC中,点D在AB上,点E在AC上,∠ADE=∠C,若DE=1,四边形DBCE的面积是△ADE的面积的3倍,则BC的长为.12.平面直角坐标系中,点A,B的坐标分别是A(2,4),B(3,0),在第一象限内以原点O为位似中心,把△OAB缩小为原来的,则点A的对应点A'的坐标为.13.小明用这样的方法来测量某建筑物的高度:如图,在地面上放一面镜子,调整位置,直至刚好能从镜子中看到建筑物的顶端.如果此时小明与镜子的距离是2m,镜子与建筑物的距离是20m.他的眼睛距地面1.5m,那么该建筑物的高是.14.如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC,CD于点P,Q.平行四边形ABCD的面积为6,则图中阴影部分的面积为.15.如图,AB、AC分别为⊙O内接正三边形和正四边形的边,OC与AB交于点D,若BD =2,则图中阴影部分的面积为.16.设O是四边形ABCD的对角线AC、BD的交点,若∠BAD+∠ACB=180°,且BC =3,AD=4,AC=5,AB=6,则=.17.如图,在△ABC中,AB=8,AC=16,点P从点A出发,沿AB方向以每秒2个长度单位的速度向点B运动:同时点Q从点C出发,沿CA方向以每秒3个长度单位的速度向点A运动,其中一点到达终点,则另一点也随之停止运动,当△ABC与以A、P、Q为顶点的三角形相似时,运动时间为秒.18.如图,点C为半圆的中点,AB是直径,点D是半圆上一点,AC,BD交于点E,若AD=1,BD=7,则CE的长为.19.梯形ABCD中,AD∥BC,AC交BD于点O,若S△AOD=4,S△AOB=6,则△BCD 的面积为.20.如图,⊙O是锐角△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连结AF 交BC于E,∠ABC的平分线BD交AF于D,连结BF.下列结论:①AF平分∠BAC;②点F为△BDC的外心;③;④若点M,N分别是AB和AF上的动点,则BN+MN的最小值是AB sin∠BAC.其中一定正确的是(把你认为正确结论的序号都填上).三.解答题21.如图,在等腰三角形ABC中,∠BAC=90°,AB=AC=2,D是BC边上的一个动点(不与B、C重合),在AC边上取一点E,使∠ADE=45°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y.①求y关于x的函数关系式并写出自变量x的取值范围;②求y的最小值.22.如图,在△ABC中,AB=AC=10,BC=16,点D为BC边上的一个动点(点D不与点B、点C重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F.(1)求证:AB•CE=BD•CD;(2)当DF平分∠ADC时,求AE的长;(3)当△AEF是等腰三角形时,求BD的长.23.如图,△ABC中,AB=AC,AM为BC边的中线,点D在边AC上,联结BD交AM 于点F,延长BD至点E,使得=,联结CE.求证:(1)∠ECD=2∠BAM;(2)BF是DF和EF的比例中项.24.教材呈现:下图是华师版九年级上册数学教材第77页的部分内容猜想如图,在△ABC中,点D、E分别是AB与AC的中点,根据画出的图形,可以猜想:DE∥BC,且DE=BC.对此,我们可以用演绎推理给出证明证明在△ABC中,∵点D、E分别是AB与AC的中点,∴请根据教材提示,结合图①,写出完整证明过程,结论应用:如图②在四边形ABCD中,AD=BC,点P是对角线BD的中点,M是DC中点,N是AB中点,MN与BD相交于点Q.(1)求证:∠PMN=∠PNM;(2)若AD=BC=4,∠ADB=90°,∠DBC=30°,则PQ=.25.已知:如图1,在△ABC中,AB=AC,点D、E分别在边BC、DC上,AB2=BE•DC,DE:EC=3:1,F是边AC上的一点,DF与AE交于点G.(1)找出图中与△ACD相似的三角形,并说明理由;(2)当DF平分∠ADC时,求DG:DF的值;(3)如图2,当∠BAC=90°,且DF⊥AE时,求DG:DF的值.参考答案一.选择题1.解:如图所示,过M作MQ⊥BC于Q,过N作NP⊥AB于P,则Rt△APN中,AN=PN=EG,Rt△CMQ中,CM=MQ=GF,∵正方形ABCD中,AC是对角线,∴∠BAN=∠MCB=45°,又∵∠MBN=45°,∴∠ABN=∠ABM+45°=∠CMB,∴△ABN∽△CMB,∴=,即CM×AN=AB×CB,∴GF×EG=9,即2GF×EG=9,∴GE•GF的值是,故选:D.2.解:∵四边形ABCD是正方形,∴∠D=∠DAB=90°,∵△APB是等边三角形,∴∠PAB=∠PBA=∠APB=60°,∴∠DAE=30°,∴AE=2DE,故①正确,∵AB∥CD,∴∠PFE=∠ABP=∠APH=60°,∵∠AHP=∠PBA+∠BAH=60°+45°=105°,又∵BC=BP,∠PBC=30°,∴∠BPC=∠BCP=75°,∴∠CPF=105°,∴∠PHA=∠CPF,∴△CFP∽△APH,故②正确,∵∠CPA=60°+75°=135°≠∠CPF,∴△PFC与△PCA不相似,故③错误,∵∠PCH=∠PCB﹣∠BCH=75°﹣45°=30°,∴∠PCH=∠PBC,∵∠CPH=∠BPC,∴△PCH∽△PBC,∴=,∴CP2=PH•PB,故④正确,故选:C.3.解:∵PQ∥AB,∴∠ABD=∠BDQ,又∠ABD=∠QBD,∴∠QBD=∠BDQ,∴QB=QD,∴△BQD是等腰三角形,故①正确,∵QD=DF,∴BQ=PD,故②正确,∵PQ∥AB,∴=,∵AC与BC不相等,∴BQ与PA不一定相等,故③错误,∵∠PCQ=90°,QD=PD,∴CD=QD=DP,∵△ABC∽△PQC,∴=()2=()2=(1+)2,故④正确,故选:C.4.解:∵DE∥BC,∴△ADN∽△ABM,△ANE∽△AMC,∴,,∴,即,故选:B.5.解:∵四边形ABCD是菱形,∴CD∥AE,∴△FDC∽△FAE,∴=,∴=,整理得:x2=ab,故选:B.6.解:在Rt△ABC中,∵∠ACB=90°,AC=4,BC=2,∴AB==2,设PD=x,AB边上的高为h,h==,∵PD∥BC,∴△ADP∽△ACB∴,∴AD=2x,AP=x,∴S 1+S2=•2x•x+(2﹣1﹣x)•=x2﹣2x+4﹣=(x﹣1)2+3﹣,∴当0<x<1时,S1+S2的值随x的增大而减小,当1≤x≤2时,S1+S2的值随x的增大而增大.故选:C.7.解:∵AB2+AC2=100=BC2,∴∠BAC=90°,∵△DEF∽△ABC,∴∠EDF=∠BAC=90°,如图1延长ED交BC于M,延长FD交BC于N,∵△DEF∽△ABC,∴∠B=∠E,∵EF∥BC,∴∠E=∠EMC,∴∠B=∠EMC,∴AB∥DE,同理:DF∥AC,∴四边形AGDH为平行四边形,∵∠EDF=90°,∴四边形AGDH为矩形,∵GH⊥AD,∴四边形AGDH为正方形,当点D在△ABC内部时,四边形AGDH的面积不可能最大,如图2,点D在内部时(N在△ABC内部或BC边上),延长GD至N,过N作NM⊥AC于M,∴矩形GNMA面积大于矩形AGDH,∴点D在△ABC内部时,四边形AGDH的面积不可能最大,只有点D在BC边上时,面积才有可能最大,如图2,点D在BC上,∵△DEF∽△ABC,∴∠F=∠C,∵EF∥BC.∴∠F=∠BDG,∴∠BDG=∠C,∴DG∥AC,∴△BGD∽△BAC,∴=,∴=,∴=,∴AH=8﹣GA,S矩形AGDH=AG×AH=AG×(8﹣AG)=﹣AG2+8AG,当AG=﹣=3时,S矩形AGDH最大,S矩形AGDH最大=12.故选:A.8.解:如图,设AD交PN于点K.∵PM:PQ=3:2,∴可以假设MP=3k,PQ=2k.∵四边形PQNM是矩形,∴PM∥BC,∴△APM∽△ABC,∵AD⊥BC,BC∥PM,∴AD⊥PM,∴=,∴=,解得k=20mm,∴PM=3k=60mm,故选:A.9.解:如图,把△ADF绕点A顺时针旋转90°得到△ABH由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF∵∠EAF=45°∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°﹣∠EAF=45°∴∠EAH=∠EAF=45°在△AEF和△AEH中∴△AEF≌△AEH(SAS)∴EH=EF∴∠AEB=∠AEF∴BE+BH=BE+DF=EF,故②正确∵∠ANM=∠ADB+∠DAN=45°+∠DAN,∠AEB=90°﹣∠BAE=90°﹣(∠HAE﹣∠BAH)=90°﹣(45°﹣∠BAH)=45°+∠BAH∴∠ANM=∠AEB∴∠ANM=∠AEB=∠ANM;故③正确,∵AC⊥BD∴∠AOM=∠ADF=90°∵∠MAO=45°﹣∠NAO,∠DAF=45°﹣∠NAO∴△OAM∽△DAF故①正确连接NE,∵∠MAN=∠MBE=45°,∠AMN=∠BME∴△AMN∽△BME∴∴∵∠AMB=∠EMN∴△AMB∽△NME∴∠AEN=∠ABD=45°∵∠EAN=45°∴∠NAE=NEA=45°∴△AEN是等腰直角三角形∴AE=∵∠MBE=∠EAF=45°,∠AEB=∠AEF,∴△AFE∽△BME,∵△AMN∽△BME,∴△AMN∽△AFE∴∴∴∴S△AFE=2S△AMN故④正确故选:D.10.解:如图,∵动点F,E的速度相同,∴DF=CE,又∵CD=BC,∴CF=BE,在△ABE和△BCF中,∴△ABE≌△BCF(SAS),故①正确;∴∠BAE=∠CBF,AE=BF,故②正确;∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠APB=90°,故③正确;在△BPE和△BCF中,∵∠BPE=∠BCF,∠PBE=∠CBF,∴△BPE∽△BCF,∴,∴CF•BE=PE•BF,∵CF=BE,∴CF2=PE•BF,故④正确;∵点P在运动中保持∠APB=90°,∴点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,在Rt△BCG中,CG=,∵PG=AB=,∴MN=CP=CG﹣PG=,即线段MN的最小值为,故⑤错误;综上可知正确的有4个,故选:C.二.填空题(共10小题)11.解:∵∠A=∠A,∠ADE=∠C,∴△ADE∽△ACB,∵四边形DBCE的面积是△ADE的面积的3倍,∴,∵,∴,∴BC=2,故答案为:212.解:以原点O为位似中心,把△OAB缩小为原来的,A(2,4),∴A的对应点A'的坐标为(2×,4×),即(1,2),故答案为:(1,2).13.解:∵∠APB=∠CPD,∠ABP=∠CDP,∴△ABP∽△CDP∴=,即:,解得:CD=15(米).故答案为:15.14.解:∵四边形ABCD和四边形ACED都是平行四边形,∴AD=BC=CE,AB∥C D,AC∥DE,∴平行四边形ACED的面积=平行四边形ABCD的面积=6,△BCP∽△BDE,△ABP ∽△CQP∽△DQR,∴△ABC的面积=△CDE的面积=3,CP:ER=BC:BE=1:2,∵点R为DE的中点,∴CP:DR=1:2,∴CP:AC=CP:DE=1:4,∵S△ABC=3,∴S△ABP=S△ABC=,∵CP:AP=1:3,∴S△PCQ=S△ABP=,∵CP:DR=1:2,∴S△DQR=4S△PCQ=1,∴S阴影=S△PCQ+S△DQR=.故答案为:.15.解:∵AB、AC分别为⊙O内接正三边形和正四边形的边,∴∠AOB=120°,∠AOC=90°,∴∠BOC=∠ABO=30°,∴OD=BD=2,过点D作DE⊥OB于E,如图所示:则DE=OD=,OB =2OE=2×OD=2××2=6,∴扇形BOC的面积==3π,△OBD的面积=×6×=3,∴阴影部分面积为3π﹣3,故答案为:3π﹣3.16.解:如图,过点O作OE∥AD,交AB于E,∵OE∥AD,∴∠OEB=∠DAB,∵∠BAD+∠ACB=180°,∴∠ACB+∠OEB=180°,∴∠ABC+∠COE=180°,且∠AOE+∠COE=180°,∴∠AOE=∠ABC,且∠BAC=∠EAO,∴△AOE∽△ABC,∴,∴∴OE=,∵OE∥AD,∴△BOE∽△BDA,∴,∴=∴BE=,∴AE=6﹣BE=,∵OE∥AD,∴===,故答案为:.17.解:设运动时间为t秒.AP=2t,CQ=3t,AQ=AC﹣CQ=16﹣3t,当△ABC∽△APQ,,即,解得t=;当△ACB∽△APQ,,即,解得t=4,故答案为4或.18.解:如图,连接AD,BC∵AB为直径∴∠C=∠D=90°∵AD=1,BD=7,∴AB===5∵点C为半圆的中点,∴AC=BC∴AC2+BC2=AB2∴2BC2=50∴BC=AC=5∵∠C=∠D,∠BEC=∠AED ∴△BEC∽△AED∴===∴∴故答案为:.19.解:∵S△AOD=4,S△AOB=6,∴OD:OB=2:3,∵AD∥BC,∴△AOD∽△COB,∴=()2=,∴S△OBC=9,∴S△ODC=S△OBC=6,∴S△BCD=S△OBC+S△ODC=9+6=15,故答案为15.20.解:如图1,连接OF,CF,∵FH是⊙O的切线,∴OF⊥FH,∵FH∥BC,∴OF⊥BC,且OF为半径,∴OF垂直平分BC,∴=∴∠1=∠2,BF=CF,∴AF平分∠BAC,故①正确,∵∠1=∠2,∠4=∠3,∠5=∠2,∴∠1+∠4=∠2+∠3,∴∠1+∠4=∠5+∠3,∵∠1+∠4=∠BDF,∠5+∠3=∠FBD,∴∠BDF=∠FBD,∴BF=FD,且BF=CF,∴BF=DF=CF,∴点F为△BDC的外心,故②正确;如图2,过点C作CG∥AB,交AF的延长线于点G,∵CG∥AB,∴∠BAE=∠EGC,且∠BAE=∠CAE,∴∠CAE=∠CGE,∴AC=CG,∵CG∥AB,∴△BAE∽△CGE,∴,∴==,故③正确;如图3,作点M关于AF的对称点M',∵点M与点M'关于AF对称,∴MN=M'N,∴BN+MN=BN+M'N,∴当点N在线段BM'上,且BM'⊥AC时,BN+MN有最小值为BM',且sin∠BAC=,∴BN+MN最小值为AB sin∠BAC,故④正确,故答案为:①②③④.三.解答题(共5小题)21.(1)证明:∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,BC=2,∵∠ADC=∠B+∠BAD=45°+∠BAD,∠ADC=∠ADE+∠EAC=45°+∠EAC,∴∠BAD=∠EAC,又∠B=∠C,∴△ABD∽△DCE;(2)解:①∵△ABD∽△DCE,∴=,即=∴y=x2﹣x+2(0<x<2);②y=x2﹣x+2=(x﹣)2+1,则当x=时,y的最小值是1.22.(1)证明:∵AB=AC,∴∠B=∠C,∠ADC=∠BAD+∠B,∠ADE=∠B,∴∠BAD=∠CDE,又∠B=∠C,∴△BAD∽△CDE,∴=,即AB•CE=BD•CD;(2)解:∵DF平分∠ADC,∴∠ADE=∠CDE,∵∠CDE=∠BAD,∴∠ADE=∠BAD,∴DF∥AB,∴=,∵∠BAD=∠ADE=∠B,∴∠BAD=∠C,又∠B=∠B,∴△BDA∽△BAC,∴=,即=解得,BD=,∴=,解得,AE=;(3)解:作AH⊥BC于H,∵AB=AC,AH⊥BC,∴BH=HC=BC=8,由勾股定理得,AH===6,∴tan B==,∴tan∠ADF==,设AF=3x,则AD=4x,由勾股定理得,DF==5x,∵△BAD∽△CDE,∴=,当点F在DE的延长线上,FA=FE时,DE=5x﹣3x=2x,∴=,解得,CD=5,∴BD=BC﹣CD=11,当EA=EF时,DE=EF=2.5x,∴=,解得,CD=,∴BD=BC﹣CD=;当AE=AF=3x时,DE=x,∴=,解得,CD=,∴BD=BC﹣CD=;当点F在线段DE上时,∠AFE为钝角,∴只有FA=FE=3x,则DE=8x,∴=,解得,CD=20>16,不合题意,∴△AEF是等腰三角形时,BD的长为11或或.23.证明:(1)∵AB=AC,AM为BC边的中线,∴∠BAC=2∠BAM,∵=,∠ADB=∠CDE,∴△ADB∽△CDE,∴∠BAC=∠ECD,∴∠ECD=2∠BAM;(2)如图,连接CF,∵AB=AC,AM为BC边的中线,∴AM是BC的垂直平分线,∴BF=CF,且AB=AC,AF=AF,∵△ABF≌△ACF(SSS)∴∠ABF=∠ACF,由(1)可知:△ADB∽△CDE,∴∠ABF=∠E,∴∠ACF=∠E,且∠EFC=∠DFC,∴△DCF∽△CEF,∴,且BF=CF,∴BF2=DF•EF,∴BF是DF和EF的比例中项.24.教材呈现:证明:在△ABC中,∵点D、E分别是AB与AC的中点,∴,∵∠A=∠A,∴△ADE∽△ABC,∴DE∥BC,=,即:DE∥BC,DE=BC,结论应用:(1)证明:∵点P,M分别是BD,DC的中点,∴PM=BC,∵点P,N分别是BD,AB的中点,∴PN=AD,∵BC=AD,∴PM=PN,∴∠PMN=∠PNM;(2)解:∵点P,M分别是BD,DC的中点,∴PM∥BC,∴∠DPM=∠DBC=30°∵点P,N分别是BD,AB的中点,∴PN∥AD,∴PN=AD=2,∠DPN=180°﹣∠ADB=90°,∴∠MPN=∠DPM+∠DPN=120°,由(1)知,∠PMN=∠PNM,∴∠PMN=∠PNM=30°,过点P作P E⊥MN于E,∴∠NPE=90°﹣∠PNM=60°,∴∠EPQ=∠DPN﹣∠NPE=30°,在Rt△PEN中,∴∠PNE=30°,PN=2,∴PE=PN=1,在Rt△PEQ中,PQ====,故答案为:.25.解:(1)与△ACD相似的三角形有:△ABE、△ADC,理由如下:∵AB2 =BE•DC,∴=,∵AB=AC,∴∠B=∠C,=,∴△ABE∽△DCA.∵△ABE∽△DCA,∴∠AED=∠DAC.∵∠AED=∠C+∠EAC,∠DAC=∠DAE+∠EAC,∴∠DAE=∠C.∴△ADE∽△CDA;(2)∵△ADE∽△CDA,又∵DF平分∠ADC,∴==,设CE=a,则DE=3CE=3a,CD=4a,∴=,解得:AD=2a,∴===;(3)∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∴∠DAE=∠C=45°∵DG⊥AE,∴∠DAG=∠ADF=45°,∴AG=DG=AD=×2a=a,∴EG===a,∴AE=AG+EG=(+)a,∵∠AED=∠DAC,∴△ADE∽△DFA,∴=,∴DF===4(﹣)a,∴==.。

决战2020年中考数学九年级三轮冲刺:《相似综合》

决战2020年中考数学九年级三轮冲刺:《相似综合》

决战2020年中考数学九年级三轮冲刺:《相似综合》1.如图,在△ABC中,点D在边BC上,∠CAD=∠B,点E在边AB上,联结CE交AD于点H,点F在CE上,且满足CF•CE=CD•BC.(1)求证:△ACF∽△ECA;(2)当CE平分∠ACB时,求证:.2.如图,在平行四边形ABCD中,对角线BD⊥AD,E为CD上一点,连接AE交BD于点F,G 为AF的中点,连接DG.(1)如图1,若DG=DF=1,BF=3,求CD的长;(2)如图2,连接BE,且BE=AD,∠AEB=90°,M、N分别为DG,BD上的点,且DM=BN,H为AB的中点,连接HM、HN,求证:∠MHN=∠AFB.3.已知:在▱ABCD中,过点D作DE⊥BC交BC延长线于点E,且AD=DE,连接AC并延长交DE延长线于点F.(1)如图1,若DF=3EF,AF=,求AD的长;(2)如图2,作DG⊥AC于点G,作EM⊥AC于点M,连接DM,求证:AM+EM=2DG.4.在矩形ABCD中,AB=3,AD=4,点P为AB边上的动点(P与A、B不重合),将△BCP沿CP翻折,点B的对应点B1在矩形外,PB1交AD于E,CB1交AD于点F.(1)如图1,求证:△APE∽△DFC;(2)如图1,如果EF=PE,求BP的长;(3)如图2,连接BB′交AD于点Q,EQ:QF=8:5,求tan∠PCB.5.如果a:b=b:c,即b2=ac,则b叫a和c的比例中项,或等比中项.若一个三角形一条边是另两条边的等比中项,我们把这个三角形叫做等比三角形.(1)已知△ABC是等比三角形,AB=2,BC=3.请直接写出所有满足条件的AC的长;(2)如图,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC,求证:△ABC是等比三角形;(3)如图2,在(2)的条件下,当∠ADC=90时,求的值.6.在△ABC中,D是CB延长线上一点,∠BAD=∠BAC.(1)如图1,求证:=;(2)如图2,在AD上有一点E,∠EBA=∠ACB=120°.若AC=2BC=2,求DE的长;(3)如图3,若AB=AC=2BC=4,BE⊥AB交AD于点E,直接写出△BDE的面积.7.已知四边形ABCD中,AB=AD,AC平分∠DAB,过点C作CE⊥AB于点E,点F为AB上一点,且EF=EB,△DGC∽△ADC.(1)求证:CD=CF;(2)H为线段DG上一点,连结AH,若∠ADC=2∠HAG,AD=5,DC=3,求的值.8.△ABC中,∠ACB=90°,点E为AC的中点,连接BE,作CD⊥BE交AB于点D,交BE于点F.(1)如图1.若AC=2BC,求证:AD=2BD;(2)如图2,若AC=BC,延长AF交BC于G,求;(3)如图3,若∠ACD=60°,连AF并延长交BC于G点,则的值是.9.如图,正方形ABCD中,点O是线段AD的中点,连接OC,点P是线段OC上的动点,连接AP并延长交CD于点E,连接DP并延长交AB或BC于点F,(1)如图①,当点F与点B重合时,=.(2)如图②,当点F是线段AB的中点时,求的值;(3)如图③,若DE=CF,求的值10.【探索发现】如图1,△ABC中,点D,E,F分别在边BC,AC,AB上,且AD,BE,CF相交于同一点O.用”S”表示三角形的面积,有S△ABD :S△ACD=BD:CD,这一结论可通过以下推理得到:过点B作BM⊥AD,交AD延长线于点M,过点C作CN⊥AD于点N,可得S△ABD :S△ACD=,又可证△BDM~△CDN,∴BM:CN=BD:CD,∴S△ABD :S△ACD=BD:CD.由此可得S△BAO:S△BCO=;S△CAO:S△CBO=;若D,E,F分别是BC,AC,AB的中点,则S△BFO :S△ABC=.【灵活运用】如图2,正方形ABCD中,点E,F分别在边AD,CD上,连接AF,BE和CE,AF分别交BE,CE于点G,M.(1)若AE=DF.判断AF与BE的位置关系与数量关系,并说明理由;(2)若点E,F分别是边AD,CD的中点,且AB=4.则四边形EMFD的面积是.【拓展应用】如图3,正方形ABCD中,AB=4,对角线AC,BD相交于点O.点F是边CD的中点.AF与BD相交于点P,BG⊥AF于点G,连接OG,请直接写出S△OGP的值.参考答案1.(1)证明:∵∠ACD=∠BCA,∠CAD=∠B,∴△ACD∽△BCA,∴=,∴AC2=CD•BC,∵CF•CE=CD•BC,∴AC2=CF•CE,∴=,∵∠ACF=∠ECA,∴△ACF∽△ECA;(2)证明:∵CF•CE=CD•BC,∴=,∵∠DCF=∠ECB,∴△CFD∽△CBE,∴∠CFD=∠B,∵∠CAD=∠B,∴∠CFD=∠CAD,∴A,F,D,C四点共圆,∴∠AFC=∠ADC,∵△ACF∽△ECA,∴∠CAE=∠AFC,∴∠CAE=∠ADC,∵当CE平分∠ACB,∴∠ACE=∠DCH,∴△ACE∽△DCH,∴=()2=,∵AC2=CD•BC,∴.2.解:(1)∵BD⊥AD,∴∠ADB=90°,∵G为AF的中点,∴DG=GF,∵DG=DF=1,∴GF=DG=DF=1,∴AF=2,∵AD==,∵BF=3,∴BD=4,∴AB==,∵四边形ABCD是平行四边形,∴CD=AB=;(2)连接DH,HE,∵AD⊥BD,AE⊥BE,∴∠ADB=∠AEB=90°,∵H为AB的中点,∴DH=BH=EH=AH=AB,∵∠ADB=∠AEB=90°,∴A,D,E,B四点共圆,∴∠DHE=2∠DAE,∴∠DGF=2∠DAE,∴∠DGF=∠DHE,∴∠GDH=∠HEG,∵AD=BE,∴∠EAB=∠ABD,∵∠EAB=∠AEH,∴∠HBN=∠AEH,∴∠HBN=∠HDM,在△HDM与△HBN中,,∴△HDM≌△HBN(SAS),∴∠BHN=∠DHM,∴∠BHD=∠MHN,∵∠AFB=180°﹣∠BAF﹣∠ABF,∠DHB=180°﹣∠HDB﹣∠HBD,∴∠AFB=∠DHB,∴∠MHN=∠AFB.3.解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∵DE⊥BC,∴DE⊥AD,∵DF=3EF,∴DE=2EF,∵AD=DE,在Rt△ADF中,∵AD2+DF2=AF2,∴(2EF)2+(3EF)2=13,∴EF=1,∴AD=2EF=2;(2)如图2,过E作EN⊥DG于N,∵DG⊥AC,EM⊥AC,∴四边形GMEN是矩形,∴GM=EN,GN=EM,∵∠DAG+∠ADG=∠ADG+∠NDE=90°,∴∠DAG=∠EDN,在△ADG与△EDN中,,∴△ADG≌△EDN(AAS),∴DG=NE,DN=AG,∴GM=DG,AG+EM=DG=GM,∴AM+EM=AG+GM+EM=2DG.4.证明:(1)∵四边形ABCD是矩形∴∠A=∠D=∠ABC=∠BCD=90°∴∠APE+∠AEP=90°,∠DCF+∠DFC=90°,∵折叠∴∠ABC=∠PB1C=90°,∴∠B1EF+∠B1FE=90°,又∵∠B 1EF =∠AEP ,∠B 1FE =∠DFC , ∴∠DFC =∠APE ,且∠A =∠D , ∴△APE ∽△DFC (2)∵PE =EF ,∠A =∠B 1=90°,∠AEP =∠B 1EF , ∴△APE ≌△B 1FE (AAS ), ∴AE =B 1E ,AP =B 1F , ∴AE +EF =PE +B 1E , ∴AF =B 1P ,设BP =a ,则AP =3﹣a =B 1F , ∵折叠∴BP =B 1P =a ,BC =B 1C =4, ∴AF =a ,CF =4﹣(3﹣a )=a +1 ∴DF =AD ﹣AF =4﹣a , 在Rt △DFC 中,CF 2=DF 2+CD 2, ∴(a +1)2=(4﹣a )2+9, ∴a =2.4 即BP =2.4 (3) ∵折叠∴BC =B 1C ,BP =B 1P ,∠BCP =∠B 1CP , ∴CP 垂直平分BB 1, ∴∠B 1BC +∠BCP =90°, ∵BC =B 1C ,∴∠B 1BC =∠BB 1C ,且∠BB 1C +∠PB 1B =90° ∴∠PB 1B =∠PCB , ∵四边形ABCD 是矩形 ∴AD ∥BC∴∠B 1BC =∠B 1QF ,∴∠B1QF=∠BB1C,∴QF=B1F∵EQ:QF=8:5,∴设EQ=8k,QF=5k,∴B1F=5k,EF=EQ+QF=13k,在Rt△B1EF中,B1E==12k,如图,过点Q作HQ⊥B1E于点H,又∵∠PB1C=90°,∴HQ∥B1F∴△EHQ∽△EB1F,∴∴∴EH=,HQ=∴B1H=∴tan∠PCB=tan∠PB1B==5.解:(1)∵△ABC是等比三角形,且AB=2、BC=3,①当AB2=BC•AC时,得:4=3AC,解得:AC=;②当BC2=AB•AC时,得:9=2AC,解得:AC=;③当AC2=AB•BC时,得:AC2=6,解得:AC=(负值舍去);所以当AC=或或时,△ABC是比例三角形;(2)∵AD∥BC,∴∠ACB=∠CAD,又∵∠BAC=∠ADC,∴△ABC∽△DCA,∴=,即CA2=BC•AD,∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AB=AD,∴CA2=BC•AB,∴△ABC是比例三角形;(3)如图,过点A作AH⊥BD于点H,∵AB=AD,∴BH=BD,∵AD∥BC,∠ADC=90°,∴∠BCD=90°,∴∠BHA=∠BCD=90°,又∵∠ABH=∠DBC,∴△ABH∽△DBC,∴=,即AB•BC=BH•DB,∴AB•BC=BD2,又∵AB•BC=AC2,∴BD2=AC2,∴=.方法二:利用勾股定理可得:BD2=BC2+CD2=AB2+AC2+CD2=AD2+AC2+CD2AC2+AC2=2AC2,∴=.6.(1)证明:如图1中,作BE⊥AD于E,BF⊥AC于F.∵∠BAD=∠BAC,BE⊥AD,BF⊥AC,∴BE=BF,∴==,∴=.(2)解:如图2中,作AH⊥DC交DC的延长线于H.在Rt△ACH中,∵∠AHC=90°,AC=2,∠ACH=60°,∴CH=1,AH=,在Rt△ABH中,AB==,BH=2,∵∠EAB=∠BAC,∠ABE=∠ACB,∴△EAB∽△BAC,∴==,∴==,∴AE=,EB=,∵∠ABD=∠DBE+∠ABE=∠ACB+∠BAC,∠ABE=∠ACB,∴∠DBE=∠BAC,∵∠BAC=∠BAD,∴∠DBE=∠BAD,∵∠D=∠D,∴△DEB∽△DBA,∴==,∴==,∴DE=(3)解:如图3中,作AH⊥BC于H,BM⊥AC于M,EF⊥BD于F.∵AB=AC=4,AH⊥BC,∴BH=CH=1,∴AH==,∵•BC•AH=•AC•BM,∴BM=,AM==∵∠BAE=∠BAM,∠ABE=∠AMB=90°,∴△ABE∽△AMB,∴=,∴BE=,由△EFB∽△BHA,∴==,∴==,EF=,BF=,∵EF∥AH,∴=,∴=,∴DF=,=•BD•EF=×(+)×=.∴S△BDE7.(1)证明:∵AC平分∠DAB,∴∠DAC=∠BAC,在△ADC和△ABC中,∴△ADC≌△ABC(SAS),∴CD=CB,∵CE⊥AB,EF=EB,∴CF=CB,∴CD=CF;(2)解:∵△DGC∽△ADC,∴∠DGC=∠ADC,∵∠ADC=2∠HAG,∴∠DCG=2∠HAG,∵∠DGC=∠HAG+∠AHG,∴∠HAG=∠AHG,∴HG=AG,∵∠GDC=∠DAC=∠FAG,∠DGC=∠AGF,∴△DGC∽△AGF,∴△AGF∽△ADC,∴==,即=.8.解:(1)如图1,∵点E为AC的中点,∴EC=BC,∵∠CEB=∠CBE=45°,∵CD⊥BE,∴∠ECF=∠BCF=45°,∴EF=CF=BF,作EG∥CD,交AC于G,∵BF=EF,∴BD=GD;∵AE=EC,∴AG=GD,∴AG=GD=BD∴AD=AG+GD=2BD.(2)如图2,过点F作FP⊥AC于P,设AE=CE=x,∴BC=AC=2x,在Rt△BCE中,根据勾股定理得,BE=x,根据△BCE的面积得,BC•CE=BE•CF,∴2x•x=x•CF,∴CF=x,∵BE⊥CD,∴∠ECF+∠CEF=90°,∵∠CEF+∠CBE=90°,∴∠ECF=∠CBE,∵∠CFE=∠BCE,∴△CFE∽△BCE,∴=,∴=,∴EF=x,在Rt△CEF中,FP⊥CE,同理可得,PF=x,PE=x,∴AP=AE+PE=x+x=x,∵FP∥BC,∴△APF∽△ACG,∴=,∴=,∴CG=x,∴==;(3)如图3,过点F作FP⊥AC,∵∠ACD=60°,∴∠CEF=90°﹣60°=30°,在Rt△PEF中,∠EFP=90°﹣30°=60°,设PE=a,在Rt△PEF中,EF=a,PF=a,在Rt△CPF中,CF=PF•cos60°=a,CP=CF=a,∴CE=CP+PE=a,∴AC=2CE=a,∴AP=AC﹣CP=a,∵FP∥BC,∴△APF∽△AGC,∴=,∴=,∴CG=a,在Rt△BFC中,∠BCF=90°﹣∠ACD=30°,∵CF=a,∴BC=CF•cos30=a,∴BG=BC﹣CG=a﹣a=a,∴=,故答案为:.9.解:(1)如图①中,∵四边形ABCD是正方形,∴∠PDA=∠PDC,∵DP=DP,DA=DC,∴△PDA≌△PDC(SAS),∴∠DAE=∠DCO,∵∠ADE=∠CDO=9°,AD=CD,∴△ADE≌△CDO(ASA),∴OD=DE,∴AO=OD,∴CE=DE,∴=.故答案为.(2)如图②中,连接OF.设OA=OD=a.∵AF=FB,OA=OD,AB=AD,∴AF=OD,∵AD=DC,∠FAD=∠ODC=90°,∴△FAD≌△ODC(SAS),∴∠FDA=∠OCD,∵∠FDA+∠CDP=90°,∴∠OCD+∠CDP=90°,∴∠CPD=90°,∵∠FAO=∠FPO=90°,∴A,F,P,O四点共圆,∴∠PAO=∠PFO,∵tan∠ODP==,∴OP=a,PD=a,∵DF=a,∴PF=a,∴tan∠PFO=tan∠PAO==,∴tan∠EAD===.(3)如图③中,连接EF.设CF=DE=y,EC=x.∵CF =DE ,∠FCD =∠EDA =90°,CD =DA ,∴△FCD ≌△EDA (SAS ),∴∠CDF =∠EAD ,∵∠CDF +∠ADP =90°,∴∠DAE +∠ADP =90°,∴∠APD =90°,∵OA =OD ,∴OP =OA =OD ,∴∠OAP =∠OPA =∠CPE ,∵∠ECF =∠EPF =90°,∴E ,C ,F ,P 四点共圆,∴∠CFE =∠EPC ,∴∠CFE =∠CDF ,∵∠ECF =∠DCF ,∴△FCE ∽△DCF ,∴CF 2=CE •CD ,∴y 2=x (x +y ),∴∴y 2﹣xy ﹣x 2=0,∴y =x 或x (舍弃), ∴=, ∴===.10.解:【探索发现】由题意:S △BAO :S △BCO =AE :EC ;S △CAO :S △CBO =AF :BF ;若D ,E ,F 分别是BC ,AC ,AB 的中点,则S △BFO :S △ABC =1:6,故答案为:AE:EC,AF:BF,1:6.【灵活运用】(1)结论:AF=BE,AF⊥BE.理由:如图2中,∵四边形ABCD是正方形,∴AB=AD,∠BAE=∠ADF=90°,∵AE=DF,∴△BAE≌△ADF(SAS),∴BE=AF,∠ABE=∠DAF,∵∠ABE+∠AEB=90°,∴∠DAF+∠AEB=90°,∴∠AGE=90°,∴AF⊥BE.(2)如图2﹣1中,连接DM.根据对称性可知△DME,△DMF,关于直线DM对称,∴S△DME =S△DMF,∵AE=DE,∴S△AEM =S△DME=S△DMF,∵S△ADF=×4×2=4,∴S△AEM =S△DME=S△DMF=,∴S四边形EMFD=.故答案为.【拓展应用】:如图3中,∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,AC=BD=4,OA=OB=OD=OC=2,∵DF=FC,∴DF=FC=2,∵DF∥AB,∴==,∴OP:OB=OP:OA=1:3,∵BG⊥PA,AO⊥OB,∴∠AGB=∠AOB=90°,∵∠OAP+∠APO=90°,∠PBG+∠BPG=90°,∴∠PAO=∠PBG,∵∠APO=∠BPG,∴△AOP∽△BGP,∴=∴=,∵∠GPO=∠BPA,∴△GPO∽△BPA,∴=()2=,∴S △ABP =S △ABD =,∴S △GOP =.1、最困难的事就是认识自己。

中考数学复习《相似》专项综合练习含答案

中考数学复习《相似》专项综合练习含答案

中考数学复习《相似》专项综合练习含答案一、相似1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C.(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得解得∴抛物线解析式为:y= x2−x−1∴抛物线对称轴为直线x=- =1(2)解:存在使四边形ACPO的周长最小,只需PC+PO最小∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点.设过点C′、O直线解析式为:y=kx∴k=-∴y=- x则P点坐标为(1,- )(3)解:当△AOC∽△MNC时,如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E∵∠ACO=∠NCD,∠AOC=∠CND=90°∴∠CDN=∠CAO由相似,∠CAO=∠CMN∴∠CDN=∠CMN∵MN⊥AC∴M、D关于AN对称,则N为DM中点设点N坐标为(a,- a-1)由△EDN∽△OAC∴ED=2a∴点D坐标为(0,- a−1)∵N为DM中点∴点M坐标为(2a,a−1)把M代入y= x2−x−1,解得a=4则N点坐标为(4,-3)当△AOC∽△CNM时,∠CAO=∠NCM∴CM∥AB则点C关于直线x=1的对称点C′即为点N由(2)N(2,-1)∴N点坐标为(4,-3)或(2,-1)【解析】【分析】(1)根据点A、B的坐标,可求出抛物线的解析式,再求出它的对称轴即可解答。

(2)使四边形ACPO的周长最小,只需PC+PO最小,取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P点,利用待定系数法求出直线C′O的解析式,再求出点P的坐标。

人教中考数学复习《相似》专项综合练习及详细答案

人教中考数学复习《相似》专项综合练习及详细答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C.(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得解得∴抛物线解析式为:y= x2−x−1∴抛物线对称轴为直线x=- =1(2)解:存在使四边形ACPO的周长最小,只需PC+PO最小∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点.设过点C′、O直线解析式为:y=kx∴k=-∴y=- x则P点坐标为(1,- )(3)解:当△AOC∽△MNC时,如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E∵∠ACO=∠NCD,∠AOC=∠CND=90°∴∠CDN=∠CAO由相似,∠CAO=∠CMN∴∠CDN=∠CMN∵MN⊥AC∴M、D关于AN对称,则N为DM中点设点N坐标为(a,- a-1)由△EDN∽△OAC∴ED=2a∴点D坐标为(0,- a−1)∵N为DM中点∴点M坐标为(2a,a−1)把M代入y= x2−x−1,解得a=4则N点坐标为(4,-3)当△AOC∽△CNM时,∠CAO=∠NCM∴CM∥AB则点C关于直线x=1的对称点C′即为点N由(2)N(2,-1)∴N点坐标为(4,-3)或(2,-1)【解析】【分析】(1)根据点A、B的坐标,可求出抛物线的解析式,再求出它的对称轴即可解答。

(2)使四边形ACPO的周长最小,只需PC+PO最小,取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P点,利用待定系数法求出直线C′O的解析式,再求出点P的坐标。

2020年中考数学专题 相似三角形综合练习(含答案)

2020年中考数学专题 相似三角形综合练习(含答案)

2020年中考数学专题 相似三角形综合(含答案)一、单选题(共有10道小题)1.如图,在△ABC 中,∠ACB= 90,CD ⊥AB ,垂足为D ,点E 是AB 的中点,CD=DE=a ,则AB 的长为( )A .2aB .a 22C .3aD . 2.根据下列条件,△ABC 和△111C B A 不相似的是()A.∠A=68°,∠B=40°,∠A 1=68°,∠B 1=72°B.∠B=∠B 1,BC=2,BC:A 1 B 1= A B: B 1C 1C.AB=1,BC=2, CA=1.5,A 1 B 1=4, B 1 C 1 =8,D.AB=12,BC=15,CA=24,A 1 B 1=24,A 1 B 1=20,B 1 C 1 =25,A 1 C 1=32 3.用作位似图形的方法,可以将一个图形放大或缩小,位似中心( ) A.只能选在原图形的外部B.只能选在原图形的内部C.只能选在原形的边上D.可以选择任意位置4.如图,AB ,CD 都是BD 的垂线,AB=4,CD=6,BD=14。

P 是BD 上一点,连接AP ,CP ,所得两个三角形相似,则BP 的长是( )A.2B.5.6C.12D.上述都有可能5.如图,是一束平行的光线从教室窗户射入教室的示意图,测得光线与地面所成的角∠AMC=30°,窗户的高在教室地面上的影长MN=32m ,窗户的下沿到教室地面的距离BC=1m (点M ,N ,CC 在同一直线上),则窗户的高CAA B CD a 3346.如图,在□ABCD 中,EF ∥AB 交AD 于点E ,交BD 于点F ,DE:EA=3:4,EF=3,则CD 的长为( )A.4B.7C.3D.127.如图1,已知在△ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,且AD:DB = 3:5,那么CF ∶CB 等于( ) A. 5:8 B. 3:8 C. 3:5 D.8.如图,如果点C 是线段AB 的黄金分割点(AC>BC ),则下列比例式正确的是( )A.AB ACAC BC= B.AB BC BC AC = C. AC BC BC AB = D. AC ABAB BC=9.如图,P 为平行四边形ABCD 的边AD 上的一点,E 、F 分别为PB ,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为12,,S S S ,若3S =,则12S S +的值为()A.24B.12C.6D.3 10.如图,在□ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF:FC 等于( ) A.3:2 B.3:1 C.1:1 D.1:2 二、填空题(共有8道小题)11.如图,梯形ABCD 的对角线相交于O ,G 是BD 的中点.若AD = 3,BC = 9,则GOBG=A B C DE F A B C P A BCDE F E F A B CD12.如图,平行四边形中,是边上的点,交于点,如果, 那么 .13.如图,正五边形ABCDE 与五边形A ’B ’C ’D ’E ’是位似图形,且相似比为21。

2020年九年级数学典型中考压轴题训练《相似综合》含答案

2020年九年级数学典型中考压轴题训练《相似综合》含答案

2020年九年级数学典型中考压轴题训练《相似综合》1.如图,四边形ABCD内接于⊙O,且对角线AC⊥BD,垂足为点E,过点C作CF⊥AB于点F,交BD于点G.(1)如图①,连接EF,若EF平分∠AFG,求证:AE=GE;(2)如图②,连接CO并延长交AB于点H,若CH为∠ACF的平分线,AD=3,且tan∠FBG =,求线段AH长.2.如图1,在△ABC中,AB=AC,点D,E分别是边BC,AC上的点,且∠ADE=∠B.(1)求证:AB•CE=BD•CD;(2)若AB=5,BC=6,求AE的最小值;(3)如图2,若△ABC为等边三角形,AD⊥DE,BE⊥DE,点C在线段DE上,AD=3,BE =4,求DE的长.3.如图,AB是⊙O的直径,AB=10,延长弦CD至点E,CD=6,AB⊥CD于点F,点M在AB上,AM=,连接EM,点N在半径OB上,ON=2,ND∥ME.(1)求tan∠E的值;(2)延长OB至点G,使BG=,连接GD并延长交ME于点H,判断GH与⊙O的位置关系,并求MH的长.4.在Rt△ACB中,∠ACB=90°,点D为AB上一点.(1)如图1,若CD⊥AB,求证:CD2=AD•DB;(2)如图2,若AC=BC,EF⊥CD于H,EF与BC交于E,与AC交于F,且=,求的值;(3)如图3,若AC=BC,点H在CD上,且∠AHD=45°,CH=3DH,直接写出tan∠ACH 的值为.5.定义:连结菱形的一边中点与对边的两端点的线段把它分成三个三角形,如果其中有两个三角形相似,那么称这样的菱形为自相似菱形.(1)判断下列命题是真命题,还是假命题?①正方形是自相似菱形;②有一个内角为60°的菱形是自相似菱形.③如图1,若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED.(2)如图2,菱形ABCD是自相似菱形,∠ABC是锐角,边长为4,E为BC中点.①求AE,DE的长;②AC,BD交于点O,求tan∠DBC的值.6.如图,在矩形ABCD中,AB=3,BC=4,点E是线段AC上的一个动点且=k(0<k<1),点F在线段BC上,且DEFH为矩形;过点E作MN⊥BC,分别交AD,BC于点M,N.(1)求证:△MED∽△NFE;(2)当EF=FC时,求k的值.(3)当矩形EFHD的面积最小时,求k的值,并求出矩形EFHD面积的最小值.7.如图1,△ABC中,∠ACB的平分线CE交AB于点E.(1)求证:=;(2)如图2,AD⊥BC交CE于F,BD=2AD,∠AEC=45°.①求证:BE=2AE;②直接写出sin∠ACE的值.8.如图1,在△ABC中,点D在AC边上,连接BD,∠ABD=∠C.(1)求证:△ADB∽△ABC;(2)点E在AB边上,连接DE,BE=DE.①如图2,若∠C=30°,求证:3AE•BE=AD•CD;②如图3,△ABC为锐角三角形,AB=6,AC=9,tan C=,请直接写出AE的长.9.在四边形ABCD中,E、F分别是BD、BC上的点,∠BAE=∠BDA.(1)如图1,求证:AB2=BE•BD;(2)如图2,若四边形ABCD是平行四边形,A、E、F三点在同一条直线上,,∠ABC=60°,求的值;(3)如图3,若A、E、F不在同一条直线,∠DEF=∠C,AB=2,BD=4,,,则CD=(直接写出结果).10.矩形ABCD中,点P在对角线BD上(点P不与点B重合),连接AP,过点P作PE⊥AP 交直线BC于点E.(1)如图1,当AB=BC时,猜想线段PA和PE的数量关系:;(2)如图2,当AB≠BC时.求证:(3)若AB=8,BC=10,以AP,PE为边作矩形APEF,连接BF,当PE=时,直接写出线段BF的长.11.已知矩形ABCD中,E是BC的中点,DF⊥AE于点F.(1)如图1,若BE=,求AE•AF的值;(2)如图2,连接AC交DF于点G,若=,求cos∠FCE的值;(3)如图3,延长DF交AB于点G,若G点恰好为AB的中点,连接PC,过A作AK∥FC交FD于K,设△ADK的面积为S1,△CDF的面积为S2,则的值为.12.如图1,AB⊥BC,分别过点A,C作BM的垂线,垂足分别为M,N.(1)求证:BM•BC=AB•CN;(2)若AC=BC.①如图2,若BM=MN,过点A作AD∥BC交CM的延长线于点D,求DN:CN的值;②如图3,若BM>MN,延长BN至点E,使BM=ME,过点A作AF∥BC交CE的延长线于点F,若E是CF的中点,且CN=1,直接写出线段AF的长.13.请阅读下列材料,并完成相应的任务.梅涅劳斯(Menelaus)是公元一世纪时的希腊数学家兼天文学家,著有几何学和三角学方面的许多书籍.梅涅劳斯发现,三角形各边(或其延长线)被一条不过任何一个顶点也不与任何一条边平行的直线所截,这条直线可能与三角形的两条边相交(一定还会与一条边的延长线相交),也可能与三条边都不相交(与三条边的延长线都相交).他进行了深入研究并证明了著名的梅涅劳斯定理(简称梅氏定理):设D,E,F依次是OABC的三边AB,BC,CA或其延长线上的点,且这三点共线,则满足.这个定理的证明步骤如下:情况①:如图1,直线DE交△ABC的边AB于点D,交边AC于点F,交边BC的延长线与点E.过点C作CM∥DE交AB于点M,则,(依据)∴=∴BE•AD•FC=BD•AF•EC,即.情况②:如图2,直线DE分别交△ABC的边BA,BC,CA的延长线于点D,E,F.…(1)情况①中的依据指:(2)请你根据情况①的证明思路完成情况②的证明.(3)如图3,D,F分别是△ABC的边AB,AC.上的点,且AD:DB=CF:FA=2:3,连接DF并延长,交BC的延长线于点E,那么BE:CE=.14.如图a,在正方形ABCD中,E、F分别为边AB、BC的中点,连接AF、DE交于点G.(1)求证:AF⊥DE;(2)如图b,连接BG,BD,BD交AF于点H.①求证:GB2=GA•GD;②若AB=10,求三角形GBH的面积.15.问题发现:(1)如图1,在Rt△ABC中,∠A=90°,AB=k•AC(k>1),D是AB上一点,DE∥BC,则BD,EC的数量关系为.类比探究(2)如图2,将△AED绕着点A顺时针旋转,旋转角为a(0°<a<90°),连接CE,BD,请问(1)中BD,EC的数量关系还成立吗?说明理由拓展延伸:(3)如图3,在(2)的条件下,将△AED绕点A继续旋转,旋转角为a(a>90°).直线BD,CE交于F点,若AC=1,AB=,则当∠ACE=15°时,BF•CF的值为.参考答案1.证明:(1)过点E作EI⊥EF交CF于点I,如图①所示:∵CF⊥AB,∴∠AFG=90°,又∵EF平分∠AFG,∴∠EFA=∠EFI=45°,又∵EF⊥EI,∴∠FEI=90°,又∵∠EFI+∠EIF=90°,∴∠EIF=45°,∴EF=EI,又∵∠EAF+∠AFG+∠FGE+∠GEA=360°,∠AFG=∠AEG=90°,∴∠EGF+∠FAE=180°,又∵∠EGF+∠EGI=180°,∴∠EGI=∠FAE,又∵∠AEB=∠AEF+∠FEG,∠FEI=∠GEI+∠FEG,∴∠AEF=∠GEI,在△AEF和△GEI中,,∴△AEF≌△GEI(AAS),∴AE=GE;(2)连接DO并延长,交⊙O于点P,连接AP,如图②甲所示:∵∠ABD与∠P是⊙O上弧AD所对的圆周角,∴∠ABD=∠P,又∵DP为⊙O的直径,∴∠PAD=90°,又∵tan∠FBG=,∴tan∠P==,又∵AD=3,∴AP=4,PD=5,∴OD=,过点H作HJ⊥AC于点J,过点O作OK⊥AC于点K,设AJ=3t,CF=x,如图②乙所示,∵HJ⊥AC,BD⊥AC,∴HJ∥BD,∴∠ABD=∠AHJ,又∵tan∠ABD=∴tan∠AHJ=,又∵AJ=3t,∴HJ=4t,在Rt△AHJK由勾股定理得:AH===5t,又∵CH是∠ACF的平分线,且HF⊥CF,HJ⊥AC,∴HF=HJ=4t,∴AF=AH+HF=9t,又∵CF=x,∴CJ=x,又∵∠BFG=∠GEC,∠FGB=∠EGC,∴△FBG∽△ECG,∴∠FBG=∠ECG,∴tan∠FCJ===,解得:x=12t,∴CF=CJ=12t,∴AC=15t,∴CK=t,又∵OK∥HJ,∴=,∴OK===t,∴在Rt△OCK中,由勾股定理得:OK2+KC2=OC2,即(t)2+(t)2=()2,解得:t=,或t=﹣(舍去),∴AH=5t=.2.(1)证明:∵AB=AC,∴∠B=∠C,∵∠ADC为△ABD的外角,∴∠ADE+∠EDC=∠B+∠DAB,∵∠ADE=∠B,∴∠BAD=∠CDE,又∠B=∠C,∴△ABD∽△DCE,∴=,∴AB•CE=BD•CD;(2)解:设BD=x,AE=y,由(1)得,5×(5﹣y)=x×(6﹣x),整理得,y=x2﹣x+5=(x﹣3)2+,∴AE的最小值为;(3)解:作AF⊥BE于F,则四边形ADEF为矩形,∴EF=AD=3,AF=DE,∴BF=BE﹣EF=1,设CD=x,CE=y,则AF=DE=x+y,由勾股定理得,AD2+CD2=AC2,CE2+BE2=BC2,AF2+BF2=AB2,∵△ABC为等边三角形,∴AB=AC=BC,∴32+x2=AC2,y2+42=BC2,(x+y)2+12=AC2,∴x2﹣y2=7,y2+2xy=8,解得,x=,y=,∴DE=x+y=.3.解:(1)如图,连接OD,∵AB=10,∴OA=OB=5,∵AB⊥CD,∴CF=DF=CD=3,∴OF===4,∴NF=OF﹣ON=2,∵DN∥ME,∴∠E=∠NDF,∴tan∠E=tan∠NDF==;(2)∵FB=OB﹣OF=1,∴FG=+1=,∵,∴,且∠DFG=∠DFO=90°,∴△DFO∽△GFD,∴∠G=∠ODF,∵∠FOD+∠ODF=90°=∠FOD+∠G,∴∠ODG=90°,∴OD⊥DG,且OD是半径,∴GH是⊙O的切线,∵AM=,∴GM=10﹣+=,在Rt△DFN中,DN===,∵DN∥ME,∴∴∴MH=2.4.(1)证明:∵CD⊥AB,∴∠ADC=∠CDB=90°,∵∠ACB=90°,∴∠B+∠BCD=∠ACD+∠BCD=90°,∴∠B=∠ACD,∴△CBD∽△ACD,∴CD:AD=BD:CD,∴CD2=AD•DB;(2)解:∵=,∴设FH=4a,则HE=9a(a>0),∵∠ACB=90°,EF⊥CD,∴同(1)得:CH2=HE•FH=9a×4a=36a2,∴CH=6a,在Rt△CHF中,tan∠ACD===,过D作DP⊥AC于P,如图2所示:则DP∥BC,在Rt△DPC中,tan∠ACD==,∵AC=BC,∠ACB=90°,∴∠A=45°,∴△ADP是等腰直角三角形,∴AP=DP,∴==,∵DP∥BC,∴==;(3)解:过点D作DM⊥AH于M,如图3所示:∵CH=3DH,∴设DH=2x,则CH=6x(x>0),∴CD=DH+CH=8x,∵AC=BC,∠ACB=90°,∴∠BAC=45°=∠AHD,又∵∠ADH=∠CDA,∴△ADH∽△CDA,∴∠DAH=∠ACH,AD:CD=DH:AD,∴AD2=DH•CD=16x2,∴AD=4x,∵DM⊥AH,∠AHD=45°,∴△ADM是等腰直角三角形,∴DM=HM=DH=x,∴AM===x,∴tan∠ACH=tan∠DAH===;故答案为:.5.解:(1)①正方形是自相似菱形,是真命题;理由如下:如图3所示:∵四边形ABCD是正方形,点E是BC的中点,∴AB=CD,BE=CE,∠ABE=∠DCE=90°,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),∴△ABE∽△DCE,∴正方形是自相似菱形;②有一个内角为60°的菱形是自相似菱形,是假命题;理由如下:如图4所示:连接AC,∵四边形ABCD是菱形,∴AB=BC=CD,AD∥BC,AB∥CD,∵∠B=60°,∴△ABC是等边三角形,∠DCE=120°,∵点E是BC的中点,∴AE⊥BC,∴∠AEB=∠DAE=90°,∴只能△AEB与△DAE相似,∵AB∥CD,∴只能∠B=∠AED,若∠AED=∠B=60°,则∠CED=180°﹣90°﹣60°=30°,∴∠CDE=180°﹣120°﹣30°=30°,∴∠CED=∠CDE,∴CD=CE,不成立,∴有一个内角为60°的菱形不是自相似菱形;③若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED,是真命题;理由如下:∵∠ABC=α(0°<α<90°),∴∠C>90°,且∠ABC+∠C=180°,△ABE与△EDC不能相似,同理△AED与△EDC也不能相似,∵四边形ABCD是菱形,∴AD∥BC,∴∠AEB=∠DAE,当∠AED=∠B时,△ABE∽△DEA,∴若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED;(2)①∵菱形ABCD是自相似菱形,∠ABC是锐角,边长为4,E为BC中点,∴BE=2,AB=AD=4,由(1)③得:△ABE∽△DEA,∴==,∴AE2=BE•AD=2×4=8,∴AE=2,DE===4,②过E作EM⊥AD于M,过D作DN⊥BC于N,如图2所示:则四边形DMEN是矩形,∴DN=EM,DM=EN,∠M=∠N=90°,设AM=x,则EN=DM=x+4,由勾股定理得:EM2=DE2﹣DM2=AE2﹣AM2,即(4)2﹣(x+4)2=(2)2﹣x2,解得:x=1,∴AM=1,EN=DM=5,∴DN=EM===,在Rt△BDN中,∵BN=BE+EN=2+5=7,∴tan∠DBC==.6.(1)证明:∵四边形ABCD是矩形,∴∠B=90°,AD=BC=4,DC=AB=3,AD∥BC,∵MN⊥BC,∴MN⊥AD,∴∠EMD=∠FNE=90°,∵四边形DEFH是矩形,∴∠MED+∠NEF=90°,∴∠NEF=∠MDE,∴△MED∽△NFE;(2)解:设AM=x,则MD=NC=4﹣x,∵tan∠DAC=tan∠MAE===,∴ME=x,∴NE=3﹣x,∵△MED∽△NFE,∴=,即=,解得:NF=x,∴FC=4﹣x﹣x=4﹣x,EF==,当EF=FC时,4﹣x=,解得:x=4或x=,由题意可知x=4不合题意,当x=时,AE=,∵AC===5,∴k==;(3)解:由(1)可知:△MED∽△NFE,∴==,∴DE=EF,∴矩形EFHD的面积=DE×EF=EF2=[(3﹣x)2+(x)2]=[(x﹣)2+],∴当x﹣=0时,即x=时,矩形EFHD的面积最小,最小值为:×=,∵cos∠MAE===,∴AE=AM=×=,此时k==.7.(1)证明:过B作BG∥AC交CE的延长线于G,如图1所示:则∠G=∠ACE,∵CE平分∠ACB,∴∠ACE=∠BCE,∴∠G=∠BCE,∴BG=BC,∵BG∥AC,∴△ACE∽△BGE,∴,∴;(2)①证明:过E作EM⊥AB交BC于M,如图2所示:则∠AEM=90°,∵∠AEC=45°,∴∠MEC=45°=∠AEC,在△AEC和△MEC中,,∴△AEC≌△MEC(ASA),∴ME=AE,∵AD⊥BC,EM⊥AB,∴∠MEB=∠ADB=90°,∵∠B=∠B,∴△BME∽△BAD,∴,∴BE=2EM,∴BE=2AE;②解:由(1)得:=,∵BE=2AE,∴,设AC=x,BC=2x,AD=1,BD=2,则CD=2x﹣2,又AC2=AD2+CD2,∴x2=12+(2x﹣2)2,=1,,∴x1又2x﹣2>0,∴x=,∴AC=,CD=,作FG⊥AC于G,如图3所示:∵CE平分∠ACB,AD⊥BC,∴FD=FG,∴===,∴,∴DF=AD=×1=,∴CF===,∴sin∠DCF=,∴sin∠ACE=sin∠DCF=.8.(1)证明:∵∠ABD=∠C,∠A=∠A,∴△ADB∽△ABC(2)①证明:过点A作AF∥DE交BD的延长线于点F,过E作EG⊥BD于点G,如图2所示:∵BE=DE,∴∠ABD=∠BDE,∵AF∥DE,∴∠F=∠BDE,∵∠ABD=∠C=30°,∴∠ABD=∠BDE=∠F=∠C=30°,∵∠ADF=∠BDC,∴△ADF∽△BDC,∴DF:CD=AD:BD,∴BD•DF=AD•CD,∵BE=DE,EG⊥BD,∴BG=DG,EG=BE,∴BG=EG=BE,∴BD=2BG=BE,∵AF∥DE,∴DF:AE=BD:BE,∴DF=AE,∴BE•AE=AD•CD,∴3AE•BE=AD•CD;②解:AE=,理由如下:由(1)得:△ADB∽△ABC,∴AB:AC=AD:AB,∴AB2=AD•AC,即62=9AD,∴AD=4,∴CD=AC﹣AD=5,过点A作AF∥DE交BD的延长线于点F,过E作EG⊥BD于点G,如图3所示:∵BE=DE,∴∠ABD=∠BDE,∵AF∥DE,∴∠F=∠BDE,∵∠ABD=∠C,∴∠ABD=∠BDE=∠F=∠C,∵∠ADF=∠BDC,∴△ADF∽△BDC,∴DF:CD=AD:BD,∴BD•DF=AD•CD,∵BE=DE,EG⊥BD,∴BG=DG,tan∠ABD==tan C=,∴BG=EG=BE,∴BD=2BG=BE,∵AF∥DE,∴DF:AE=BD:BE=8:5,∴DF=AE,∴BE•AE=AD•CD,∴64AE•BE=25AD•CD;设AE=x,则BE=6﹣x,∴64x(6﹣x)=25×4×5,解得:x=,或x=,∵AE=>4=AD,∴∠ADE>∠AED=2∠C,∵AF∥DE,∴∠DAF=∠ADE>2∠C,∵△ADF∽△BDC,∴∠DBC=∠DAF>2∠C,∴∠ABC>3∠C>90°,∴x=不合题意舍去,∴AE═.9.(1)证明:∵∠BAE=∠BDA,∠ABE=∠DBA,∴△BAE~△BDA,∴AB:BD=BE:AB,∴AB2=BE•BD;(2)解:作BG⊥AD于G,如图2所示:∵,∴设BF=x,则FC=2x,∵四边形ABCD是平行四边形,∴AD=BC=BF+CF=3x,AD∥BC,∴∠BAG=∠ABC=60°,△BEF∽△DEA,∴==,∴DE=3BE,设BE=y,DE=3y,则BD=BE+DE=4y,由(1)得:AB2=BE•BD=y×4y=4y2,∴AB=2y,∵BG⊥AD,∠BAG=60°,∴∠ABG=30°,∴AG=AB=y,BG=AG=y,∴DG=AG+AD=y+3x,在Rt△BDG中,由勾股定理得:BG2+DG2=BD2,即(y)2+(y+3x)2=(4y)2,解得:x=,∴=,∴===;(3)解:作FH⊥BD于H,在BC的延长线上截取DT=DC,连接DT,如图3所示:则∠DCT=∠T,由(1)得:AB2=BE•BD,即22=BE×4,解得:BE=1,∵=,∴EH=2FH,设FH=a,则EH=2a,BH=1﹣2a,在Rt△BFH中,由勾股定理得:a2+(1﹣2a)2=()2,解得:a=,或a=(不合题意舍去),∴FH=,EH=,∴EF===,∵∠DEF=∠BCD,∠DEF+∠BEF=180°,∠BCD+∠DCT=180°,∴∠BEF=∠DCT=∠T,∵∠EBF=∠TBD,∴△BEF∽△BTD,∴=,即=,∴DT=,∴CD=;故答案为:.10.(1)解:线段PA和PE的数量关系为:PA=PE,理由如下:过点P作PM⊥AB于M,PN⊥BC于N,如图1所示:∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是正方形,∴∠ABC=90°,BD平分∠ABC,∴PM=PN,∴四边形MBNP是正方形,∴∠MPN=90°,∵PE⊥AP,∴∠APE=90°,∴∠APM+∠MPE=90°,∠EPN+∠MPE=90°,∴∠APM=∠EPN,在△APM和△EPN中,,∴△APM≌△EPN(ASA),∴PA=PE,故答案为:PA=PE;(2)证明:过点P作PM⊥AB于M,PN⊥BC于N,如图2所示:∵四边形ABCD是矩形,∴AD=BC,CD=AB,AD⊥AB,CD⊥BC,∠ABC=90°,∴四边形MBNP是矩形,∴∠MPN=90°,∵PE⊥AP,∴∠APE=90°,∴∠APM+∠MPE=90°,∠EPN+∠MPE=90°,∴∠APM=∠EPN,∵∠AMP=∠ENP=90°,∴△APM∽△EPN,∴=,∵PM⊥AB,PN⊥BC,AD⊥AB,CD⊥BC,∴PM∥AD,PN∥CD,∴△BPM∽△BDA,△BPN∽△BDC,∴=,=,∴=,∴==,∴;(3)解:连接AE、PF交于Q,连接QB,过点A作AO⊥BD于O,①当P在O的右上方时,如图3所示:由(2)得:==,∴PA=PE=×=,∵四边形ABCD是矩形,∴AD=BC=10,∠BAD=90°,∴BD===2,∵AO⊥BD,∵△ABD的面积=BD×AO=AB×AD,∴AO===,∵tan∠ABD==,∴=,解得:BO=,由勾股定理得:OP===,∴BP=BO+OP=,∵四边形APEF是矩形,∴∠AEP=90°,AE=PE,QA=QE=QP=QF,∴PF=AE===,∵∠ABE=90°,∴QB=AE=QE,∴QA=QE=QP=QF=QB,∴点A、P、E、B、F五点共圆,AE、PF为圆的直径,∴∠PBF=90°,∴BF===;②当P在O的左下方时,如图4所示:同理可得:AO=,BO=,OP=,PF=,则BP=BO﹣OP=,同理可得:点A、P、E、B、F五点共圆,AE、PF为圆的直径,∴BF===;综上所述,当PE=时,线段BF的长为或.11.解:(1)∵E是BC的中点,∴BC=2BE=2,∵四边形ABCD是矩形,∴AD=BC=2,∠B=90°,AD∥BC,∵DF⊥AE,∴∠AFD=90°=∠B,∴△ABE∽△DFA,∴=,∴AE•AF=AD•BE=2×=4;(2)延长DE交CB的延长线于H,连接DE、AH,如图2所示:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∠BCD=90°,∴△ADG∽△CHG,∴==,∴BH=BC,∵E是BC的中点,∴BE=CE=BH,∴EH=BC=AD,∴四边形ADEH是平行四边形,∵DF⊥AE,∴四边形ADEH是菱形,∴DF=HF,∠AEH=∠AED,DE=AD=EH=BC,∴CE=DE,∴∠CDE=30°,∴∠CED=90°﹣30°=60°,∴∠AEH=∠AED=60°,∵DF⊥AE,∴∠FDE=30°=∠CDE,∴FE=CE,∴∠FCE=∠CFE=∠AEH=30°,∴cos∠FCE=;(3)过F作PQ⊥AB于P,交CD于Q,作KH⊥AD于H,如图3所示:则PQ=AD,AP=DQ,PQ∥BC∥AD,∵G是AB的中点,E是BC的中点,∴AB=2AG,BC=2BE,∵四边形ABCD是矩形,∴AD=BC,AB=CD,∠B=∠DAG=90°,∵DF⊥AE,∴∠ADF+∠DAF=∠BAE+∠DAF=90°,∴∠BAE=∠ADF,∴△ABE∽△DAG,∴=,∴AB•AG=AD•BE,即AB2=AD2,∴AB=AD,∴四边形ABCD是正方形,∴AB=BC=CD=AD=PQ,设AB=BC=CD=AD=PQ=4a,则BE=AG=2a,∴tan∠ADG=tan∠BAE==,AE=DG==2a,∵DF⊥AE,∴AF===a,∵PQ∥BC,∴△APF∽△ABE,∴==,即==,解得:AP=a,PF=a,∴CQ=PB=AB﹣AP=4a﹣a=a,FQ=PQ﹣PF=4a﹣a=a,∵KH⊥AD,∴tan∠ADG==,设KH=x,则DH=2x,∵PQ∥AD,AK∥FC,∴∠DAF=∠QFE,∠KAF=∠CFE,∴∠DAK=∠QFC,又∵∠AHK=∠FQC=90°,∴△AHK∽△FQC,∴=,即=,解得:AH=x,∵AH+DH=AD,∴x+2x=4a,解得:x=a,∴KH=a,∵△ADK的面积为S1=AD×KH,△CDF的面积为S2=CD×FQ,∴===;故答案为:.12.(1)证明:如图1中,∵AM⊥BN,CN⊥BN,AB⊥BC,∴∠AMB=∠N=∠ABC=90°,∴∠A+∠ABM=90°,∠ABM+∠CBN=90°,∴∠A+∠CBN=90°,∴△ABM∽△BCN,∴=,∴BM•BC=AB•CN.(2)解:如图2中,连接AN,延长AN交BC的延长线于H,作BK⊥AN于K.由(1)可知:△ABM∽△BCN,∴=∵AB=BC,∴AM=BN,BM=CN,设CN=m,∵BM=MN,∴BM=CN=MN=m,BN=AM=2m,∵AM⊥BN,BM=MN,=•BN•AM=•AN•BK.∵S△ABN∴BK==m,∴AK===m,∵∠BAK=∠BAH,∠ABH=∠AKB=90°,∴△ABK∽△AHB,∴=,∴=,∴AH=m,∴HN=AH﹣AN=m﹣m=m,∵AD∥CH,∴===.(3)解:如图3中,连接AE,延长AE交BC的延长线于H.∵AF∥CH,∴∠F=∠ECH,∵∠AEF=∠CEH,EF=CF,∴△AFE≌△HCE(ASA),∴AE=EH,AF=CH,∵AM⊥BE,BM=ME,∴AB=AE,∵∠ABH=90°,∵CN=BM=ME=1,∴BE=AE=EH=2,∴AB=BC=AE=2,∴BH==2,∴CH=BH﹣BC=2﹣2,∴AF=2﹣2.13.解:(1)情况①中的依据是:两条直线被一组平行线所截,所得的对应线段成比例.故答案为两条直线被一组平行线所截,所得的对应线段成比例.(2)如图2中,作CN∥DE交BD于N.则有=,=,=,∴•=•,∴BE•AD•FC=BD•AF•EC,∴••=1.(3)如图3中,∵••=1,AD:DB=CF:FA=2:3,∴=.故答案为.14.证明:(1)∵正方形ABCD,E、F分别为边AB、BC的中点,∴AD=BC=DC=AB,AE=BE=AB,BF=CF=BC,∴AE=BF,∵在△ADE和△BAF中,∴△ADE≌△BAF(SAS)∴∠BAF=∠ADE,∵∠BAF+∠DAF=90°∴∠ADE+∠DAF=90°=∠AGD,∴AF⊥DE;(2)①如图b,过点B作BN⊥AF于N,∵∠BAF=∠ADE,∠AGD=∠ANB=90°,AB=AD,∴△ABN≌△ADG(AAS)∴AG=BN,DG=GN,∵∠AGE=∠ANB=90°,∴EG∥BN,∴,且AE=BE,∴AG=GN,∴AN=2AG=DG,∵BG2=BN2+GN2=AG2+AG2,∴BG2=2AG2=2AG•AG=GA•DG;②∵AB=10,∴AE=BF=5,∴DE===5,∵×AD×AE=×DE×AG,∴AG=2,∴GN=BN=2,∴AN=DG=4,∵GE∥BN,∴△DGH∽△BNH,∴==2,∴GH=2HN,且GH+HN=GN=2,∴GH=,=×GH×BN=××2=.∴S△GHB15.解:问题发现:(1)∵DE∥BC,∴,∵AB=k•AC,∴BD=k•EC,故答案为:BD=k•EC;类比探究:(2)成立,理由如下:连接BD由旋转的性质可知,∠BAD=∠CAE∵=,∴△ABD∽△ACE,∴==k,故BD=k•EC;拓展延伸:(3)BF•CF的值为2或1;由旋转的性质可知∠BAD=∠CAE∵=,∴△ABD∽△ACE∴∠ACE=15°=∠ABD∵∠ABC+∠ACB=90°∴∠FBC+∠FCB=90°∴∠BFC=90°∵∠BAC=90°,AC=1,AB=,∴tan∠ABC=,∴∠ABC=30°∴∠ACB=60°分两种情况分析:①如图2,∴在Rt△BAC中,∠ABC=30°,AC=1,∴BC=2AC=2,∵在Rt△BFC中,∠CBF=30°+15°=45°,BC=2∴BF=CF=∴BF•CF=()2=2②如图3,设CF=a,在BF上取点G,使∠BCG=15°∵∠BCF=60°+15°=75°,∠CBF=∠ABC﹣∠ABD=30°﹣15°=15°,∴∠CFB=90°∴∠GCF=60°∴CG=BG=2a,GF=a.∵CF2+BF2=BC2∴a2+(2a+a2=22,解得a2=2﹣,∴BF•CF=(2+)a•a=(2+)•a2=1,即:BF•CF=1或2.故答案为:1或2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备战2020中考数学三轮复习专项练习:《相似综合》1.如图,在△ABC中,AG⊥BC,垂足为点G,点E为边AC上一点,BE=CE,点D为边BC上一点,GD=GB,连接AD交BE于点F.(1)求证:∠ABE=∠EAF;(2)求证:AE2=EF•EC;(3)若CG=2AG,AD=2AF,BC=5,求AE的长.2.在△ABC中,点D在边BC上,点E在线段AD上.(1)若∠BAC=∠BED=2∠CED=α,①若α=90°,AB=AC,过C作CF⊥AD于点F,求的值;②若BD=3CD,求的值;(2)AD为△ABC的角平分线,AE=ED=2,AC=5,tan∠BED=2,直接写出BE的长度.3.已知▱EFGH的顶点E、G分别在▱ABCD的边AD、BC上,顶点F、H在▱ABCD的对角线BD上.(1)如图1,求证:BF=DH;(2)如图2,若∠HEF=∠A=90°,,求的值;(3)如图1,当∠HEF=∠A=120°,,时,求k的值.4.如图,BM、DN分别平分正方形ABCD的两个外角,且∠MAN=45°,连接MN.(1)猜想以线段BM、DN、MN为三边组成的三角形的形状,并证明你的结论;(2)若△AMN为等腰直角三角形,探究线段BM、DN之间的数量关系;(3)当MN∥AD时,直接写出的值.5.如图,锐角△ABC中,BC=12,BC边上的高AD=8,矩形EFGH的边GH在BC上,其余两点E、F分别在AB、AC上,且EF交AD于点K.(1)求的值;(2)设EH=x,矩形EFGH的面积为S.①求S与x的函数关系式;②请直接写出S的最大值为.6.如图1,△ABC中,BD,CE是△ABC的高.(1)求证:△ABD∽△ACE.(2)△ADE与△ABC相似吗?为什么?(3)如图2,设cos∠ABD=,DE=12,DE的中点为F,BC的中点为M,连接FM,求FM的长.7.如图,在△ABC中,AD⊥BC,垂足为D,BE⊥AC,垂足为E,AD与BE相交于点F,连接ED.(1)求证:△AEF∽△BDF;(2)若AE=4,BD=8,EF+DF=9,求DE的长.8.如图,在矩形ABCD中,AB=4,BC=3,点P,Q在对角线BD上,且BQ=BP,过点P作PH⊥AB于点H,连接HQ,以PH、HQ为邻边作平行四边形PHQG,设BQ=m.(1)若m=2时,求此时PH的长.(2)若点C,G,H在同一直线上时,求此时的m值.(3)若经过点G的直线将矩形ABCD的面积平分,同时该直线将平行四边形PHQG的面积分成1:3的两部分,求此时m的值.9.如图,四边形ABCD是矩形.(1)如图1,E、F分别是AD、CD上的点,BF⊥CE,垂足为G,连接AG.①求证:;②若G为CE的中点,求证:sin∠AGB=;(2)如图2,将矩形ABCD沿MN折叠,点A落在点R处,点B落在CD边的点S处,连接BS交MN于点P,Q是RS的中点.若AB=2,BC=3,直接写出PS+PQ的最小值为.10.已知:如图,在平行四边形ABCD中,对角线AC与BD交于点O,点E是DB延长线上的一点,且EA=EC,分别延长AD、EC交于点F.(1)求证:四边形ABCD为菱形;(2)如果∠AEC=2∠BAC,求证:EC•CF=AF•AD.11.“创新实践”小组想利用镜子与皮尺测量大树AB的高度,因大树底部有障碍物,无法直接测量到大树底部的距离.聪明的小颖借鉴《海岛算经》的测量方法设计出如图所示的测量方案:测量者站在点F处,将镜子放在点M处时,刚好看到大树的顶端,沿大树方向向前走2.8米,到达点D处,将镜子放在点N处时,刚好看到大树的顶端(点F,M,D,N,B在同一条直线上).若测得FM=1.5米,DN=1.1米,测量者眼睛到地面的距离为1.6米,求大树AB的高度.12.矩形ABCD中,AD=9,AB=12,点E在对角线BD上(不与B、D重合),EF⊥AE 交CD于F点,连接AF交BD于G点.(1)如图1,当G为DE中点时.①求证:FD=FE;②求BE的长.(2)如图2,若E为BD上任意点,求证:AG2=BG•GE.13.已知△ABC中,∠ABC=90°,点D、E分别在边BC、边AC上,连接DE,DF⊥DE,点F、点C在直线DE同侧,连接FC,且==k.(1)点D与点B重合时,①如图1,k=1时,AE和FC的数量关系是,位置关系是;②如图2,k=2时,猜想AE和FC的关系,并说明理由;(2)BD=2CD时,①如图3,k=1时,若AE=2,S=6,求FC的长度;△CDF②如图4,k=2时,点M、N分别为EF和AC的中点,若AB=10,直接写出MN的最小值.14.如图1,△ABC的两条中线BD、CE交于点F.(1)=;(2)如图2,若BE2=EF•EC,且,EF=,求DE的长;(3)如图3,已知BC=4,∠BAC=60°,当点A在直线BC的上方运动时,直接写出CE的最大值.15.教材呈现:如图是华师版九年级上册数学教材第62页的部分内容.已知:如图,DE∥BC,并分别交AB、AC于点D、E.求证:△ADE∽△ABC.请根据教材提示,结合图①,运用相似三角形的定义,写出完整的证明过程.证明:过点D作AC的平行线交BC于点F.结论应用:如图②,△ABC中,AB=10,AC=7,AD平分∠BAC,AE是BC边上的中线,过点C作CG⊥AD交AD于F,交AB于G,连接EF,则线段EF的长为.16.如图1所示,矩形ABCD中,点E,F分别为边AB,AD的中点,将△AEF绕点A逆时针旋转α(0°<α≤360°),直线BE,DF相交于点P.(1)若AB=AD,将△AEF绕点A逆时针旋至如图2所示的位置上,则线段BE与DF 的位置关系是,数量关系是.(2)若AD=nAB(n≠1)将△AEF绕点A逆时针旋转,则(1)中的结论是否仍然成立?若成立,请就图3所示的情况加以证明;若不成立,请写出正确结论,并说明理由.(3)若AB=6,BC=8,将△AEF旋转至AE⊥BE时,请直接写出DP的长.17.如图1,矩形ABCD中,AB=8,BC=6,点E,F分别为AB,AD边上任意一点,现将△AEF沿直线EF对折,点A对应点为点G.(1)如图2,当EF∥BD,且点G落在对角线BD上时,求DG的长;(2)如图3,连接DG,当EF∥BD且△DFG是直角三角形时,求AE的值;(3)当AE=2AF时,FG的延长线交△BCD的边于点H,是否存在一点H,使得以E,H,G为顶点的三角形与△AEF相似,若存在,请求出AE的值;若不存在,请说明理由18.如果三角形的两个内角α与β满足α﹣β=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC是“准互余三角形”,∠A>90°,∠B=20°,求∠C的度数;(2)如图①,在Rt△ABC中,∠BAC=90°,AB=4,BC=5,点D是BC延长线上一点.若△ABD是“准互余三角形”,求CD的长;(3)如图②,在四边形ABCD中,AC,BD是对角线,AC=4,CD=5,∠BAC=90°,∠ACD=2∠ABC,且△BCD是“准互余三角形”,求BD的长.参考答案1.(1)证明:∵EB=EC,∴∠EBC=∠C,∵AG⊥BD,BG=GD,∴AB=AD,∴∠ABD=∠ADB,∵∠ABD=∠ABE+∠EBC,∠ADB=∠DAC+∠C,∴∠ABE=∠DAC,即∠ABE=∠EAF.(2)证明:∵∠AEF=∠BEA,∠EAF=∠ABE,∴△AEF∽△BEA,∴=,∴AE2=EF•EB,∵EB=EC,∴AE2=EF•EC.(3)解:设BE交AG于J,连接DJ,DE.∵AG垂直平分线段BD,∴JB=JD,∴∠JBD=∠JDG,∵∠JBD=∠C,∴∠JDB=∠C,∴DJ∥AC,∴∠AEF=∠DJF,∵AF=DF,∠AFE=∠DFJ,∴△AFE≌△DFJ(AAS),∴EF=FJ,AE=DJ,∵AF=DF,∴四边形AJDE是平行四边形,∴DE∥AG,∵AG⊥BC,∴ED⊥BC,∵EB=EC,∴BD=DC=,∴BG=DG=,∵tan∠JDG=tan∠C===,∴JG=,∵∠JGD=90°,∴DJ====,∴AE=DJ==.2.解:(1)①∵∠BAC=∠BED=2∠CED=α,∴当α=90°,AB=AC时,△ABC与△CEF都是等腰直角三角形,∴∠BAE+∠FAC=90°,∠ACF+∠FAC=90°,∴∠BAE=∠AFC,∴在△ABE与△CAF中,,∴△ABE≌△CAF(AAS),∴AE=CF=EF,∴BE=AF=2EF=2CF,∴=2;②如图,过点C作CF∥BE,交AD的延长线于点F,在AD上取一点G,使得CG=CF,∵∠BAC=∠BED=2∠CED=α,∴∠ABE=∠CAG,∠F=∠BED=α=∠CGF,∴∠AEB=∠AGC,∴△ABE∽△CAG,∴=.∵CF∥BE,∴△BED∽△CFD,∴==3,设CF=x,BE=3x,AE=y,则CG=EG=x,∴=,解得:=,∴=;(2)如图,过点C作CF∥AD,交BA的延长线于F,延长BE交CF与G,则∠BAD=∠F,∠DAC=∠ACF,又∵AD为△ABC的角平分线,即∠BAD=∠DAC,∴∠ACF=∠F,∴AF=AC=5,又AE=ED,∴FG=CG,∴AG⊥CF,∴∠CAG=∠FAG,∴AD⊥AG,∵tan∠BED=2,∴tan∠AEG=2,∵AE=ED=2,∴=2,∴AG=2AE=4,又∵AC=5,∴FG=CG=3,∵DE∥CG,∴=,∴=,∴解得,BE=4.3.(1)证明:∵四边形EFGH是平行四边形,∴EF=HG,EF∥HG,∴∠EFD=∠GHB,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EDF=∠GBH,在△EFD和△GHB中,,∴△EFD≌△GHB(AAS),∴DF=BH,∴DF﹣HF=BH﹣HF,∴BF=DH;(2)解:作EM⊥FH于M,如图2所示:设MH=a,∵四边形ABCD、四边形EFGH都是平行四边形,∠A=∠FEH=90°,∴四边形ABCD、四边形EFGH都是矩形,∴AD=BC,∴tan∠ADB===,tan∠EFH==,∵∠FEH=∠EMH=90°,∴∠MEH+∠EHM=90°,∠EFH+∠EHF=90°,∴∠MEH=∠EFH,∴tan∠MEH=tan∠EFH===,∴EM=2a,FM=4a,∵tan∠EDM==,∴DM=4a,FH=5a,由(1)得:BF=DH,∴BF=DH=3a,∴==;(3)过点E作EM⊥BD于M,如图1所示:∵四边形ABCD是平行四边形,∴AD=BC,∵=,∴=,即=,∵∠HEF=∠A,∴△EFH∽△ADB,∴∠EFH=∠ADB,∴EF=ED,∴FM=DM,设BF=3a,∵=,∴FH=7a,∴DF=10a,∴DM=5a,由(1)得:BF=DH,∴DH=3a,MH=DM﹣DH=5a﹣3a=2a,过点E作∠NEH=∠EDH,交BD于N,∵∠ENH=∠DNE,∴△ENH∽△DNE,∴=,∴EN2=DN•HN,设HN=x,∴EN2=x•(3a+x),∴EN=,∵∠NEH=∠EDH,∴∠NEH=∠EFH,∵∠EHN=∠FHE,∴△ENH∽△FEH,∴∠END=HEF=120°,∴∠ENM=60°,∴∠NEM=30°,∴EN=2MN,∴=2(2a﹣x),解得:x=a,∴EN=2a,MN=a,由勾股定理得:EM===a,EH===a,EF=DE===2a,∴k===.4.解:(1)以BM,DN,MN为三边围成的三角形为直角三角形.证明如下:如图,过点A作AF⊥AN并截取AF=AN,连接BF、FM,∵∠1+∠BAN=90°,∠3+∠BAN=90°,∴∠1=∠3,在△ABF和△ADN中,,∴△ABF≌△ADN(SAS),∴BF=DN,∠FBA=∠NDA=135°,∵∠FAN=90°,∠MAN=45°,∴∠1+∠2=∠FAM=∠MAN=45°,在△AFM和△ANM中,,∴△AFM≌△ANM(SAS),∴FM=NM,∴∠FBP=180°﹣∠FBA=180°﹣135°=45°,∴∠FBP+∠PBM=45°+45°=90°,∴△FBM是直角三角形,∵FB=DN,FM=MN,∴以BM,DN,MN为三边围成的三角形为直角三角形;(2)∵BM、DN分别平分正方形的两个外角,∴∠CBM=∠CDN=45°,∴∠ABM=∠ADN=135°,∵∠MAN=45°,∴∠BAM+∠NAD=45°,在△ABM中,∠BAM+∠AMB=∠MBP=45°,∴∠NAD=∠AMB,在△ABM和△NDA中,,∴△ABM∽△NDA,∵△AMN是等腰直角三角形,∴;(3)连接BD并延长交MN延长线于点G,如图2,由题意知∠GDN=∠GBM=90°,∠ADN=135°,∵MN∥AD,∴∠GND=45°,∴∠G=90°﹣∠GND=45°,∴△DGN和△BGM均为等腰直角三角形,∴GN=DN,GM=BM,由(1)知,DN2+BM2=MN2,∴设BM=x,DN=y,则GM=x,GN=y,∴MN=(y﹣x),∴x2+y2=[(y﹣x)]2,∴x1=(2+)y(舍),x2=(2﹣)y,∴.5.解:(1)∵四边形EFGH是矩形,∴EF∥BC,∵AD⊥BC,∴AK⊥EF,∵EF∥BC,∴△AEF∽△ABC,∴;(2)∵四边形EFGH是矩形,∴∠FEH=∠EHG=90°,∵AD⊥BC,∴∠ADB=90°,∴四边形EHDK是矩形,∴EH=DK=x,∵AK+DK=AD,∴AK=8﹣x,∵,∴,∴S=EH•EF=x•(8﹣x)=﹣x2+12x.②∵S=﹣x2+12x=,,∴当x=4,时S有最大值24.故答案为:24.6.(1)证明:如图1中,∵BD、CE是△ABC的高,∴∠ADB=∠AEC=90°,∵∠A=∠A,∴△ABD∽△ACE(2)相似.理由:∵△ABD∽△ACE,∴,即,∵∠A=∠A,∴△ADE∽△ABC.(4)如图2中,连接DM、EM.由得,∴BC=18,又EM=DM=9,MF⊥DE,且FD=FE=6,∴FM===3.7.(1)证明:∵AD⊥BC,BE⊥AC,∴∠BDF=∠AEF=90°,∵∠AFE=∠BFD,∴△AEF∽△BDF.(2)解:∵△AEF∽△BDF,∴===,∵DF+EF=9,∴EF=3,DF=6,∴BF===10,AF===5,∴AD=5+6=11,∴AB===∵=,∴=,∵∠AFB=∠EFD,∴△AFB∽△EFD,∴=,∴=,∴DE=.8.解:(1)在矩形ABCD中,AB=4,BC=3,∴BD===5,∵BQ=2,,∴BP=3,∵PH∥AD,∴△BPH∽△BDA,∴,∴;(2)如图,设HG与PQ交于点O,设BQ=2x,则BP=3x,PQ=x,∴PO=QO=,∴BO=x,∵PH∥BC,∴△PHO∽△BCO,∴,∴PH==,∵PH∥AD,∴△BPH∽△BDA,∴,∴,∴x=,∴BQ=;(3)连接AC交BD于O,∵经过点G的直线将矩形ABCD的面积平分,∴这条直线经过矩形ABCD的对角线的交点O.①如图,当直线OG经过PH的中点R时,直线OG将平行四边形PHQG的面积分成1:3的两部分,∵PH∥GQ,∴,∴,∴m=;②如图,当直线OG经过HQ的中点N时,直线OG将平行四边形PHQG的面积分成1:3的两部分,∵PG∥HQ,∴==,∴=,∴m=;综上所述,满足条件的m的值为或.9.(1)①证明:如图1中,∵四边形ABCD是矩形,∴∠CDE=∥BCF=90°,∵BF⊥CE,∴∠BGC=90°,∴∠BCG+∠FBC=∠BCG+∠ECD=90°,∴∠FBC=∠ECD,∴△FBC∽△ECD,∴=.②证明:如图1中,连接BE,GD.∵BF⊥CE,EG=CG,∴BF垂直平分线段EC,∴BE=CB,∠EBG=∠CBG,∵DG=CG,∴∠CDG=∠GCD,∵∠ADG+∠CDG=90°,∠BCG+∠ECD=90°,∴∠ADG=∠BCG,∵AD=BC,∴△ADG≌△BCG(SAS),∴∠DAG=∠CBG,∴∠DAG=∠EBG,∴∠AEB=∠AGB,∴sin∠AGB=sin∠AEB====.(2)如图2中,取AB的中点T,连接PT,CP.∵四边形MNSR与四边形MNBA关于MN对称,T是AB中点,Q是SR中点,∴PT=PQ,MN垂直平分线段BS,∴BP=PS,∵∠BCS=90°,∴PC=PS=PB,∴PQ+PS=PT+PC,当T,P,C共线时,PQ+PS的值最小,最小值===,∴PQ+PS的最小值为.故答案为.10.解:(1)∵四边形ABCD是平行四边形,∴OA=OC,又∵EA=EC,∴EO⊥AC,∴四边形ABCD是菱形;(2)∵∠AEB=∠CEB=∠AEC,平行四边形ABCD为菱形,∴∠AEB=∠CEB=∠BAC=∠BCA=∠DAC=∠DCA,∠CDF=∠DAC+∠DCA=∠AEF,∴△FCD∽△FAE,∴=,∵CD=AD,AE=CE,∴=,即EC•CF=AF•AD.11.解:设NB的长为x米,则MB=x+1.1+2.8﹣1.5=(x+2.4)米.由题意,得∠CND=∠ANB,∠CDN=∠ABN=90°,∴△CND∽△ANB,∴.同理,△EMF∽△AMB,∴.∵EF=CD,∴,即.解得x=6.6,∵,∴.解得AB=9.6.答:大树AB的高度为9.6米.12.(1)①证明:如图1,取AF的中点O,连接OD,OE,∵∠ADF=∠FEA=90°,∴OE=OD=AF,∵点G是DE的中点,∴OG⊥DE,∴AF⊥DE,∵点G是DE的中点,∴FD=FE;②解:由①知,AF⊥DE,∴∠AGD=90°,∵∠ADG=∠ADB,∴△ADG∽△BDA,∴,在Rt△ABD中,AD=9,AB=12,根据勾股定理得,BD=15,∴,∴DG=,∴DE=2DG=,∴BE=BD﹣DE=;(2)如图2,过点E作MN∥BC分别交AB,CD于M,N,∴BC⊥CD,∴MN⊥CD且MN⊥AB,∴∠DNE=∠AME=90°,∵∠FEA=90°,∴∠NEF=∠MAE,∴△NEF∽△MAE,∴,∵AM=DN,∴,∵∠FEA=∠END=90°,∴△FEA∽△END,∴∠FAE=∠EDN,∵∠EDN=∠ABG,∴∠FAE=∠ABG,∵∠AGE=∠BGA,∴△AGE∽△BGA,∴,∴AG2=BG•GE.13.解:(1)①如图1中,结论:AE=CF,AE⊥CF理由:由题意:BA=BC,BE=BE,∠ABC=∠EBF=90°,∴∠ABE=∠CBF,∠A=∠ACB=45°,∴△ABE≌△CBF(SAS),∴AE=CF,∠A=∠BCF=45°,∴∠ACF=∠ACB+∠BCF=90°,∴AE⊥CF,故答案为AE=CF,AE⊥CF.②如图2中,结论:AE=2CF,AE⊥CF.理由:∵==2,∠ABE=∠CBF,∴△ABE∽△CBF,∴==2,∠A=∠BCF,∴AE=2CF,∵∠A+∠ACB=90°,∴∠BCF+∠ACB=90°,∴AE⊥CF.(2)①如图3中,过点D作DH⊥AC于H,作DT∥AB交AC于T.由题意AB=BC,∠ABC=90°,∴∠ACB=45°,∵DT∥AB,∴∠CDT=∠CBA=90°,∴∠DTC=∠DCT=45°,∴DT=DC,∵DH⊥CT,∴HT=HC,∴DH=HT=HC,设DH=HT=HC=m,∵DT∥AB,∴==,∴AT =4m ,∵AE =2,∴ET =4m ﹣2,∵DE =DF ,DT =DC ,∠EDF =∠TDC =90°,∴∠EDT =∠FDC ,∴△EDT ≌△FDC (SAS ),∴S △EDT =S △FDC =6,ET =FC ,∴•(4m ﹣2)•m =6,解得m =2或﹣(舍弃),∴CF =ET =4m ﹣2=8﹣2=6.②如图4中,连接DM ,CM ,根点M 作MK ⊥BC 于K ,交AC 于J .同法可证:AE ⊥CF ,∵∠EDF =∠ECF =90°,EM =MF ,∴DM =MC =EF ,∴点M 在长度CD 的垂直平分线MK 上,当NM ⊥NK 时,MN 的值最小, 由题意:AB =10,BC =5,CD =,CK =DK =,在Rt △ABC 中,AC ==5,∵AN =CN , ∴CN =AC =,∵JK ∥AB ,∴=,∴=,∴CJ=,∴NJ=CN﹣CJ=﹣=,∵NM⊥MK时,△NMK∽△CKJ,∴=,∴=,∴MN=,∴MN的最小值为.14.解:(1)如图1中,∵AE=BE,AD=DC,∴DE∥BC,DE=BC,∴△EDF∽△CBF,∴==,故答案为:.(2)如图2中,∵DE∥BC,且DE=BC,∵△EDF∽CBF,∴===,∵EF=,∴CF=2,EC=3,∵BE2=EF•EC,∴BE=3,∵DF=BE=2,∴BF=4,∵=,∠BEF=∠CEB,∴△BEF∽△CEB,∴=,∴=,∴CB=4,∴DE=BC=2.(3)如图3中,如图,作△ABC的外接圆⊙O,连接OA,OB,OC,取OB的中点F,连接EF,过点O作OH⊥BC于H,过点F作FT⊥BC于T.∵∠BOC=2∠BAC=120°,∵OB=OC,OH⊥BC,∴BH=CH=BC=2,∠BOH=∠COH=60°,∴OH==,OB=2OH=,∵AE=EB,BF=OF,∴EF=OA=,∴点E的运动轨迹是以F为圆心FE为半径的⊙F,∴CE的最大值=EF+CF,∵FT⊥BC,OH⊥BC,∴FT∥OH,∵BF=OF,∴BT=TH=1,FT=OH=,在Rt△FCT中,CF===,∴CE的最大值为.15.教材呈现:证明:过点D作AC的平行线交BC于点F,∵DE∥BC,∴四边形DECF是平行四边形,∴DE=CF,∵DE∥BC,∴=,∠AED=∠C,∠ADE=∠B,∵DF∥AC,∴=,∴==,∠A=∠A,∴△ADE∽△ABC;结论应用:∵AD平分∠BAC,∴∠GAF=∠CAF,∵CG⊥AD,∴∠AFG=∠AFC,在△AGF和△ACF中,,∴△AGF≌△ACF(ASA),∴AG=AC=7,GF=CF,则BG=AB﹣AG=10﹣7=3.又∵BE=CE,∴EF是△BCG的中位线,∴EF=BG=1.5.故答案是:1.5.16.解:(1)如图2中,结论:BE=DF,BE⊥DF.理由:∵四边形ABCD是矩形,AB=AD,∴四边形ABCD是正方形,AE=AB,AF=AD,∴AE=AF,∵∠DAB=∠EAF=90°,∴∠BAE=∠DAF,∴△ABE≌△ADF(SAS),∴BE=DF,∠ABE=∠ADF,∵∠ABE+∠AHB=90°,∠AHB=∠DHP,∴∠ADF+∠PHD=90°,∴∠DPH=90°,∴BE⊥DF.故答案为BE=DF,BE⊥DF.(2)如图3中,结论不成立.结论:DF=nBE,BE⊥DF,∵AE=AB,AF=AD,AD=nAB,∴AF=nAE,∴AF:AE=AD:AB,∴AF:AE=AD:AB,∵∠DAB=∠EAF=90°,∴∠BAE=∠DAF,∴△BAE∽△DAF,∴DF:BE=AF:AE=n,∠ABE=∠ADF,∴DF=nBE,∵∠ABE+∠AHB=90°,∠AHB=∠DHP,∴∠ADF+∠PHD=90°,∴∠DPH=90°,∴BE⊥DF.(3)如图4﹣1中,当点P在BE的延长线上时,在Rt△AEB中,∵∠AEB=90°,AB=6,AE=3,∴BE==3,∵△ABE∽△ADF,∴=,∴=,∴DF=4,∵四边形AEPF是矩形,∴AE=PF=3,∴PD=DF﹣PF=4﹣3;如图4﹣2中,当点P在线段BE上时,同法可得DF=4,PF=AE=3,∴PD=DF+PF=4+3,综上所述,满足条件的PD的值为4﹣3或4+3.17.解:(1)连接AG,如图2所示,由折叠得:AG⊥EF,∵EF∥BD,∴AG⊥BD,在矩形ABCD中,AB=8,BC=6,∴∠DAB=90°,AD=BC=6,∴DB===10,∴cos∠ADB===,∴DG=AD•cos∠ADB=6×=.(2)①当∠DGF=90°时,此时点D,G,E三点共线,设AF=3t,则FG=3t,AE=4t,DF=6﹣3t,在Rt△DFG中,DG2+FG2=DF2,即DG2=(6﹣3t)2﹣(3t)2=36﹣36t,∵tan∠FDG==,∴=,解得t=,∴AE=.②当∠GDF=90°时,点G在DC上,过点E作EH⊥CD于H,则四边形ADHE是矩形,EH=AD=6.设AF=3t,则FG=3t,AE=4t,DF=6﹣3t,∵∠FDG=∠FGE=∠EHG=90°,∴∠DGF+∠DFG=90°,∠DGF+∠EGH=90°,∴∠DFG=∠EGH,∴△GDF∽△EHG,∴==,∴==,∴DG=,GH=8﹣4k,∵DG+GH=AE,∴+8﹣4k=4k,∴k=,∴AE=.综上所述:AE=或.(3)①当△AEF∽△GHE时,如图4﹣1,过点H作HP⊥AB于P,∵∠AEF=∠FEG=∠EHG,∠EHG+∠HEG=90°,∴△FEG+∠HEG=90°,∴∠A=∠FEH=90°,∴△AEF∽△EHF,∴EF:HE=AF:AE=1:2,∵∠A=∠HPE=90°,∴∠AEF+∠HEP=90°,∠HEP+∠EHP=90°,∴∠AEF=∠EHP,∴△AEF∽△HPE,∴EA:HP=EF:EH=1:2,∵HP=6,∴AE=3.②当△AEF∽△GHE时,如图4﹣2,过点H作HP⊥AB于P,同法可得EF:HE=1:2,EA:HP=1:2,设AF=t,则AE=2t,EP=2t,HP=4t,∴BP=8﹣4t,∵△BHP∽△BDA,∴4t:6=(8﹣4t):8,解得:t=,AE=.③当△AEF∽△GEH时,如图4﹣3,过点G作MN∥AB交AD于点M,过点E作EN⊥MN 于N.设AF=t,则AE=2t,DF=6﹣t,由翻折可知:△AEF≌△GEF,AE=GE,∵△AEF∽△GEH,AE=GE,∴△AEF≌△GEH(AAS或ASA),∴FG=GH,∵MG∥DH,∴FM=(6﹣t),∴AM=EN=AF+FM=,又∵△FMG∽△GNE,且GF:GE=1:2,∵MG=NE=AM=,GN=2FN=6﹣t,∵MN=AE,∴+6﹣t=2t,解得t=,∴AE=.④当△AEF∽△GEH时,如图4﹣4,过点G作MN∥AB交AD于点M,过点E作EN⊥MN 于N,过点H作HQ⊥AD于Q,设AF=t,则AE=2t,设FM=a,∴NG=2a,NE=a+t,∴MG=EN=AM=,∴+2a=2t①,由上题可知:MF=MQ=a,QH=2MG=a+t,∴DQ=6﹣t﹣2a,∵=,∴=②,解得t=,∴AE=,综上所述,满足条件的AE的值为3或或或.18.解:(1)∵△ABC是“准互余三角形”,∠A>90°,∠B=20°,若∠A﹣∠B=90°,则∠A=110°,∴∠C=180°﹣110°﹣20°=50°,若∠A﹣∠C=90°,∵∠A+∠B+∠C=180°,∴∠C=35°;(2)∵∠BAC=90°,AB=4,BC=5,∴AC===3,∵△ABD是“准互余三角形”,∴∠BAD﹣∠B=90°,或∠BAD﹣∠ADB=90°,当∠BAD﹣∠ADB=90°,∴∠BAC+∠CAD﹣∠ADB=90°,∴∠CAD=∠ADB,∴AC=CD=3,当∠BAD﹣∠B=90°,∴∠BAC+∠CAD﹣∠B=90°,∴∠B=∠CAD,∵∠ADC=∠BDA,∴△ADC∽△BDA,∴,∴,∴CD=;(3)如图,将△ABC沿BC翻折得到△EBC,∴CE=AC=4,∠BCA=∠BCE,∠CBA=∠CBE,∠E=∠BAC=90°,∴∠ABE+∠ACE=180°,∵∠ACD=2∠ABC=∠ABE,∴∠ACD+∠ACE=180°,∴点D,点C,点E三点共线,∵∠BCD=∠ACD+∠ACB=2∠ABC+∠ACB=90°+∠ABC,∴∠BCD﹣∠CBD=90°,∵△BCD是“准互余三角形”,∴∠BCD﹣∠CDB=90°,∴90°+∠ABC﹣∠CDB=90°,∴∠CDB=∠ABC=∠EBC,又∵∠E=∠E,∴△CEB∽△BED,∴,即,∴BE=6,∴BD===3.。

相关文档
最新文档