ANSYS仿真电磁系统温度场步骤
基于ANSYS的电磁感应加热系统仿真与实验

实 验 方 案 将 理 论 分 析 、数 值 仿 真 和 实 验 测 量 三 者 相 结 合 ,能 够 帮 助 学 生 更 好 地 构 建 该 课 程 系 统 全 面 的 思 维 框 架 。
关 键 词 : 电 磁 感 应 ;涡 流 ;感 应 加 热 ;工程电磁场
中 图 分 类 号 :TM154
文 献 标 识 码 :A
130
实验技术与管理
1 电磁感应加热原理
1831年 ,法拉第发现电磁感应定律[7]:导体回路
中感应电动势e 的大小与穿过回路的磁通随时间的变
化率成正比。当频率为/ 的交流电流流过匝数为W 的
线 圈时,感应电动势e 为
e = - N -d <f i / d t
( 1)
感应加热技术是在法拉第电磁感应定律的基础上
基 于 ANSYS的电磁感应加热系统仿真与实验
房 紫 路 ,龚 直 ,李 玉 玲 ,姚缨英 ( 浙 江 大 学 电 气 工 程 学 院 ,浙 江 杭 州 310027 )
摘 要 :将 电 子 工 程 专 业 基 础 课 “工 程 电 磁 场 ” 中 的 电 磁 感 应 定 律 和 涡 流 理 论 与 实 际 应 用 相 结 合 ,提 出 了 基 于 电 磁
(8 )
其 中 :c r 为材料的电导率;~ 为 角 频 率 , ffl = 2ir/ ,/ 为
电磁炉T .作频率。
涡流的焦耳热效应表达式为
Q = I 2R i
(9)
其中:/ 为感应电流,•/?为负载电阻值,/ 为加热时间。 1.3.2 锅 具 与 线 圈 的 距 离
电磁炉的感应线圈与锅具之间放置陶瓷玻璃板与
Z eq = ^ e q + j ^ e q
基于Ansys的永磁同步电机温度场分析

近些年来 ,由于永磁同步电机在工农业 的生产生活中应用越来越广泛 ,关于永磁同步电机的各类 问 题也越来越引起人们的重视 .由于电机的应用逐渐广泛 ,电机的负载逐渐增大 ,电机运行时的损耗也逐渐 增加 ,导致 电机 内部温升也 同时增大.而过高的温升容易使得电机部件出现过早老化 的现象 ,所以电机 内 部温升是电机设计 中必须考虑 的参数 .因此 ,电机的发热问题也引起了人们 的重视.但是由于电机内部结 构 复杂 、磁场分 布不 均匀 等 因素 ,使 得人 们对 于 电机 内部 温度 场分 布 的认识 大 多停 留于公 式计 算 出的 电 机 温升 得平 均值 ,而 没有 具体 到 电机 的温 度分 布 规律 .但 利用 Ansys有 限元 分析 软件 ,可 以模 拟 出 电机 内 部温度场的分布情况 ,从而解决这一问题.本文通过Ansys软件中的热分析模块 ,对实际电机温度场进行 二维分析 ,得 出温度分布云图,模拟 电机在运行过程 中温度场分布 隋况.
摘要 :利用Ansys ̄-f限元分析软件对永磁 同步电机的平面二维模型进行温度场分析 ,将 分析得到的结果与理
论计算结果进行 比较 ,寻找 出一种有效的计算 电机温度场的方法 .
关键词 :永磁 同步 电机 ;Ansys软件 ;瞬态热分析 ;温度场
中图分类号 :TM 341
文献标识码 :A
文章 编号 :2095—2481(2013)02.0138.03
第 25卷第 2期 2013年 5月
宁德师范学院学报(自然科 学版) Journal of Ningde Normal University(Natural Science)
Vol_25No.2 M ay2013
基于Ansys的永磁 同步电机温度场分析
基于Ansys Workbench雅阁ISG温度场仿真分析

基于Ansys Workbench雅阁ISG温度场仿真分析李新华1杨国威1李哲然2(1.湖北工业大学电气与电子工程学院,430068;2.华中科技大学控制科学与工程系,430074)摘要:本文研究基于Ansys Workbench ISG温度场仿真方法,在此基础上使用Ansys Workbench软件对本田Accord ISG不同工况下的温度场进行仿真,并与电枢绕组温升试验结果做比较,同时讨论电机温度对转子磁钢和磁桥结构的影响。
关键词:ISG,Ansys Workbench,温度场仿真,应力分析Accord ISG Temperature Field Simulation Based onAnsys WorkbenchLI Xinhua1,YANG Guowei1,LI Zheran2(1.School of Electrical & Electronic Engineering,Hubei University of Technology,Wuhan430068,China2.Department of control science and Engineering,Huazhong University of Science andTechnology,Wuhan 430074,China)Abstract:In this paper,ISG temperature field simulation method is researched based on Ansys Workbench.On this basis, the temperature field of the Honda Accord ISG different operating conditions are simulated by Ansys Workbench.And it is compared with the armature winding temperature rise test results.The impact of the motor temperature of the rotor magnet and the magnetic bridge structure are also discussed.Keywords:ISG,Ansys Workbench,temperature field simulation,stress analysis1 引言轻度混合动力汽车集成式起动-发电机ISG(ISG: Integrated Starter Generator)功率和转矩密度高、运行工况多变、特别是工作环境温度高、散热条件差,这些都给电机设计带来了新的挑战,仅按有常规的电磁设计是不够的,还需要对其进行温度场的仿真分析与设计。
基于ANSYS的温度场仿真分析

基于ANSYS的温度场仿真分析引言:在工程领域中,温度场分布的仿真分析是一项重要的工作。
温度场分布的准确预测和优化设计对于许多工业过程和产品的设计和改进至关重要。
在这里,我们将介绍一种基于ANSYS软件的温度场仿真分析方法。
一、ANSYS软件简介ANSYS是一种广泛使用的通用有限元分析(FEA)软件。
它提供了强大的功能,可以进行多种物理和工程仿真分析。
其中,温度场分布的仿真分析是ANSYS的一个主要功能之一二、温度场仿真分析的步骤1.几何建模:使用ANSYS的几何模块进行物体的几何建模。
可以通过绘制二维或三维几何形状来定义和创建模型。
2.网格划分:对几何模型进行网格划分,将其划分为小的单元,以便进行离散化计算。
网格划分的质量直接影响到仿真结果的准确性和计算速度。
3.边界条件设置:根据具体的问题,设置物体表面的边界条件。
边界条件包括固定温度、传热系数、对流换热等。
边界条件设置的准确与否对温度场的分布有重要影响。
4.材料属性定义:为物体的各个部分定义材料属性,包括热导率、热容量等。
这些属性是模型中的重要参数,直接影响到温度场的分布。
5.求解和后处理:设置求解算法和参数,开始进行仿真计算。
求解器根据网格和边界条件,通过计算方程的数值解确定温度场的分布。
计算完成后,可以进行后处理,生成温度场分布的图表和报告。
三、温度场仿真分析的应用温度场仿真分析在多个工程领域中得到广泛应用。
以下是几个示例:1.电子设备散热优化:通过温度场仿真分析,可以评估电子设备中的热量分布,优化散热设计,确保电子设备的正常运行和寿命。
2.汽车发动机冷却系统:通过温度场仿真分析,可以预测汽车发动机冷却系统中的温度分布,优化冷却器的大小和位置,提高冷却效果。
3.空调系统设计:通过温度场仿真分析,可以预测房间内的温度分布,优化空调系统的风口布置和参数设置,实现舒适的室内温度。
4.熔炼和混合过程优化:通过温度场仿真分析,可以预测熔炼和混合过程中的温度分布,优化加热和冷却控制,提高生产效率和产品质量。
ansys电磁场仿真分析教程

• 模拟模型的轴对称形状 • 选择Options(选项) • Element behavior(单元行为) • 选择 Axisymmetric(轴对称) • 选择OK
1-13
• 定义材料 Preprocessor>Material Props>Isotropic
• 定义空气为1号材料(MURX = 1)
• 对称面 (B-B)边界条件 – 2D磁矢量势(MVP)方式,无须处理 – 加载电流与全模型相同
B
B
Quarter symmetry model of
the simple magnetizer
1-43
• 1/4模型与全模型比较 – 磁通密度分布相同 – 贮能为1/4 – 所示线圈上的Lorentz力 1/2 – 作用在极面上力为1/2
有限元网格
1-6
• 进行模拟 • 观察结果
– 某指定时刻 – 整个时间历程 • 后处理 – 磁力线 –力 – 力矩 – 损耗 – MMF(磁动势) – 电感 – 特定需要
1-7
• 模拟由3个区域组成 • 衔铁区: 导磁材料 导磁率为常数(
即线性材料)
• 线圈区: 线圈可视为均匀材料. • 空气区:自由空间 (μr = 1) .
• 选On Lines并选取相应的线 • 选 OK
“所选取的线” 注:未划分单元前,加
上这种边界条件
“所选取的线”
1-22
• 生成有限元网格 • 利用智能尺寸选项来控制网格大小
Preprocessor>-Meshing-Size Cntrls>-smartsize-basic
• 选择OK
1-23
• Preproc>-Meshing-Mesh>-Areas-Free> 在选取框内选择ALL 选择OK
ANSYS温度场分析步骤

ANSYS温度场分析步骤ANSYS是一个计算机辅助工程软件,用于各种工程应用,包括温度场分析。
温度场分析主要是用于研究物体或系统内部的温度分布和传热过程,可以帮助工程师设计和改进各种设备和系统。
下面是ANSYS温度场分析的步骤:1.准备工作:在进行温度场分析之前,首先需要准备好相关的几何模型和网格模型。
几何模型可以由CAD软件创建,而网格模型则需要使用ANSYS的网格生成工具进行网格划分。
在划分网格时,需要根据物体的几何形状和分析需求选择适当的划分网格的密度。
2.定义材料属性:在进行温度场分析之前,需要定义材料的热传导特性。
在ANSYS中,可以通过输入材料的热导率、热容和密度来描述材料的热性能。
3.设置边界条件:在进行温度场分析时,需要设置边界条件来模拟实际工况。
边界条件包括:初始温度、加热或冷却速率、边界热通量以及固定温度等。
这些条件将对温度场分析结果产生重要影响,需要根据实际情况进行合理设置。
4.定义物理模型:在进行温度场分析之前,需要定义物理模型,包括所分析的物体的几何形状和边界条件。
在ANSYS中,可以通过绘制几何模型和设置边界条件来定义物理模型。
5.进行温度场分析:在完成前面的准备工作后,就可以进行温度场分析了。
在ANSYS中,可以使用热传导分析模块来进行温度场分析。
热传导分析模块可以通过求解热传导方程来计算温度场的分布。
分析结果可以包括温度场分布图、热通量分布图等。
6.分析结果的后处理:在进行温度场分析之后,需要对分析结果进行后处理。
后处理包括对温度场分布图进行可视化分析,并进行更详细的结果解释。
可以通过ANSYS提供的后处理工具来进行分析结果的可视化。
7.结果验证和优化:在进行温度场分析之后,可以对分析结果进行验证和优化。
验证可以通过与实际测量数据进行对比来确定模型的准确性和可靠性。
优化则可以通过调整边界条件、几何形状或材料属性等来提高设计的性能。
总结:ANSYS温度场分析是一个非常强大和灵活的工程分析工具,可以用于各种工程应用。
ANSYS稳态和瞬态分析步骤简述..

ANSYS稳态和瞬态热模拟基本步骤基于ANSYS 9。
0一、稳态分析从温度场是否是时间的函数即是否随时间变化上,热分析包括稳态和瞬态热分析。
其中,稳态指的是系统的温度场不随时间变化,系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量:(3-1)=0+-q q q流入生成流出在稳态分析中,任一节点的温度不随时间变化.基本步骤:(为简单起见,按照软件的菜单逐级介绍)1、选择分析类型点击Preferences菜单,出现对话框1。
对话框1我们主要针对的是热分析的模拟,所以选择Thermal.这样做的目的是为了使后面的菜单中只有热分析相关的选项.2、定义单元类型GUI:Preprocessor>Element Type〉Add/Edit/Delete 出现对话框2对话框2点击Add,出现对话框3对话框3在ANSYS中能够用来热分析的单元大约有40种,根据所建立的模型选择合适的热分析单元。
对于三维模型,多选择SLOID87:六节点四面体单元。
3、选择温度单位默认一般都是国际单位制,温度为开尔文(K).如要改为℃,如下操作GUI:Preprocessor>Material Props>Temperature Units选择需要的温度单位。
4、定义材料属性对于稳态分析,一般只需要定义导热系数,他可以是恒定的,也可以随温度变化。
GUI: Preprocessor〉Material Props> Material Models 出现对话框4对话框4一般热分析,材料的热导率都是各向同性的,热导率设定如对话框5.对话框5若要设定材料的热导率随温度变化,主要针对半导体材料。
则需要点击对话框5中的Add Temperature选项,设置不同温度点对应的热导率,当然温度点越多,模拟结果越准确.设置完毕后,可以点击Graph按钮,软件会生成热导率随温度变化的曲线。
对话框5中,Material菜单,New Model选项,添加多种材料的热参数。
Ansys有限元分析温度场模拟指导书

实验名称:温度场有限元分析一、实验目的1. 掌握Ansys分析温度场方法2. 掌握温度场几何模型二、问题描述井式炉炉壁材料由三层组成,最外一层为膨胀珍珠岩,中间为硅藻土砖构成,最里层为轻质耐火黏土砖,井式炉可简化为圆筒,筒内为高温炉气,筒外为室温空气,求内外壁温度及温度分布。
井式炉炉壁体材料的各项参数见表1。
表1 井式炉炉壁材料的各项参数三、分析过程1. 启动ANSYS,定义标题。
单击Utility Menu→File→Change Title菜单,定义分析标题为“Steady-state thermal analysis of submarine”2.定义单位制。
在命令流窗口中输入“/UNITS, SI”,并按Enter 键3. 定义二维热单元。
单击Main Menu→Preprocessor→Element Type→Add/Edit/Delete 菜单,选择Quad 4node 55定义二维热单元PLANE554.定义材料参数。
单击Main Menu→Preprocessor→Material Props→Material Models菜单5. 在右侧列表框中依次单击Thermal→Conductivity→Isotropic,在KXX文本框中输入膨胀珍珠岩的导热系数0.04,单击OK。
6. 重复步骤4和5分别定义硅藻土砖和轻质耐火黏土砖的导热系数为0.159和0.08,点击Material新建Material Model菜单。
7.建立模型。
单击Main Menu→Preprocessor→Modeling→Create→Areas→Circle→By Dimensions菜单。
在RAD1文本框中输入0.86,在RAD2文本框中输入0.86-0.065,在THERA1文本框中输入-3,在THERA2文本框中输入3,单击APPL Y按钮。
8.重复第7步,输入RAD1=0.86-0.065,RAD2=0.86-0.245,单击APPL Y;输入RAD1=0.86-0.245,RAD2=0.86-0.36,单击OK。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ANSYS仿真电磁系统温度场步骤
1.创建几何模型:在ANSYS中,可以使用多种方法创建电磁系统的几
何模型,包括使用建模工具、导入CAD文件或使用ANSYS的几何建模工具。
确保几何模型完整且准确。
2.定义材料属性:对于每个几何体,需要为其分配材料属性。
这些属
性包括热导率、比热容和密度等。
可以使用材料库中的标准材料,也可以
定义自定义材料属性。
3.设置边界条件:在仿真中,需要设置边界条件来模拟实际操作条件。
对于电磁系统的温度场仿真,需要设置壁面流动条件和散热条件等。
4. 网格划分:将几何模型离散化为小区域,即网格或网格。
这可以
通过使用ANSYS网格工具手动创建网格,或者使用ANSYS自动网格生成器,如AutoMesh或TGrid。
5.定义热源:对于电磁系统的温度场仿真,可能存在电磁源,如电流
或电压。
需要定义这些热源,并将其添加到仿真模型中。
6.定义边界条件:除了热源之外,还需要为仿真模型定义边界条件,
如固定温度、固定热流或固定热通量条件。
这些边界条件将在仿真过程中
施加在模型的边界处。
7.定义求解器设置:在ANSYS中,可以选择不同的求解器来求解热传
导问题。
根据实际需求,可以选择稳态或瞬态求解器,并定义其他相关设置,如收敛准则和求解步长等。
8.运行仿真:完成所有前期准备工作后,可以运行仿真并等待结果。
ANSYS将根据定义的边界条件和材料属性,求解电磁系统的温度场分布。
9.结果后处理:一旦仿真完成,可以对结果进行后处理和分析。
可以查看温度分布图、温度剖面图或导出结果以供进一步分析和使用。
10.优化设计:根据分析和后处理结果,可以对电磁系统的设计进行优化。
可以将结果与实际需求进行比较,并根据需要进行设计修改。
总结:使用ANSYS进行电磁系统温度场仿真的步骤主要包括创建几何模型、设定材料属性、确定边界条件、网格划分、定义热源和边界条件、设置求解器参数、运行仿真、结果后处理和优化设计。
这些步骤将帮助工程师分析和优化电磁系统的温度场,并提供有关系统的详细信息。